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Abstract

The motion of a thin film with an obstacle is treated numerically. It is assumed
that the film stops when it touches the obstacle, i.e., that the reflection rate is zero.
In this situation, a wave operator of degenerate type appears. The discrete Morse
flow of hyperbolic type is applied to construct an approximate solution, and it is

shown that this method gives reasonable numerical results.
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In this paper we treat an obstacle problem related to a degenerate hyperbolic equation.
The physical model is strongly related to an experiment of a ball bouncing back from a
board. Here we consider one of the simplest physical models for phenomena of this kind,

namely, the vibration of a rubber film near an obstacle.

We describe the shape of the rubber film by the graph of a scalar function u : £ x
[0,00) — R, where Q is a domain in R™ The obstacle is a plane fixed at the zero level
set of u. We also assume that the rubber hits the obstacle with zero reflection constant.
The case of a non-zero reflection constant is treated in [?]. However the method of [?] is

essentially different from our own.

The mathematical problem reads: Find function u : € x [0,00) — R satisfying the
following degenerate hyperbolic equation:

Xu>0Ust + auy = Au,
u(z,0) = up(x),
u(z,0) = yo(z),

under suitable boundary conditions. Here, « is a nonnegative constant and xg is the
characteristic function of the set E.

The discrete Morse flow of hyperbolic type is applied to construct an approximate

solution. For & > 0 and m > 2, we introduce the following functionals:
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We will determine a sequence {u,} in K = {u € H}(;R);u = up on 8Q} inductively:
for given ug € K and uy) = ug + hvy € K and for m = 2,3,... find 4, as the minimizer of
Jm in K. Then set u,, := max(iy,, 0).

For numerical experiments, we apply a finite element method with a minimizing algo-
rithm on the approximate minimizing functional. We use the Gradient method to search

for minimizers and the following steps describe the minimizing algorithm:

1. Giveug € K and u; = ug+ hvg € K
2. For n=2,3,..., N, determine u,,; as follows
(a) v =u,
(b) For k =1,2,... repeat the following steps:
i. Compﬁte the search direction base on the local gradient: p* = ;Van (vk).
ii. Find a minimizer 7**! along the line 7* + Tp*.
iti. 9%+ = max {7%*!,0}
(c) Test whether the values of J,(4*) and J,,(#*+') are sufficiently close

As an example of experimental results, Figure 1 shows the behavior of u(z,t) and the
shape of the free boundary for the following problem:

Xu>0Utt = Ugs,
u(z,0) = 0.5, u(z,0)=—0.01z(1 — z),
u(0,t) = u(0,0) = 0.5, u(1,t)=wu(1,0)=0.5.

This model corresponds to the physical motion of a rubber string that hits a hard surface.

Note that when the string is going up, the free boundary condition is satisfied.
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Figure 1: A rubber string hitting a hard surface. (a) shows the string motion, (b) shows

the shape of the free boundary.

FHRNBEZROES




