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SUMMARY 

 

To ensure host survival, virus-infected cells are targeted for elimination by host immune 

mechanisms. While vertebrates successfully accommodate such task to their sophisticated 

immune system, the mechanism how invertebrates, being only equipped with a simple innate 

immunity, accomplish this vital responsibility remains unknown. Our lab previously reported that 

influenza virus-infected cells are engulfed by macrophages in a manner dependent on apoptosis 

leading to the mitigation of viral threat in mice. Considering that phagocytes are the sole immune 

cells present in most invertebrates, including insects, I here examined if such mechanism, may 

also play an antiviral role in Drosophila. 

I established in vitro and in vivo infection model systems using Drosophila C virus. 

Infection of Drosophila S2, an embryonic cell-derived cell line, was characterized by massive 

production of progenitor virus accompanied by an elevated level of cells with apoptosis-like 

properties. Such cells were phagocytosed by l(2)mbn, a larval phagocyte-derived cell line, in a 

manner inhibitable by either a caspase inhibitor, phosphatidylserine-containing liposomes, or by 

RNA interference-based knockdown of engulfment receptors in phagocytes. Furthermore, the 

pathogenic effect of Drosophila C virus in vivo was increased when flies were pre-treated with 

latex beads or manipulated to ectopically express a phosphatidylserine-binding protein to inhibit 

phagocytosis. Taken together, these results suggested that apoptosis-dependent phagocytic 

removal of virus-infected cells exists as a part of innate immunity and is evolutionarily conserved 

from flies to mice. 
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INTRODUCTION 

 

Viral infection is one of the most significant maladies giving a life-threatening pressure 

to all living organisms (1, 2). For the affected species to survive, successful adaptation to such 

biological pressure is, therefore, indispensable. One of means available to achieve this purpose is 

the active engagement of various host defense mechanisms against the incoming viral threat. As 

viruses are required to enter cells of host organisms due to a lack of machinery to produce 

proteins, there should be two chances for the host to protect themselves against successful virus 

invasion, at the entrance and inside the cells. Host strategies to fight against viral attack is 

represented by the immune system that recognizes pathogens, alerts the body of invasion, evokes 

and amplifies biological reactions, kills and eliminates virus, and cures damaged tissues (3). 

Failure to perform such tasks may lead to the impairment in cellular homeostasis, development of 

infectious disease, and, to the worst, lethality to the infected host (4). 

In response to foreign viral particles, vertebrates, including mammals, employ an 

extensive array of cellular defense mechanisms, starting from the production of interferon either 

by a classical Toll-like receptor-mediated pathway (5, 6) or a recently defined pathway involving 

mitochondrial antiviral-signaling protein (7) and cyclic GMP-AMP synthase-stimulator of 

interferon genes (8, 9), which is categorized into an built-in or innate arms of the immune system, 

to a more sophisticated and specific reactions mediated by the antibody in an adaptive part of 

defense mechanism (10). In addition to these, a self-consumption process termed autophagy as 

well as dedicated RNA interference-pathway targeting viral genomes have been added to a list of 

major innate antiviral arsenals (11-13). 

Similar protection systems have also been described in evolutionarily lower organisms 

such as invertebrates. However, unlike vertebrates, invertebrates including insects are only 

equipped with an innate part of the immunity system (14, 15), leaving them with fewer options to 

resist infection compared to higher organisms. Nevertheless, mechanisms that are based on RNA 
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interference (16-19) and autophagy (20-23) have been proposed to be efficient in dealing with a 

wide range of viruses in insects. By recognizing the characteristics of viral entities, host 

organisms may restrict viral behavior, attachment on the surface of host cells, replication in host 

cells, and escape from host cells for further invasion. However, in the epic struggle between host 

and virus, viruses also have evolved their strategies for evading immune responses and achieving 

flawless hijack of host cells to produce daughter virions (24-26). 

In addition to virus entities, virus-infected cells can be targeted for elimination by host 

immune system (2, 3). In vertebrates such as mammals, this is achieved through the actions of 

natural killer (27, 28) and cytotoxic CD8-positive T (29, 30) cells to recognize viral components 

that have been processed and expressed at the surface of infected cells. In addition to such 

mechanisms, another procedure by which infected cells are recognized independent of viral 

components: cells infected with virus are induced to undergo apoptosis and eliminated by a 

mechanism of phagocytic clearance that generally targets apoptotic cells. This was first shown 

with cells infected with influenza virus that are recognized and engulfed by macrophages and 

neutrophils (31-33). However, whether or not this mechanism is available in invertebrates 

remains to be known. 

As are vertebrates including humans, invertebrates, including insects, are suffered from 

infection with a broad range of viruses (34-36). Although well-defined antiviral cellular effectors 

of vertebrates, such as natural killer cells and cytotoxic CD8-positive T cells, are absent in 

invertebrate animals, they have managed to survive and existed on earth. Therefore, invertebrates 

should possess a robust mechanism to deal with virus-infected cells during viral invasion. I 

decided to challenge this issue, elucidation of a cellular mechanism responsible for the 

elimination of virus-infected cells in invertebrates, using fruit fly Drosophila melanogaster as 

host for viral infection with the hypothesis that virus-infected cells are removed by 

apoptosis-dependent phagocytosis. 
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MATERIALS AND METHODS 

 

Fly stocks and cell culture 

The Drosophila embryonic cell-derived cell line S2 was used as host cells for virus 

infection and target cells in an assay for phagocytosis in vitro. S2 cells were cultured at 25 °C 

with Schneider's Drosophila medium (Life Technologies Japan, Tokyo, Japan) containing 10% 

(v/v) fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. l(2)mbn, another 

cell line established from larval hemocytes of a tumorous Drosophila mutant, was maintained in a 

similar fashion to S2 cells and used as the phagocytes in an assay for phagocytosis after treatment 

with the molting hormone 20-hydroxyecdysone (Sigma-Aldrich Japan, Tokyo, Japan) at 1 μM for 

48 h. All fly lines, listed in Table 1, were raised with standard laboratory cornmeal-agar medium 

at 25 °C. w1118, a common white-eye laboratory stock of Drosophila (provided by Bloomington 

Drosophila Stock Center, Indiana University, Bloomington, IN, USA), was used as a general 

control for the in vivo infection experiments. betaInt-nu2 (37) and drprΔ5 clone 15 were used as 

mutant flies lacking Draper and integrin βν, respectively. The original drprΔ5 line (38) was 

backcrossed with w1118 to obtain a stable fly line, which was later named as ‘clone 15’. 

UAS-MFGE8 and UAS-MFGE8-ΔC2 were ‘UAS lines’ for the expression of milk fat globule 

epidermal growth factor 8 (MFG-E8) and MFG-E8 lacking C2 domain (MFGE8-ΔC2) (39). 

UAS-CD8::PARP::Venus is another UAS line for the expression of human poly(ADP-ribose) 

polymerase (PARP) fused to a portion of murine CD8 and the fluorescence protein Venus as a 

membrane-bound form (CD8-PARP-Venus) (40). da-Gal4 is a ‘GAL4 driver’ for the ubiquitous 

expression of GAL4 and mated with the above-described UAS lines for the expression of the 

trans-genes. pxn-Gal4 UAS-GFP (41) is a fly line where hemocytes are labelled with green 

fluorescence protein (GFP). 
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Table 1. Fly lines used in this study 

No. Fly line Description 

1 w1118 control fly line 

2 drprΔ5 clone 15 mutant fly line lacking Draper 

3 betaInt-nu2 mutant fly line lacking integrin β 

4 betaInt-nu2; drprΔ5 mutant fly line lacking both Draper and integrin β 

5 UAS-MFGE8  UAS line for MFG-E8 expression 

6 UAS-MFGE8-ΔC2  UAS line for MFGE8-ΔC2 expression 

7 UAS-CD8::PARP::Venus  UAS line for CD8-PARP-Venus expression 

8 da-Gal4  GAL4 driver for ubiquitous expression of GAL4 

9 pxn-Gal4 UAS-GFP  fly line with GFP-labelled hemocytes 

 

Preparation, titration, and UV-inactivation of Drosophila C virus 

Drosophila C virus (DCV), natural pathogen for Drosophila, was used to infect culture 

cell lines and adult flies. To prepare a stock of DCV, semi-confluent S2 cells were incubated with 

an aliquot of original DCV stock (a gift from Takayuki Kuraishi of Tohoku University) at 25 °C, 

and the culture media were collected at day 4. A 50% tissue culture-infective dose (TCID50) of 

the harvested culture media was determined by the Reed-Muench titration approach (42). In brief, 

S2 cells (2.5  104) were seeded in wells of a 96-well culture dish with 150-µl medium and 

incubated overnight. On the next day, they were inoculated with the harvested DCV-containing 

culture medium at 10-fold serial dilutions (50 µl/well), 8 wells for each dilution, and further 

incubated at 25 °C for 7 days. All wells were assessed for the presence of cell debris and the loss 

of cell confluency, indicative of DCV infection, and a virus titer was determined according to an 

established procedure (43). The culture medium gave a DCV concentration of 1.6  109 

TCID50/ml and was kept frozen at -80 °C as a stock until use. UV-inactivation of DCV was 

carried out by exposing the original virus stock to 15W lamp emitting 253.7-nm light at a 

distance of 10 cm for 5 min at room temperature, and this was repeated for 3 times.  
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Virus infection and determination of virus titer 

In the in vitro experiments, S2 cells were treated with either DCV (40 TCID50) or 

Schneider's Drosophila medium alone (mock infected), and maintained at 25 °C until further 

analysis. In the in vivo experiments, adult flies were infected with DCV according to an 

established procedure (44) with slight modification. Male flies 3~6 days after eclosion were 

anesthetized with CO2 and abdominally injected with DCV (8,000~80,000 TCID50 in 50 nl) using 

a N2 gas-operated microinjector (IM300; Narishige, Tokyo, Japan). As a negative control, flies 

were injected with PBS. All flies were subsequently maintained in a 25 °C incubator (15-20 flies 

per vial, 3 vials for each experiment). Flies that died within 2 h were excluded from the analysis, 

considering that they were injured with a needle. To determine the growth of DCV after infection, 

media of S2 cell cultures, lysates of S2 cells, and lysates of whole flies were subjected to an assay 

for virus titer. For preparing S2 cell lysates, 107 pelleted cells were lyzed with 100 µl of a buffer 

consisting of 50 mM Tris-HCl (pH 7.5), 0.1% (v/v) Nonidet P-40, 10% (v/v) glycerol, 0.1% (v/v) 

Triton X-100, 0.15 M NaCl, 5 mM MgCl2, and 1% (v/v) protease inhibitor cocktail (Nacalai 

Tesque, Kyoto, Japan) (Drosophila lysis buffer), centrifuged at 14,000 rpm for 10 min, and 

supernatants were collected. For the preparation of fly lysates, five live flies were chosen 

randomly and homogenized with 100 µl of Drosophila lysis buffer using a plastic pestle, 

centrifuged at 14,000 rpm for 10 min, and supernatants were collected as test samples. Prior to 

use, samples were diluted based on the expected virus concentration, which ranged from 10-2 to 

10-13. 

 

Western blotting 

Lysates of culture cell lines and whole flies were subjected to a Western blotting analysis 

according to established procedures. Primary and secondary antibodies used are listed in Table 2. 
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Table 2. List of antibodies used in this study 

No. Product Types of 

antibodies 

Description 

1. anti-drICE Primary Rabbit-origin, polyclonal, affinity-purified 

2. anti-PARP Primary Rabbit-origin, polyclonal, affinity-purified 

3. anti-DIAP1 Primary Rabbit-origin, antiserum 

4. anti-Draper Primary Rat-origin, antiserum 

5. anti-integrin βν Primary Rat-origin, antiserum 

6. Anti-Croquemort Primary Rat-origin, antiserum 

7. anti-DmCaBP1 Primary Rat-origin, antiserum 

8. anti-DCV Primary 1. Chicken-origin, polyclonal, affinity-purified 

2. Rabbit-origin, polyclonal, affinity-purified 

9. HRP-conjugated 

anti-chicken IgY 

Secondary Rabbit-origin, polyclonal, affinity purified 

10. HRP-conjugated 

anti-rabbit IgG 

Secondary Donkey-origin, polyclonal, affinity purified 

11. AP-conjugated 

anti-rat IgG 

Secondary Goat-origin, polyclonal, affinity purified 

 

Anti-drICE (#13085) and anti-PARP (#9542), which were raised by immunizing rabbits with a 

synthetic peptide corresponding to residues Asp230 of drICE and a synthetic peptide 

corresponding to the caspase cleavage site of human PARP, respectively, were purchased from 

Cell Signaling Technology Japan, Tokyo, Japan. Anti-Drosophila inhibitor of apoptosis protein 1 

(DIAP1) was raised in rabbits after immunization with a recombinant DIAP1 protein (45) and 

provided by Masayuki Miura of the University of Tokyo. Anti-Draper, anti-integrin βν, and 

anti-DmCaBP1 were rat anti-sera obtained after immunization with recombinant proteins 

containing the intracellular portions (amino acid positions 881-1200) of Draper (46), the 

intracellular regions (amino acid positions 753-799) of integrin βν (47), and full length of 

DmCaBP1 (48), respectively. I used two differently prepared anti-DCV antibodies: anti-DCV 
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chicken antibody (44) was kindly provided by Sara Cherry (University of Pennsylvania); and 

anti-DCV capsid polyprotein antibody (ab92954) was purchased from Abcam (Cambridge, UK). 

To locate the primary antibodies, horse radish peroxidase (HRP)-conjugated anti-rabbit IgG 

antibody (GE Healthcare Bio-Sciences KK, Tokyo, Japan), HRP-conjugated anti-chicken IgY 

antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA), and alkaline 

phosphatase (AP)-conjugated anti-rat IgG antibody (KPL, Gaithersburg, MD, USA) were 

employed as the secondary antibodies, and Western Lightning (PerkinElmer Japan Co., Ltd., 

Yokohama, Kanagawa, Japan) and Immune-Star system (Bio-Rad Laboratories Co., Ltd., Tokyo, 

Japan) were used as substrates for luminescence reactions with HRP and AP, respectively. 

 

Immunochemical detection of DCV 

Mock-infected and DCV-infected S2 cells were washed twice with PBS and 

subsequently treated with 2% (w/v) paraformaldehyde, 0.1% (w/v) glutaraldehyde, and 0.05% 

Triton X-100, and then with methanol for fixation. These cells were moderately washed with PBS 

containing 0.1% Triton X-100 (PBST), treated with PBST containing 5% (v/v) whole swine 

serum for blocking, and incubated with PBST containing anti-DCV antibody at 4 °C overnight. 

Samples were then washed with PBS, incubated with PBS containing appropriate HRP-labelled 

secondary antibodies at room temperature for 1 h, and were washed with PBS. They were 

subjected to an enzymatic reaction of HRP with 3,3’-diaminobenzidine tetrahydrochloride (DAB) 

as a substrate and examined by microscopy. In some experiments, samples were further stained 

with hematoxylin to locate the nucleus. 

 

Phagocytosis assay 

To examine phagocytosis in vitro, S2 cells (2  106) mock-infected or infected with DCV 

were mixed with 20-hydroxyecdysone-treated l(2)mbn cells (2  105) in triplicate wells of 

24-well culture plates with 1 ml of Schneider's Drosophila medium supplemented with 1% fetal 
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bovine serum at 25 °C for 2 h. The cells were immunostained with anti-DCV antibody and 

examined under a microscope for the occurrence of phagocytosis. The ratio of l(2)mbn cells that 

had engulfed DCV-positive S2 cells as well as the number of target cells engulfed by 100 l(2)mbn 

cells were determined. To examine phagocytosis in vivo, hemocytes contained in hemolymph 

collected from adult flies were subjected to a cytochemical analysis according to published 

procedures (49) with modifications (personal communication, Róbert Márkus of the University of 

Nottingham). Briefly, adult males of pxn-Gal4 UAS-GFP mock-infected or infected with DCV 

were anesthetized with CO2, and a small slit was made at the last abdominal region using a 

forceps. Then, PBS was inoculated into the thorax using a glass capillary and discharged onto an 

aminosilane-coated glass slide. More than 90% of cells collected from hemolymph in this way 

were positive for GFP (see Fig. 16A and 16A’) and thus considered to be hemocytes. These cells 

were subjected to hematoxylin staining as well as immunostaining with anti-DCV antibody. Cells 

containing homatoxylin-stained two nuclei and positive for the capsid protein of DCV were 

considered as adult hemocytes that had engulfed DCV-infected cells. 

 

Other materials and methods 

The extents of viability and chromatin condensation of DCV-infected S2 cells were 

assessed by dye exclusion test with trypan blue and staining with Hoechst 33342, respectively, 

according to established procedures. For the examination of DNA fragmentation, a TUNEL assay 

was conducted, and the resulting signals were visualized by HRP-cleavage of DAB (47) 

(ApopTag Peroxidase In Situ Apoptosis Detection Kit; Merck Millipore, Darmstadt, Germany). 

To inhibit caspase-mediated apoptosis, the synthetic peptide benzyloxycarbonyl- 

Val-Ala-Asp-fluoromethylketone (z-VAD-fmk) (Peptide Institute, Inc., Osaka, Japan) was 

included in medium of S2 cell cultures at 20 µM 1 h prior to DCV infection. Expression of 

Draper and integrin βν in l(2)mbn cells was inhibited by RNA interference by treatment with 

double-stranded RNA, as described previously (46). To inhibit phosphatidylserine-mediated 
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phagocytosis in vitro, liposomes consisting of phosphatidylcholine and phosphatidylserine at a 

molar ratio of 7:3 or phosphatidylcholine only, prepared as described previously (50), were 

included in the reaction of phagocytosis. For the inhibition of phagocytosis in flies, two 

approaches were adopted: one, adult flies were abdominally injected with 2 µM-diameter latex 

beads (Life Technologies Japan) into the abdomen of adult flies 6 h prior to DCV infection (49); 

two, phosphatidylserine-binding MFG-E8 was forcedly expressed in adult flies harnessing the 

use of GAL4-UAS system (39).  

 

Data processing and statistical analysis 

Unless otherwise stated, data obtained from three independent experiments were subjected 

to an appropriate statistical analysis and expressed as the mean ± standard deviation. In some 

cases, for example Western blotting, a representative of at least two independent experiments that 

yielded similar results was shown. Number of replication in each experiment is specified in the 

corresponding figure legends. In an assay for fly survival, a single-vial experiment was first 

conducted at least three times to confirm reproducibility, and a 3-vial experiment was then carried 

out as a final experiment. Statistical analyses were performed by log-rank test (Kaplan-Meier 

method) for the data obtained in an assay for fly survival or two-tailed Student t-test for all other 

data. p values are indicated in figures or figure legends, and any p values of less than 0.05 were 

considered significant. 
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RESULTS 

 

Establishment of virus infection platform in Drosophila S2 cells 

Our laboratory previously reported that mammalian cells undergo apoptosis upon 

infection with influenza virus and subsequently eliminated by host macrophages by 

apoptosis-dependent phagocytosis (32, 33, 51). Due to the fact that phagocytosis is an ancient 

process conserved within metazoan species (52, 53), I hypothesized that a similar 

phagocytosis-mediated antiviral reaction might also available in other organisms, including 

insects. 

To examine this, I started to establish an in vitro infection system using S2 cells, an 

embryonic cell-derived Drosophila cell line, and Drosophila C virus (DCV), a natural pathogenic 

virus of Drosophila. S2 cell cultures were incubated in the absence or presence of DCV for three 

days and examined, in a time course manner, under the microscope to investigate morphological 

changes occurring in the host cells, if any, during virus infection. From microscopic observation, 

it is revealed that 

DCV-infected S2 

cells had a tendency 

to shrink to become 

debris-like small 

particles (Fig. 1). 

Such a characteristic 

is typical of the 

cytopathic effect 

(CPE) of viral 

infection. 
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CPE is often correlated with viral growth. To assess this, I carried out two independent 

time-course experiments to determine the expression level of DCV capsid proteins and the 

dynamics of virus concentration in infected cell cultures over time. S2 cells were incubated with 

or without DCV for five days and subjected to two subsequent experiments: Western blotting 

using anti-DCV capsid protein antibody and viral titer examination by the TCID50 method. 

The intensity of DCV capsid proteins, visualized as two signals corresponding to 

proteins with molecular masses of 38 and 29 kDa in Western blotting using anti-DCV antibody 

(Fig. 2), as reported previously (44), continued to increase up to three days post infection and was 

maintained until the end of experiment. In addition, the release of biologically active DCV in the 

culture medium was elevated in a time-dependent manner (Fig. 3). Both data indicate that S2 

cells are permissive for infection with DCV. 
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Occurrence of apoptotic cell death in Drosophila S2 cells in response to DCV 

infection 

Cells may undergo apoptosis when exposed to life-threatening stimuli, and the 

observation of cell debris in S2 cell cultures upon infection with DCV suggests the occurrence of 

this type of cell death (54, 55). To examine this possibility, DCV-infected cells were analysed for 

biochemical changes often evident in apoptosing cells, including a decrease in the activity of 

excluding a membrane-permeable dye, the occurrence of chromatin condensation, the activation 

of caspases, and the fragmentation of nuclear DNA (46). 

A dye exclusion test was carried out using trypan blue, and I found that the number of 

S2 cells remaining stained with this dye increased upon infection with DCV (left panel in Fig. 4).  

This indicated that DCV-infected cells lose activity of excluding trypan blue. The occurrence of 

chromatin condensation was assessed by staining S2 cells with the DNA-binding fluorescence 

dye Hoechst 33342. An observation by fluorescence microscopy revealed that the ratio of S2 
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cells containing intensely stained nuclei was raised in a time-dependent manner after DCV 

infection (left panel in Fig. 5). Either change was reversed, though partly, when S2 cells were 

infected with DCV in the presence of z-VAD-fmk, an inhibitor of caspases (right panels in Figs. 

4 and 5). These results suggested that DCV infection induces caspase-dependent apoptosis in S2 

cells. 

To further confirm the induction of apoptosis in S2 cells by DCV infection, I examined 

another biochemical indication of apoptosis, cleavage of chromosomal DNA. I employed an 

assay called terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) and 

applied this method to the analysis of DCV-infected cells. Some portion of S2 cells became 

positive for TUNEL after infection with DCV (left panel in Fig. 6), and such cells increased in a 

time-dependent manner (right panel in Fig. 6). These results indicated the fragmentation of 

chromosomal DNA in S2 cells infected with DCV and allowed us to draw the conclusion that 

DCV infection induces typical caspase-mediated apoptosis in S2 cells. 
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Caspases are classified into two types, initiators and effectors (56). In Drosophila, Dronc 

is the only initiator caspase while Drosophila interleukin-1 converting enzyme (drICE) and 

Dcp-1 are known as effector caspases (57, 58). Dronc exists in cells as an active form, but its 

activity is bound and repressed by an inhibitor protein called Drosophila inhibitor of apoptosis 1 

(DIAP1) (57, 58). Therefore, the onset of apoptosis in Drosophila cells is a step of inactivation or 

degradation of DIAP1 that enables Dronc to cleave and activate effector caspases (57). To gain 

cue for understating a mechanism of DCV-induced apoptosis, I determined the levels of drICE 

and DIAP1 by Western blotting in lysates of S2 cells infected or mock-infected with DCV (Fig. 

7). The data from analyses with anti-DCV and anti-DmCaBP1 showed successful infection with 

DCV and constant loading of proteins in lanes, respectively. I found the appearance of a smaller 

protein bound by anti-drICE in the lysates of DCV-infected S2 cells, suggesting the cleavage and 

activation of this effector caspase. In addition, a signal corresponding to DIAP1 decreased upon 

viral infection. These results suggested that DCV infection caused a decrease in the level of 
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DIAP1 leading to the activation of Dronc and subsequent cleavage of drICE. Induction of 

apoptosis after viral infection in Drosophila cells was previously reported with Flock House virus, 

one of the simplest non-enveloped virus with a genome of single-stranded RNA (59). This 

preceding study describes global inhibition of host protein synthesis upon viral infection. 

However, this is not the case for cells infected with DCV: the level of DmCaBP1, a Ca2+-binding 

endoplasmic reticulum protein, did not significantly change before and after infection. This 

suggested that a mechanism underlying virus-induced decrease of DIAP1 varies among viral 

species. 

 

 

During viral infection, robust expression of viral proteins often drives the host cell to 

undergo apoptosis (60). However, some viral species have been shown to induce apoptosis only 

by attachment on the surface of host cells, in the absence of virus replication (61, 62). To further 

define the characteristics of apoptosis induced by DCV, I next asked if replication-compromised 

DCV causes apoptosis in S2 cells after infection. To this end, S2 cells were infected with DCV 

that had been irradiated with UV. There observed a significant decrease in the levels of capsid 

protein production (Fig. 7) and viral replication (left panel in Fig. 8), indicating successful 
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inactivation of DCV by UV. Under such a condition, all biochemical changes evident in S2 cells 

infected with intact DCV were diminished (Fig. 7 and right panel in Fig. 8). This suggested that 

induction of apoptosis in S2 cells requires the productive infection of DCV. 

 

Phagocytosis of DCV-infected cells and restriction of virus growth by 

Drosophila phagocytes 

In general, apoptotic cells are subjected to a homeostatic disposal process carried out by 

phagocytes (63-65). I thus examined whether apoptotic, DCV-infected S2 cells are susceptible for 

phagocytosis by Drosophila phagocytes. To explore this possibility, I took an advantage of using 

l(2)mbn cells, a cell line established from Drosophila larval hemocytes, that had been 

successfully used as phagocytes against cells undergoing apoptosis (46). When incubated in the 

presence of 20-hydroxyecdysone, l(2)mbn cells acquires a flattened macrophage-like shape and 

becomes active in phagocytosis (46).  
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S2 cells, infected or mock-infected with DCV, were mixed with hormone-treated 

l(2)mbn cells and subjected to immunostaining using anti-DCV antibody followed by 

counterstaining with hematoxylin. Macrophage-like l(2)mbn cells (cells marked ‘a’ in Fig. 9) 

were easily distinguishable from spherical S2 cells (cells marked ‘b’ in Fig. 9). Uninfected S2 

cells were stained blue with hematoxylin while they became brownish once infected with DCV 

after a reaction with DAB as a substrate to locate a secondary antibody (cells marked ‘c’ in Fig. 

9). Some l(2)mbn cells contained brown-stained particles besides their own nuclei (cells marked 

‘d’ in Fig. 9). I considered such cells as those that had engulfed virus-infected S2 cells. 

Phagocytosis level was numerically analyzed in two criteria: the ratio of phagocytes that 

had accomplished phagocytosis (left panel in Fig. 10) and the number of target cells engulfed by 

a given number of phagocytes (right panel in Fig. 10). Either value increased as incubation of 

mixed cultures was prolonged. I thus concluded that S2 cells become susceptible to phagocytosis 

by hormone-treated l(2)mbn cells upon infection with DCV.  
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Phagocytosis of virus-infected cells could lead to two opposing manifestations: 

inhibition of virus growth (51) or dissemination of infection (66). To assess the consequences of 

phagocytosis in this in vitro model system, S2 cells infected with DCV were divided into two 

groups, one added with hormone-treated l(2)mbn cells and the other none treated. The cultures 

were further maintained 

until virus titer was 

determined in the culture 

media. I found that the 

level of virus released 

into the culture medium 

was significantly lower 

in the presence of 

phagocytes (Fig. 11), 

suggesting that virus 

particles, together with 
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infected host cells, are digested in l(2)mbn cells after engulfment. Taken together, the data 

obtained so far indicate that phagocytosis of DCV-infected cells leads to the reduction of virus 

propagation and thus inhibition of dissemination of infection, at least as analyzed in vitro.  

Apoptosis-dependent phagocytosis of DCV-infected cells 

I next examined if phagocytosis of DCV-infected cells depends on apoptosis occurring 

in the target cells. For this purpose, S2 cells were infected with DCV in the presence or absence 

of z-VAD-fmk and used as target cells in an assay for phagocytosis. I found that inclusion of the 

caspase inhibitor reduced the susceptibility of DCV-infected S2 cells to phagocytosis by 

hormone-treated l(2)mbn cells (Fig. 12). This indicated that apoptosis is required for 

DCV-infected S2 cells to be effectively phagocytosed in vitro. 
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Phagocytic clearance of cells undergoing apoptosis is an evolutionarily conserved event 

from nematodes to humans (64, 67, 68). Genetic studies have revealed the presence of partly 

overlapping two signalling pathways for the induction of engulfment in phagocytes (68). In 

Drosophila, the membrane proteins Draper (46) and integrin αPS3-βν (47, 69) serve as receptors 

responsible for the recognition of apoptotic cells and the activation of signalling pathways. I thus 

wondered if those receptors also play a role in the phagocytosis of DCV-infected cells. To test 

this, RNA interference was applied to l(2)mbn cells to reduce the expression of these receptors. 

When l(2)mbn cells were incubated with double-stranded RNA possessing sequences 

corresponding to parts of the mRNA of Draper and integrin βν, the level of the receptors was 

significantly lowered as assessed by Western blotting of whole-cell lysates (upper panel in Fig. 

13). When such l(2)mbn cells were tested in an assay for phagocytosis with DCV-infected S2 

cells as target cells, I found that RNA interference of either Draper or integrin βν reduced the 

phagocytic activity of phagocytes by about 60% (lower panels in Fig. 13). Furthermore, there 

observed further reduction in the level of phagocytosis when two receptors were simultaneously 

knocked down. These results indicated that Draper and integrin βν were independently involved 

in the recognition and engulfment of DCV-infected cells by hormone-treated l(2)mbn cells. 

Collectively, phagocytosis of DCV-infected S2 cells by l(2)mbn cells involves a canonical 

mechanism underlying the clearance of apoptotic cells in Drosophila. 
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The fact that knockdown of both Draper and integrin βν did not completely cancelled the 

phagocytic activity of l(2)mbn cells suggests the presence of another engulfment receptor. A 

membrane protein named Croquemort has been reported to act as an engulfment receptor for the 

phagocytosis of apoptotic cells by Drosophila hemocytes (70, 71). I thus asked if this receptor is 

also involved in the phagocytosis of DCV-infected S2 cells by l(2)mbn cells. Hormone-treated 

l(2)mbn cells were similarly subjected to RNA interference, and the reduction in the level of 

Croquemort was confirmed (upper panels in Fig. 14). I found that knockdown of this protein did 

not influence the phagocytic activity of l(2)mbn cells (lower panels in Fig. 14). The data 
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indicated that Croquemort does not participate in the phagocytosis of DCV-infected S2 cells by 

l(2)mbn cells under conditions employed in this study. 

 

Apoptosis and phagocytosis of DCV-infected cells in Drosophila upon infection 

with DCV 

To confirm whether the in vitro findings are manifestable in living animals, I next 

examined the induction of apoptosis and the phagocytosis of virus-infected cells in Drosophila 

after infection with DCV. 
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The cleavage of PARP, a known target for effector caspases, in flies was determined as 

indication of apoptosis. Adult flies that expressed human PARP fused to the transmembrane 

domain of murine CD8 at the N-terminal and Venus, an improved version of yellow florescence 

protein, at the C-terminal (CD8-PARP-Venus) (40, 72) were abdominally injected with DCV. 

Lysates of whole flies were then analysed by Western blotting to determine the propagation of 

DCV as well as the cleavage of CD8-PARP-Venus (Fig. 15). Upon infection, viral capsid protein 

became detectable, and this indicated a successful infection of adult flies with DCV. The analysis 

with anti-PARP antibody showed the presence of intact and cleaved CD8-PARP-Venus in flies 

before DCV infection. This is probably due to apoptosis ongoing in tissues and organs of 

Drosophila during normal development. I found that cleaved CD8-PARP-Venus increased after 

infection with DCV, indicating an elevated level of apoptosis. However, this was not the case 

when UV-inactivated DCV was used to infect flies. These results suggested that 

caspase-mediated apoptosis is induced in adult flies upon infection with DCV in a manner 

dependent on virus replication. 
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I next asked if DCV-infected cells are phagocytosed in flies. For this purpose, I decided 

to analyze cells present in the hemolymph of adult flies for the presence of hemocytes that have 

engulfed DCV-infected cells. There are three types of hemocytes in adult Drosophila, namely, 

plasmatocytes, lamellocytes, and crystal cells (14, 52, 73). Among them, plasmatocytes are 

hemocytes responsible for the phagocytosis of invading microbes and apoptotic cells (73, 74). To 

analyze plasmatocytes, I used a genetically manipulate fly line that expresses GFP specifically in 

this type of hemocytes. When cells collected from adult hemolymph were examined under a 

fluorescence microscope, greater than 90% of the cells were positive for GFP expression (Figs. 

16A and 16A’), indicating most cells obtained in this way are plasmatocytes, which are thereafter 

called hemocytes. Staining with hematoxylin revealed that those hemocytes possessed a flattened 

shape resembling 20-hydroxyecdysone-treated l(2)mbn cells (Fig. 16B). When hemocytes 
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collected from flies infected with DCV were examined after hematoxylin staining, I found that a 

portion of cells contained two or more nuclei of different sizes (Fig. 16C). Further analysis of 

hemocytes adopting immunostaining with anti-DCV antibody revealed that one of nucleus-like 

particles was bound by the antibody (Figs. 16D and 16E). Hemocytes with two or more nuclei 

and positive for DCV were considered to have engulfed DCV-infected cells, and the number of 

such hemocytes significantly increased in adult flies upon infection with DCV (Fig. 16F). All 

these data indicated the occurrence of phagocytosis of DCV-infected cells in adult flies after viral 

infection. 

Antiviral role for phagocytosis of DCV-infected cells in Drosophila 

Cellular homeostasis is maintained by a constant removal of apoptotic cells by 

phagocytes (75). In the context of viral infection, similar mechanism has also been shown to 

provide antiviral protection in mammal (33, 51). In the in vitro studies described above, the 

presence of phagocytes, thus the occurrence of phagocytosis restricted the growth of DCV in S2 

cells. I next examined if this is also true in vivo. For this purpose, an in vivo system for the 

systemic infection of Drosophila with DCV was first established. When adult flies were 

abdominally injected with increasing amounts of DCV, the survival rate of the infected flies was 

inversely correlated with the dose of virus infected (Fig. 17), indicating the establishment of 

pathogenic infection of adult flies with DCV. 

Several procedures have been reported to inhibit phagocytosis in Drosophila (76-79). I 

chose a relatively simple method, injection of undigestible latex beads into the hemocoel of flies. 

In this procedure, injected beads once taken up by hemocytes are expected to inhibit their 

subsequent phagocytic activity. Adult flies were injected with latex beads at the abdomen prior to 

the infection with DCV and analysed for their survival. I found that pre-injection of beads led to 

earlier death of flies after DCV infection (Fig. 18). This is not due to a toxic effect of latex beads 
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because flies with beads injected maintained near 90% survival when left uninfected. The data 

suggested an important role for hemocyte phagocytosis in the protection of Drosophila against 

pathogenic infection with DCV. 
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I next examined if loss of engulfment receptors worsens the pathogenic infection with 

DCV. To test this, adult flies having a null mutation in the genes coding for Draper and integrin 

βν were abdominally injected with DCV and subjected to an assay for survival (Fig. 19). Flies 

lacking either Draper or integrin βν died at an almost similar rate, much earlier than flies that 

normally expressed both receptors. A loss of both receptors made flies more severely succumb to 

viral infection. These results are well in line with those from the in vitro experiments and 

indicated the requirement for Draper and integrin βν in anti-viral actions in Drosophila.  

 

Early death of engulfment receptor-lacking flies after DCV infection is most likely due 

to a lowered level of phagocytosis of virus-infected cells. If so, those flies should be burdened 

with greater virus load. To determine the level of virus in flies, DCV-infected flies were lysed 

and subjected to an assay for virus titer (Fig. 20). I found that the mount of virus in control flies 

steadily increased during a course of infection. Under such conditions, flies lacking either Draper 

or integrin βν gave an almost similar level of virus titre, significantly higher than that from 
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control flies. Furthermore, the highest titer was obtained when flies with a null mutation on both 

Draper- and integrin βν-encoding genes. Taken together, it is most likely that phagocytic 

elimination of DCV-infected cells plays an important role in antiviral immunity in Drosophila.  

 

 

Involvement of phosphatidylserine in phagocytosis of DCV-infected cells 

Successful phagocytosis of apoptotic cells is achieved in a manner dependent on a ligand, 

or eat-me signal, on the surface of target cells and its recognition by an engulfment receptor on 

phagocytic cells (64, 68). Phosphatidylserine, one of glycerophospholipids, is the 

best-characterized ligand involved in the phagocytic clearance of apoptotic cells in varieties of 

cell types and animal species (80-83). This phospholipid is almost exclusively present in the inner 
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layer of plasma membrane but relocated to the outer layer when cells are induced to undergo 

apoptosis (84). A mechanism for the trans-bilayer movement of phosphatidylserine in the process 

of apoptosis has been well studied (85). Phagocytes possess several types of receptors that bind to 

phosphatidylserine exposed at the surface of apoptotic cells (86, 87). In Drosophila, Draper 

serves as a phosphatidylserine-recognizing receptor in the phagocytosis of apoptotic cells (39). 

I examined if DCV-infected cells are phagocytosed in a phosphatidylserine-mediated 

manner. To test this in vitro, an assay for phagocytosis was conducted in the presence of 

liposomes, which consisted of phosphatidylcholine alone or a combination of 

phosphatidylcholine and phosphatidylserine. This strategy has successfully demonstrated 

phosphatidylserine-mediated phagocytosis in vitro (88). The inclusion of phosphatidylcholine 

-only liposome did not alter the level of phagocytosis while phosphatidylserine-containing 

liposomes significantly inhibited phagocytosis (Fig. 21). These results suggested the involvement 

of phosphatidylserine in the recognition of DCV-infected cells by l(2)mbn cells. 
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I next tested this in vivo. To do so, a fly line that systemically expressed MFG-E8, a 

human protein that binds to phosphatidylserine, was used anticipating its inhibitory action against 

phosphatidylserine-mediated phagocytosis (39). Another fly line was also employed, which 

expressed MFGE8-ΔC2, a mutant form of MFG-E8 lacking a domain responsible for 

phosphatidylserine-binding activity, and used as a negative control. Adult flies of these lines 

together with several control fly lines were abdominally injected with DCV and subjected to an 

assay for fly survival. I found that flies expressing MFG-E8 died after viral infection earlier than 

control flies including that expressing MFGE8-ΔC2 (Fig. 22). When the level of virus existing in 

those flies was determined, it was well correlated with the rate of fly death (Fig. 23). Taken 

together, it is conclude that the phagocytosis of DCV-infected cells is accomplished at least partly 

through recognition of phosphatidylserine exposed at the surface of DCV-infected, apoptotic cells 

by hemocytes of adult Drosophila. 
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Acceleration of pathological damage in DCV-infected Drosophila lacking 

engulfment receptors 

Several independent research groups reported the occurrence of pathogenic state-related 

events upon virus infection in Drosophila (89-91). Two of such events, abdominal swelling and 

crop enlargement, are evident in DCV-infected flies (89, 90). In the studies described above, lack 

of engulfment receptors accelerated the death of flies after infection with DCV. I thus examined if 

such flies are accompanied by the two morphological changes. To test this, adult flies of control 

and a mutant line lacking both Draper and integrin βν were infected with DCV and subjected to a 

morphological analysis for the sizes of abdomen and crop (Figs. 24 and 25). I first confirmed the 

occurrence of abdominal swelling and crop enlargement upon viral infection in control flies. Loss 

of engulfment receptors, and thus impairment of virus elimination, enhanced both events.  
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Taken together, these data suggested that the phagocytosis of virus-infected cells 

comprehensively contributes to the mitigation of pathological damage caused by dissemination of 

DCV infection.  
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DISCUSSION 

 

Living organisms are continuously threatened by viral infection all year round. To cope 

with this, metazoan hosts are equipped with a number of antiviral strategies to detect and 

eliminate virus entities as well as virus-infected cells. To date, research in the area of insect 

antiviral immunity has provided adequate evidences to explain how host immune systems are 

able to restrain virus replication through destruction of viral entity or parts of virion including 

viral genome by autophagy, RNA interference, and other intrinsic reactions (21, 35). In this study, 

I aimed to clarify if another antiviral mechanism, which has been known in mammals, i.e., 

elimination of virus-infected cells by apoptosis-dependent phagocytosis (33, 51), is also evident 

in insects. 

Through a series of in vitro and in vivo experiments, I successfully confirmed the 

presence of a cellular immune reaction involving phagocytosis to remove virus-infected, 

apoptotic cells in insects that are equipped with only innate immunity. This should be added to a 

list of antiviral mechanisms that have been known in Drosophila: mechanisms relying on RNA 

interference (16, 19), Toll-Dorsal pathway (90, 92), JAK-STAT pathway (93), or phagocytosis of 

virus itself (94, 95). More importantly, this finding indicates that apoptosis-dependent 

phagocytosis of virus-infected cells is an anti-viral mechanism evolutionarily conserved from 

insects to mammals, and also that this mechanism is categorized into an innate immune response. 

 

Mechanism and consequences of phagocytosis of DCV-infected cells in 

Drosophila 

 

The phagocytosis of DCV-infected cells observed in both in vitro and in vivo assays was 

mediated at least in part by Draper and integrin , engulfment receptors that were previously 
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identified in the phagocytosis of apoptotic cells. In fact, DCV-infected target cells are required to 

undergo apoptosis for gaining their susceptibility to phagocytosis by Drosophila hemocytes, 

similar to influenza virus-infected cells in mammals (32, 33). Although this issue needs to be 

demonstrated in vivo, it is most probable that the phagocytosis of DCV-infected cells depends on 

the induction of apoptosis in the target cells. I thus conclude that phagocytosis of virus-infected 

cells occurs in Drosophila by a canonical mechanism for the clearance of apoptotic cells (67, 68), 

which also plays an important role during animal development (64, 68, 75). 

The data obtained in an assay for phagocytosis in vitro showed that about 20% of 

phagocytosis remained when phagocytes lacking both Draper and integrin βν were used to target 

DCV-infected S2 cells. This suggested the existence of another mechanism for phagocytosis, 

most likely the involvement of another engulfment receptor other than Draper (39, 46) and 

integrin αPS3-βν (47, 69). Croquemort, the first to be reported as an engulfment receptor of 

Drosophila (70, 71), is not the one because RNA interference-knock down of this protein in 

phagocytes did not influence the level of phagocytosis. Further studies are required to solve this 

issue. The membrane phospholipid phosphatidylserine, the best-characterized markers for 

phagocytosis or eat-me signal (80-82), seems to be involved in the phagocytosis of DCV-infected 

cells both in vitro and in vivo. This phospholipid is likely to be recognized by Draper (39), but 

probably not by integrin αPS3-βν. It is thus necessary to identify another ligand bound by integrin 

αPS3-βν. 

I showed in both in vitro and in vivo experiments that the phagocytosis of DCV-infected 

cells contribute to restrict viral propagation, probably through degradation of virus together with 

infected cells in phagocytes. In mammals, engulfment of virus-infected cells by dendritic cells 

and macrophages leads to the presentation of viral antigens to T cells (96). However, this 

secondary effect in unlikely in Drosophila that is not equipped with adaptive immunity. Another 

consequence of the phagocytosis of apoptotic cells could be a change of gene expression in 
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phagocytes. Mammalian macrophages were shown to express genes coding for proteins that act 

to terminate inflammation after phagocytosing apoptotic neutrophils (97). The occurrence of 

inflammation in Drosophila is not clear, but alteration of gene expression pattern in hemocytes 

that have engulfed DCV-infected cells is possible. If so, the phagocytosis of virus-infected cells 

could play a role more than inhibiting infectious diseases in Drosophila. Further investigation 

from a point of view different from previous ones is necessary to gain an answer to this question. 

 

Mechanism of apoptosis induced by infection with DCV 

 

In DCV-infected S2 cells, apoptosis was inhibited, though partially, by the pan-caspase 

inhibitor z-VAD-fmk, and partial digestion, thus the activation of the effector caspase drICE was 

evident. In addition, an increase of cleaved PARP, a known target protein for effector caspases, 

was observed in Drosophila after infection with DCV. These results strongly suggested the 

occurrence of caspase-mediated apoptosis in DCV-infected Drosophila cells. 

In Drosophila, the initiator caspase Dronc resides in cells in its active form. The activity 

of Dronc is maintained at a dormant state by the endogenous caspase inhibitor DIAP1 that forms 

a complex with Dronc (57). Dronc becomes active when DIAP1 is degraded. The degradation of 

DIAP1 is induced by a mechanism dependent (57) or independent (98) of the pro-apoptotic 

proteins Reaper, Hid, and Grim. Liberated, active Dronc cleaves and activates the effector 

caspases drICE and Dcp-1 (57, 58) so that apoptotic changes occur. Therefore, a decrease in the 

level of DIAP1 is an indication of the onset of apoptosis in Drosophila cells. Settles and Friesen 

(59) previously claimed that a decreased level of DIAP1 is solely responsible for the induction of 

apoptosis in a Drosophila culture cell line upon infection with Flock house virus. A similar 

mechanism could be responsible for apoptosis in DCV-infected S2 cells because the level of 

DIAP1 was severely decreased after viral infection. It is thus probable that DCV infection leads 
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to the inhibition of expression of a DIAP1-encoding gene or the degradation of DIAP1. If the 

latter is the case, induced degradation should be specific to DIAP1 because the amount of 

DmCaBP1 analysed as an internal control did not significantly change before and after viral 

infection. This issue must be solved to gain a complete view of the induction of apoptosis in 

DCV-infected cells. 

 

Growth of virus and death of flies 

 

Although Drosophila is equipped with various mechanisms to fight against viral 

infection including one discovered in this study, they eventually died after infection with DCV. 

There are several questions to be asked regarding physiological and pathological events occurring 

in DCV-infected flies. First, a mechanism how daughter virus is produced and released from an 

originally infected cell, especially amid the apoptosis, needs to be known. Although the egress of 

newly assembled enveloped virus has been subject of a major spotlight (99, 100), mechanism to 

explain the release of non-enveloped virus, including DCV, from infected cells has just started to 

receive its scientific interest (101). It has been widely suggested that non-enveloped virus is 

released via the lysis of virus-producing cells (1, 2). However, recent findings argued that some 

non-enveloped viruses escape from infected cells by a non-lytic mechanism (102-104). 

Nevertheless, both views have been largely supported by the data derived from experiments with 

culture cell lines where phagocytes were not present. An in vivo experimental system described in 

this study is suitable for a study to elucidate mechanisms underlying the growth and release of a 

non-enveloped virus under conditions where apoptosis and phagocytosis are actively being 

pursued. 

Data obtained in this study indicate that the size of viral burden is closely related to the 

mortality of flies. However, it remains to be determined how flies succumb to DCV infection. 

DCV infects a variety of tissues and organs in Drosophila, including the fat body, periovarial 
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sheath, trachea, muscle, and digestive tract (44, 89, 90, 105, 106). A recent report argued that 

alteration in a variety of physiological and metabolic phenomena is related to the death of 

DCV-infected flies (91). I also noticed that DCV-infected adult flies showed retarded migration, 

but it is unclear whether this phenomenon has something to do with fly mortality. Another report 

reasoned that a defect in the uptake of nutrients from digestive tract is a direct cause for fly death 

after the intestine is infected with DCV (89). It is necessary to clarify how viral infection causes 

lethal damage in host organisms in order to develop an effective remedy to prevent and cure viral 

diseases. The model system I adopted in this study using DCV and Drosophila is suitable for 

such research because the availability of robust genetics and a huge number of specimens should 

help to identify the genes involved that should explain the underlying mechanisms. 
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