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Abstract— Artificial neural networks (ANNs) are a computing
paradigm inspired by the way biological nervous systems process
information. One of the most famous learning algorithms for
ANNs is the back-propagation learning algorithm. Although it
has proved its efficiency over the years, its convergence speed
often tends to be very slow and it often yields suboptimal solu-
tions. As a result, many improvements to the back-propagation
learning algorithm have been reported. In the first part of this
dissertation, a new adaptive penalty-based learning extension
for gradient descent learning algorithms is proposed. The new
method initially puts pressure on artificial neural networks in
order to get all outputs for all training patterns into the correct
half of the output range, instead of mainly focusing on minimizing

the difference between the target and actual output values. The -

superiority of the new proposed method is demonstrated. The
percentage of successful runs can be greatly increased and the
average number of epochs to convergence can be well reduced.

In the second part of this thesis, ANNs are applied to the
integer prime-factorization problem. Nowadays, this problem
finds its application often in modern cryptography. A composed
number N is applied to the neural networks, and one of its prime
factors p is obtained as the output. Previously, ANNs dealing
with the data in a decimal format have been proposed. However,
accuracy is not sufficient. We have proposed a binary approach.
The input N as well as the desired output p are expressed in
a binary form. The proposed neural networks are expected to
be more stable, i.e. less sensitive to small errors in the network
outputs. Simulations have been performed and the results are
compared with the results reported in the previous study. The
number of required search times for the true prime number can
be well reduced. Furthermore, the ANNs have been applied to
. larger problem instances. Finally, the probability density function
of the training patterns is investigated and the need for different
data creation or selection techniques is shown.

1. ADAPTIVE PENALTY-BASED LEARNING EXTENSION

A. Idea behind New Approach

Consider learning of artificial neural networks with binary
target values 1. The learning process.can be divided into two
phases. In the first phase, an ANN is trained so as to move
all its outputs to the correct half of the output range. In the
second phase, the ANN is trained so as to move its outputs
located in the correct region towards the actual targets.

We have proposed an adaptive penalty-based learning ex-
tension [1]. In this method, learning for the outputs located
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Fig. 1. Network having an output residing in the incorrect half of the output
range

on the wrong side, are accelerated by applying penalties. In
order to make this acceleration more effective, the penalties
are increased epoch by epoch, while the outputs reside in
the incorrect half. Furthermore, in order to make the learning
process more stable, penalties are gradually decreased after
the outputs have been moved to the correct side.

Figure 1 shows an example. There is one input pattern pq,
whose output resides in the incorrect half of the output range.
Moving this output towards the correct, lower side, will be
affected by the outputs for the input patterns ps and ps, which
are being moved towards +1. Therefore, it can be expected that
it will take a long time to convergence, if ever reached.

In the proposed method, the correction term for pattern py is
amplified by applying an adaptive penalty. The amplification,
that is the penalty, is adaptive in the sense that it is being
increased every epoch, while the output resides on the wrong,
in this case upper, side. As a result, more and more pressure
is being put on the ANN in order to move the incorrect output
to the right side. After the output enters into the correct lower
half of the output range, the penalty is decreased. However, in
order to avoid the danger that the output ‘makes a big jump
back’ to the incorrect side, the penalty is gradually decreased
epoch by epoch. This way of controlling the penalties can

make the learning process more stable.

B. Formal Description

In the back-propagation learning algorithm, the output errors
are back-propagated through the network. The error signal
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ei,p(n) of an output neuron i at an epoch n for a training
pattern p, can be defined by taking the difference between the
target output ¢; ,(n) and the actual output o; ,(n):

€i,p(n) = ti,p(n) — 0ip(n) (1
In the new proposed method, for every output neuron 7 and

every training pattern p, a penalty z; ,(n) is created. The new

error back-propagated is given by the following equation:

eip (1) = zip(n)e;p(n) @)

whereby the penalties are being updated after each epoch as
defined below:

Zip (n + 1)
maz(z;p(n)z=,1) if 0; p(n) is at
the same side
- © ast,(n) 3
min(zi,p(n)z*,2™%) otherwise
and z~ < 1, z* > 1 and 2™°® > 1. The initial penalties
2;,p(0) are set to one.

The application of the new proposed method results in the
addition of penalties to the back-propagated error signal. The
task of these penalties is to put pressure on the network to get
all the outputs initially into the correct half.

The error surface can be considered dynamic. The true error
surface is given by using z; ,(n) = 1. In a learning process, the
error surface is modified by changing the penalties z; ,(n) so
that the neural network, that is its connection weights escape
from temporal local minima and move towards the global
minimum. As the connection weights approach to the global
minimum, the penalties also approach to unity. As a result,
the error surface approaches the true one, and then finally the
global minimum becomes the true one.

It should be noted that it is not guaranteed that the proposed
method will converge to the global minimum. However, from
the ability of the penalties to adjust to the error surface and
to push networks out of local minima, it can be expected that
the rate of convergence to the global minimum is increased.

C. Comparative Study

In order to give an indication of the performance of the new
proposed method, comparisons have been performed between
the standard back-propagation and RPROP learning algorithms
extended with the new adaptive penalty-based method on one
side and their original counterparts on the other side on various
problem instances.

1) N-Bit Parity Problem s concemed with detecting

whether the number of activated input bits is even or odd. The -
N-bit parity problem is considered as a very hard problem to

be solved by ANNGs, because a single “flip’ of a bit in the input
string requires a complementary classification.

‘TABLE 1
SIMULATION RESULTS FOR 8-BIT PARITY PROBLEM

8-Bit Parity
Algorithm | Epochs | SR T Settings
BP 7663 2/25 7 : 0.0005
RPROP - 0/25 Amaz : 0.001
77 : 0.0003,
gpt+ . 4931 | 2325 | z- : 09
xtension +.1.05
Az : 0.001
RPROP ™ | 10444 | 1425 | 2= : 0.99
XIensio , +:1.05
Network structure : 8-8-1
Activation function :  hyperbolic tangent

2) M-N-M Encoder Problem: is concerned with learning
an auto-association of M different patterns, where each pattern
has only one active bit. The applied network is a two-
layered M-N-M feedforward neural network, having less
hidden neurons than the number of input and output neurons.
Consequently, the hidden neurons perform compression, while
the output neurons perform decompression.

A constant value of 10000 was used for the maximum
penalty z™%%. Learning was considered complete, if the ‘40-
20-40’ criterion was fulfilled, i.e. all outputs of output neurons
for all training patterns are within the correct upper or lower
40% of its output range. The maximum training time n™2®
was set to 20000 epochs. For each problem instance, 25
independent runs have been performed. The number of suc-
cessful runs and the average number of epochs to convergence,
neglecting unsuccessful runs, are reported.

Table T shows the simulation results for the 8-bit parity
problem. SR stands for success rate, 7 is the learning rate used
in the backpropagation learning algorithm and A,,,, is the
maximum update-value used in the RPROP learning algorithm.
The low number of success rates for the back-propagation
and RPROP learning algorithm indicate the difficulty of this
problem. The networks get easily trapped in local minima.
However, applying the new proposed method resulted in an
increase of the number of successful runs by a magnitude.
The new method provides a way to escape from local min-
ima. Moreover, in general the average number of epochs to
convergence was also greatly reduced by the new method.

Tables II and III show the results for the 8-2-8 and 48-2-
48 encoder problem, respectively. The learning algorithms
extended with the new approach outperform their original
counterparts also for the encoder problem. Standard back-
propagation was unable to find a solution for the encoder:

problems. However, back-propagation extended with the new .-

method was ‘still able to find a-solution for the 8-2-8 encoder

in 88%. The RPROP learnmg algorithm has a much more =
satisfactory performance.’ However, for the 48-2-48 encoder -~

problem, RPROP-also experienced difficulties and was unable
to find a solution in all runs, while by applying the new
proposed method in combination with the RPROP leamning
algorithm, the networks converged to a solution in all runs.
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TABLE 11
SIMULATION RESULTS FOR 8-2-8 ENCODER PROBLEM

: 8-2-8 Encoder
Algorithm | Epochs | SR [ Settings
BP - 0725 | n:0.005
n : 0.005
E)I:t:nsion 4883 | 2225 | z~ :0.9999
2zt :1.01
Network structure : 8-2-8
Activation function : logistic
TABLE III

SIMULATION RESULTS FOR 48-2-48 ENCODER PROBLEM

48-2-48 Encoder
Algorithm | Epochs | SR | Seftings
RPROP 13914 | 14/25
RPROP + z~ :0.9999
Extension 12170 | 25725 | 4+ .y
Network structure : 48-2-48
Activation function :  logistic

II. NEURAL NETWORKS APPLIED TO INTEGER
FACTORIZATION PROBLEM

A. Problem Description

ANNs are applied [2] in order to factor integers N, which
are the product of two odd primes p and ¢, i.e. N = p - q.
Throughout the article we will assume p < q. Here, given
N we focus on obtaining the smaller prime p, i.e. we try to
approximate the mapping N — p. It is mentioned for a later
reference that it has been proved that N can be factored using
any multiple of p(N) = (p — 1)(¢—1).

B. Neural Network for Factorization

Multilayer feedforward networks with a single hidden layer,
adopting a sinusoidal activation function in the hidden layer
and a hyperbolic tangent activation function in the output
layer have been applied. The networks have been trained by
the RPROP learning algorithm. We have experimented with
single neural networks (SNNs) as well as multi-model neural
networks (MNNs) consisting of three independent ANNS,
where the networks do the computation in parallel and the
final decision is made by averaging over all outputs. Both
the input N and the desired output p were represented in a
binary form. During evaluation, any output of an output neuron
greater than or equal to zero was considered as an upper bit,
while any output less than zero was considered as a lower bit.

Furthermore, the binary output target values have been set
to +0.7 instead of the asymptotic values £1 of the hyperbolic
tangent activation functions. This way, the tendency of the
networks driving their free parameters to infinity and slowing
down the learning process considerably is removed. A constant
value was added to the derivative of the hyperbolic tangent
activation functions to overcome the so-called ‘flat spot” prob-
lem, where training progresses very slowly, because the deriva-

TABLE IV
RESULTS FOR IMPROVED NETWORKS TRAINED WITH 66% OF THE DATA
SET WITHN = p - q < 10000

[Topology | Epochis .| 8o -| 81 | B2 | B3 | Data |
18-20-7 5000 67% | 80% | 91% | 97% | Train
SNN 60% | 70% | 82% | 93% | Test
18-20-7 15000 72% | 85% | 94% | 99% | Train
MNN-3 3-5000 | 63% | 72% | 83% | 93% | Test

tive of the activation function approaches zero, caused by the
fact that the output of a neuron is close to one of its asymptotic
output values. The previously proposed adaptive penalty-based
learning extension has also been applied. Finally, besides N,
the networks are supplied with extra information in the form of
the number of active bits of N. This number is also expressed
in a binary form.

C. Performance Measure

Two different performance measures are considered. The
binary complete measure, denoted by fy, indicates the per-
centage of the data for which the network produces the exact
desired output. The binary near measure, denoted by 3; where
i > 1, indicates the percentage of the data for which at most
1 bits are incorrect in the output.

We felt the need to introduce this second measure. When-
ever the network is unable to produce the exact desired output
for a certain input, it does not necessary mean that the network
output is useless. If the network output contains just a small
number of bit errors, the exact target value can still be found
within a predetermined number of trial and error procedures. It
is very easy to verify if a certain value is the target value, i.e. a
factor of N, because a division of N by the number should
result in another whole number with no remainder. Therefore,
this second measure, which gives an indication of the distance
to the exact desired output, provides a better understanding of
the real network performance rather than relying on the binary
complete measure alone. - :

D. Simulations

All presented results are averaged over 10 independent runs
for each problem instance. Table IV shows the results of
networks trained on the problem instance N < 10000. Here,
66% of the data set was used for training.

Trying larger problem instances and much smaller training
sets, the networks maintain the ability to adapt to the training
data and generalize on the test data. This is illustrated in Table

"V, where neural networks were trained on the problem instance

N < 220 = 1048576 using only 5% of the data set for training
and the remaining part for validation.

E. Comparison between Previous Approach and Current
Study

Previously, Meletiou et al. investigated the ability of ANNs
to factor integers and reported promising results [3]. Here we
address the same problem. However, two major differences
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TABLE V
RESULTS FOR IMPROVED NETWORKS TRAINED WITH 5% OF THE DATA SET
WITHN =p-q < 220 = 1048576

[ Topology | Epochs [ Bo | A1 | Pz | Bs | Pa | Dam

25-100-10 10000 48% | 59% | 73% | 87% | 95% | Train

SNN 46% | 51% | 60% | 73% | 86% | Test

25-100-10 30000 55% | 68% | 82% | 92% | 98% | Train

MNN-3 3-10000 | 50% | 55% | 64% | 76% | 88% | Test
TABLE VI

RESULTS REPORTED BY MELETIOU ET AL. FOR NETWORKS TRAINED
WITH 66% OF THE DATA SET WITH N = p - ¢ < 10000

{ Topology [ Epochs [ 410 | p+2 | Bt | piio | Atoo | Data |
3% | 15% | 35% | 65% | 90% | Tram
1551 1 80000 oo 0w T 40% | 60% | 90% T Test

exist between their study and ours. The differences occur
in the approach of solving the integer factorization problem
by ANNs, more specifically the differences are in the rep-
resentation of the data (decimal format) and the function to
approximate (N — ¢(N)).

In Table VI, the results reported by Meletiou et al. are shown
for the problem instances N < 10000, where 66% of the
data set was used for training. The measure y.; indicates
the percentage of the data for which the difference between
the desired and actual output does not exceed +k of the real
target. Comparing those results with the results reported in
the Table IV, it can be easily noticed that our proposed ANNs
outperform the networks proposed in the previous study.

E Probability Density

Whenever N is restricted by a certain upper bound, i.e. N <
M and we consider all possible patterns N — p within that
limitation, then the lower the value of the smaller prime p the
higher the density of patterns. The density of patterns with
respect to p for N < 10000 is shown in Fig,. 2.

An observation of the experimental results shows that the
networks performed very well on the data patterns having
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Fig. 2. Pattern density for N < 10000
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Fig. 3. Percentages of bit errors for N < 10000

a high density with respect to p and that the network per-
formance gradually decreases as the density of the (training)
patterns decreases. This can be seen in Fig. 3, which shows
the percentages of bit errors for all patterns with respect to p.

This effect, where the performance of the network is in
accordance with the density of the training data, is a natural
occurrence. However, in case of the factorization problem
related to cryptosystems, it is wishful to obtain a similar
or even better performance for N composed of large prime
numbers compared to N composed of smaller prime numbers.
How to extend the ability of ANNs in order to solve the
factorization problem for sparse N composed of larger primes
remains an open problem.

III.- CONCLUSIONS

In conclusion, a new adaptive penalty-based learning ex-
tension’ has -been proposed. The new method initially puts
pressure on ANNSs in an attempt to get all outputs for all
training patterns in the correct half of the output range, instead
of mainly focusing on minimizing the difference between the
target and actual outputs. By applying the proposed algorithm,
the rate of successful runs can be greatly increased and the
average number of epochs to convergence can be well reduced.

Furthermore, the ability of ANNs for solving the integer
factorization problem has been studied. Multilayer neural
networks have been optimized, by using a binary expression
of the input and the output data and focusing on p, which is
the smaller prime of IV, to be obtained as the network output.
Simulation results have demonstrated the superiority of the
proposed ANNs over previously proposed networks.
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