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Chapter 1

Introduction

About thirty years ago a new interest arose in studying solids with high ionic con-
ductivity. These materials were termed “solid electrolytes” or “superionic conductors”
(SIC) and this new field of interdisciplinary research became known as Solid State
Ionics. Among the many topics of practical applications of superionic conductors one
should mention fuel cells, energy storage and conversion (e.g. Na/S batteries), chem-
ical sensors and electrochromic displays. Parallel to this, the fundamental aspects of
fast ionic motion in solids became a very active research field. In some areas, it was
the new interest in solid electrolytes, which triggered a fresh look at classical problems
such as diffusion, and its correlated effects in solids.

The ionic conductivity of a SIC is comparable to that of liquid electrolytes. There is
no sharp distinction between these solids and those, like NaCl, which show “normal”
conduction. However, solids, which are characterized by an ionic conductivity larger
than 10 S/m and low activation energy of the order of 10kJ/mol, fall into the domain
of Solid State Ionics.

Fast ion conduction takes place in a variety of substances such as crystals, glasses and
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2 Chapter 1. Introduction

polymers. Ionic conduction or diftusion in solids requires the presence of some disorder
or defects. Due to thermal vibrations the ions sometimes receive enough energy for
them to be pushed to a nearby vacant lattice site or into an interstitial site: this leads
to diffusion. According to Ratner and Nitzan [1], we divide solid electrolytes into two
groups: hard and soft framework crystals. The soft crystals, like Agl, Cul, Ag,Hgly,
are characterized as follows: (i) the bonding is high ionicity; (ii) the mobile ions are,
generally, polarizable and heavy (Ag, Cu); (iii) the Debye temperatures are low; (iv)
a sharp order-disorder phase transition exists between the low and high conducting
phase accompanied by a large increase of the enthalpy.

On the other hand, hard framework crystals are usually oxides (e.g. [-alumina,
LiAlSiO4, hollandite) and are characterized by covalent bonds. Consequently they
have high frequencies for local vibrations, high Debye temperature, low polarizability
of the mobile ions and generally do not exhibit the ionic phase transition.

In this study, we are concerned with the Agl crystal and doped one with Cul which
are a typical soft framework SIC. The crystals have the zincblende structure (y-phase)
below the superionic phase transition point, while the substance changes to the su-
perionic phase (a-phase) at high temperature. In the a-phase, the iodine sublattice
possesses a body-centered cubic arrangement as shown in Fig.1.1, with the Ag atom lo-
cated in distorted tetrahedral 12(d) sites and with some amount of densities at trigonal
24(h) and octahedral 6(b) positions, as obtained from a neutron diffraction study [2].
Boyce and co-worker indicated that the distribution of the Ag atom slightly displaces
from the center of the 12(d) sites, by considering an extended X-ray absorption fine
structure [3]. In more recent papers [4-6], McGreevy and co-workers showed the lo-
cal density and pathway for the diffusion of the silver ion from the neutron powder

diffraction analysis. Although numbers of investigators have been very interested in

determining the average structures of the silver ion in the a-Agl by the X-ray and neu-
tron diffraction methods, we think that the dynamical motion of the cations is much
important in the superionic conductor.

Molecular dynamics (MD) method is a powerful tool of the theoretical approach to
the dynamical structural analysis of liquid and crystal. In the early time of development
of the MD method, it was applied by Schommers {7,8] and by Vashishta and Rahman (9]
to investigate a-Agl. The latter authors succeeded to describe the stability of the anion
sublattice and the density distribution of cations as well as the diffusive motion of
cations by assuming a rather complicated ionic potential. It is, however, not easy to
understand which part of the potential is responsible for the stability of the anion
sublattice and/or for the large diffusive motion of cations.

A more simple and natural extension of the soft-core system to ionic systems may
be to assume that an interionic potential consists of two parts, that is, a soft-core
repulsion and a Coulombic term. This type of ionic potentials were applied by Hansen
and McDonald to study a molten salt [10] and by Amini, Finchman and Hockney to
investigate the melting of alkali halide crystals [11]. For a-Agl, Fukumoto, Ueda and
Hiwatari investigated this extended version of the soft-core system as a model [12].
The work clarified the salient relationship between the interionic potentials and the
characteristic features of SIC. Other some groups applied this potential to obtain the
microscopic information for a-Agl [13-15]. The MD simulations surely explained the
dynamical information for a-Agl in detail, no studies have ever been tried to apply
the MD method to NMR spectral analysis which gave much detailed microscopic local
informations selectively.

Solid-state nuclear magnetic resonance (NMR) is a powerful tool to examine the dy-

namic and static structure of crystal. NMR has played an important role in solid state
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Figure 1.1: The schematic unit lattice in the a-phase. Solid circles (o)
denote the positions of the iodine ions. A, {$ and () denote the 12(d),

24(h) and 6(b) sites for the cation, respectively.

ionics and it has proved to be a rich source of informétion. This is not surprising since
one of the essential questions is “How do the ion move?” and microscopic techniques
like NMR can contribute to the experimental answering this question.

Basic issues in the relationship between NMR and SIC have been discussed and re-
viewed e.g. by Richards [16] and Boyce and Huberman [17]. These authors described
about a general correlation function involving correlation among both distinguishable
particles and lattice sites. For a solid Agl crystal, measurement of the ®*Ag NMR
chemical shift were reported in the temperature range from 180 to 670K by Becker
and Goldmmer [18]. The shielding constant of '?Ag was rationalized using a simple
tight binding description of chemical bonding. It was concluded that the decreasing
paramagnetism of the silver chemical shift was consistent with a distorted tetrahedral
coordination of the cations in a-Agl. Endo and co-workers [19-21] also reported ex-
perimental and theoretical studies on the chemical shifts of metal NMR for Ag, Cd,
Cu and Zn complexes by means of ab initio MO calculation. In the studies, it was
indicated the relation between the metal chemical shift and the coordination number
in solution and in solid. Thus wealth informations of local structure are obtained from
an analysis of the NMR chemical shift.

The direct property of the diffusive motion is obtained from the relaxation study.
The relaxation provides motional correlation times, 7, which can be related to mi-
croscopic process. The crucial point, however, is to choose an adequate correlation
function of the fluctuating local fields, which in turn reflects the ionic dynamics. In
other words, the microscopic motion must be modeled. In this point of view, we con-
sider that the MD method can be applied to the NMR spectral analysis. Fukumoto
and co-workers discussed about the radial distribution functions and the velocity au-

tocorrelation function in a-Agl by using the MD simulation [12]. It can be expected
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that such functions provide us the relation between the NMR spectra and the local
structure of the crystal.

The present work is organized as follows. Chapter 2 describes briefly the chemical
shift calculation that is based on a finite perturbation method with using the ab initio
MO. The '®Ag and ®*Cu NMR chemical shifts of AgxCu,_xI (X=0, 0.25, 0.5, 0.75,
1.0) crystals are explained as a dependence of the bond length between the metal and
iodine by using the finite perturbation method. This work in detail was reported in
our recent papers [22-24]. Chapter 3 introduces new idea, “Average Shielding Value”,
into the chemical shift calculation. The assumption is that the chemical shift are
estimated by the sum of convolutions of a probability density and a shielding surface,
that are based on the neutron diffraction analysis and the ab initio MO calculation,
respectively. In chapter 4, the probability density of the cation is calculated by the
MD method. From the analysis of the probability density, it is indicated that the
chemical shift of the cation is mainly influenced by change of the density at 24(h) sites.
The temperature dependences of the chemical shift in a-Agl and o-Agpg9Cug o] are
determined by rapid motion of the cation in the bcc sublattice. Chapter 5 observes
the Cu NMR spin-lattice relaxation time of 0-Ago99Cug o1l crystal, and simulates
the relaxation time from using a distribution of a correlation time of the fluctuating
local fields by the MD method. We will also discuss the dynamical structure due to

the diffusive motion of the cation in the a-phase.

Chapter 2

Chemical shift calculation for

v-AgxCup_xl

The Ag chemical shielding of the silver complex in solution is in considerably good
accordance with that in a solid, as obtained in organic compounds that the nuclear
chemical shieldings in solution correspond well to the shieldings in a solid. We, ac-
cordingly, expect that the experimental metal NMR chemical shieldings of solid metal
iodides can be analyzed by using the calculated metal chemical shielding of an isolated
metal iodide MI3~ (M = Ag, Cu) ions in ab initio MO programs.

In the first place, a theoretical derivation of the chemical shielding constant is shown
by the finite perturbation method using the ab initio MO. We will use the finite per-
turbation method throughout this paper. The 1% Ag and ®*Cu NMR chemical shifts of
AgxCu;_xI (X=0, 0.25, 0.5, 0.75, 1.0) crystals are explained as a dependence of the
bond length between the metal and iodine by the ab initio MO calculation. In the end
of this chapter, the electronic structures of the mixed crystal, AgxCu;_xI , will also be

discussed.
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2.1 Theoretical Background

The quantum mechanical expression for shielding constant can be derived from finite
perturbation theory. The classical energy of interaction between a magnetic moment

p and a magnetic field H is given by

E=—-u-H. (2.1)
From this relation and the expression

Her = Ho(1 - o) (2.2)

for the effective magnetic field, it can be shown that the shielding constant can be

expressed as the appropriate second derivatives of the second-order energy:

O*E?

Taf

The total energy of the system is described by the many electron Hamiltonian,
Eq.(2.4), which is the modified operator of the kth electron in the presence of a magnetic

field. Atomic units (A = m, = e = 1) are used throughout this section.

H o= li[—iv +1a (r)]2+V() 2.4
= 5 - k c k r). ()
Ax(r) = %Hx(rkN_r0)+(1{§—N>xrkN. (2.5)

kN

A(r) is the vector potential associated with the kth electron; u, and H are the
nuclear moment and the magnetic field, respectively; ryy is the distance from the kth
electron to the nucleus, while ry is the distance from the nucleus to the origin of the
vector potential. This origin can be chosen arbitrarily without affecting the exact
cigenstates of Eq.(2.4). However, when approximations are introduced in estimating
these energies, it is found that in general the choice of origin or gauge is critical to the

final results.

2.1. Theoretical Background 9

Using the standard Rayleigh-Schrodinger procedures, one considers the effects of H
and p as small perturbations upon the total energy. The Hamiltonian, wave function
1, and energy are all expanded in a series of multiorder terms in o and H. For the
magnetic shielding one requires the second-order energy term which is linear in both
p and H, as follows

E*(p, H) = ("1 (u, H)[9") + (7|7 (1) |9" (H)) + (°|H (H) [ () - (2:6)

If the first-order wave function ' (u, or H) is expanded in terms of the excited states

of the unperturbed system, the expressions obtained for the diagonal components of o,

using Eq.(2.3), is the Ramsey [25] formula derived for closed-shell states, with similar

expressions for the yy and zz components.

1 YenYk T 2N 2k
k

Tin
°° My
- R (B, — B W L)W | S Maels) (27)
ok  ghare (2.8)

M, is the angular momentum about the z axis; the subscript N indicates that the
operator is referred to the resonant nucleus as origin. The sums are over the electron,
k, and the excited states, r. Re specifies the real part. The two terrﬁs contained in
the expressions for o are referred to as the diamagnetic and paramagnetic parts. The
former depends only upon the ground state wave function and is relatively easy to
evaluate. However the paramagnetic terms depend on an infinite sum of excited states
including the continuum. In general, to evaluate this term one must rely on some rather
uncertain assumptions concerning the availability and accuracy of the excited state
wave functions and contributions from higher energy states and the continuum [26].
The most successful theoretical approach in this evaluation is the perturbed Roothaan-

Hartree-Fock [27,28] theory for which a very brief outline will be presented.
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The form of the theory outlined here will be that for a closed shell molecule, i.e. one
with no net electronic angular momentum. The perturbations considered will be the
ones involved in the expressions for shielding constant.

It is assumed that a solution to the unperturbed (zero-order) system can be obtained

by minimizing the energy defined by

E = <7~/)HF|H|'¢HF> . (29)

The total Hamiltonian consists of one- and two- electron operators:

2n
H = Z hu + Z — (2.10)
p<v Tuw

The Roothaan-Hartree-Fock wavefunction yyup is a determinant whose elements ¢; are

one-electron LCAO-MO’s:

P
= auiXu, i=1,2,...,p. (2.11)

The linear coefficients of the ¢;’s are determined from the solution of the set of coupled

one-electron Fock equations.

Fg; —ed;, =12 ...,p. (2.12)

where
F(p) = H(p) +G(u) -
The Fock operator F(u) is divided into one- and two- electron terms, H(u) and G(u),

respectively, as follows,

1 ) nuc Z
Flu)y=-v2-3 =& +22 (2J; - Kj;) . (2.13)
2 N TuN

The coupling between the equations is contained in the Coulomb and exchange opera-

tors, J; and Kj, respectively.

2.1. Theoretical Background 11

The procedure is used a self-consistent solution of the matrix Roothaan-Hartree-Fock

equation.

FC=SCE. (2.14)

The total energy of the system, Eyp, is expressed as a sum of orbital energies and

two-electron integrals over the n occupied MO’s,

Bup =23 & — > (2iljg) — (jlig)) (2.15)
i=1 i,j=1
(alht) = [ 6:(1)85(1)7—x(2)01(Ddridry. (2.16)

The quantities F(u), ¢; and ¢; of Eq.(2.12) are expanded to give a series of pertur-
bation equations. The zero-order equation is assumed to be completely determined the

solution. The first-order equation is
(F1_55)¢?:_(F0—E?) %a 7;:1,2,---;”- (217)

The perturbed MO’s are expanded in terms of the unperturbed virtual (excited) MO’s

and not the original AO’s.

m
=3 Chdy, 1=1,2,...,n. (2.18)
p=1
The first-order coefficients, C;i, can be determined by evaluating the matrix elements
of F! over the zero-order molecular orbital basis and solving the resulting n x m
simultaneous linear equations which, in the presence of the magnetic perturbation
operators, have the following form:
n m
(€5 — €)Cp + My + 3 > ({ailps) — (ijlqp))C,; = 0, (2.19)
j=1g¢=1

i=1,2,...,n, ¢=1,2,...,m
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It can be shown that the second-order energy (28], which determines o, depends only
on the first-order correction to the wave function. The expression for the components
of o is:

M[,N

7 .

da a
Cas = zz<¢z L ) zzz (Ch)aldl =5 10) . (2.20)

The development of the theory followed here is that of Lipscomb, Stevens and
Pitzer [28,29]. An alternate but equivalent derivation of the perturbed Hartree-Fock
equations has been given by Pople and co-workers [30,31] who obtained their final work-
ing expressions in terms of atomic orbital integrals and zero- and first-order density

matrices defined by follows,
0 occe. 0 0
j
occ. L
1 0 10
P, = 2 Z(%j‘%\j = G,;055) - (2.22)
J
In their scheme the effect of the perturbations upon the molecular orbitals is de-
scribed in terms of changes in the atomic orbital coefficients. Their final expression for
o corresponding to Eq.(2.20) is

MN

N

1 rNT0ug — Tal
Oup = —.QZZ[PBM = ho) — 2(Ph)abol T

dza + Jpara

] (2.23)

From the above and Eq.(2.18), the following are derived an equation for ¢]1-, by the

Pople and Lipscomb methods.

=3ty =5 Chalys (2.24)
p=1

The finite perturbation method is able to give good results using very large basis sets
and reasonable results for many small molecules using moderate-sized basis sets. One

of the deficiencies of this approach was that the molecular and atomic orbital integrals

2.1. Theoretical Background 13

and hence the shielding depended on the origin of the magnetic vector potential. It is
possible to eliminate the gauge dependence of the computed shielding tensor by using

atomic orbitals containing explicit vector potential factors [32]:

&(H,r) = exp {—%A,,(r) ~r] xv(r), (2.25)
A,(r) = %H X I,
~ lheony 20)

where R, is the distance from the arbitrary origin to the atom on which the AO is
centered. This approach, first used by London [33], is known as the gauge-invariant
atomic orbitals method (GIAO).

Ditchfield has recently developed a theory which utilizes GIAO within the perturbed
Hartree-Fock framework [34,35]. Since the atomic orbitals contain a field dependence,
and the overlap, core, and two-electron integrals, as well as the expansion coefficients
and the density matrix, will depend explicitly on the magnetic field. The total energy
of the system in the presence of the perturbations p and H (using Pople’s formalism)

is
1
EMH,un) = > Bu,HY® + 52 PuGv . (2.27)
[TR% WV

Recalling the definition of o as second derivatives of the energy, one sees that the
use of gauge-dependent AO’s will yield several additional terms to their expressions.

The expression corresponding to Eq.(2.23) for the magnetic shielding is [30]

7o = 5@ LT [Phluln - (£~ Rios = raalr = Ro)shoo
08, MﬂN o Men 96,
+P’\<6H | xa) + Py (xu|l—— 7 58, )
M
+HPhabol g o) | (2.28)
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since one requires only a single derivative with respect to H for the first order density
matrix, (Pl ), it is sufficient to retain terms only up to linear powers of H in the
evaluation of the requires integrals. A general integral of the form (u|O|v) is expanded

as follows [34]:

‘6 _ YA AN ey
/§uO§UdT = /expL(Au A) erqu,,dT

R 1 A
- / x.Ox,dr = —H x (R, = R,) / rx,Oxdr . (2.29)

Thus the integrals to be evaluated contain an additional factor of r in the integrand.
The results using GIAO theory have been extremely good. Ditchfield has shown

that even using a minimal Gaussian-type orbital (GTO) basis set of GIAO one obtains

results which are in better overall agreement with the experimental values than the

moderately extended sets [35].

2.2 Experimental in y-phase

Ida and co-workers [23] measured the °®Ag MAS NMR spectra at a frequency of
12.45 MHz, using a JEOL GX-270 spectrometer. 120 transients were accumulated
using an 8.5 us (90°) pulse. The spectra were obtained under magic-angle spinning at
a speed of about 5 kHz; 8 k data points were collected over bandwidths of 20 kHz.
All measurements were carried out at 300 K and solid Agl was used as an external

reference.
Crystalline AgxCu,_xI in which the solid solution was complete was prepared by a
melt annealing method in a vacuum vessel to prevent oxidation. The Ag/Cu for mixed

crystals was estimated using an X-ray fluorescence method.

2.3. Computational 15

(a)

;’/ g
Ag" or Cu* (Mobile ion) ‘
. I" (Cage ion)

Figure 2.1: (a) The isolated complex ion model and (b) the schematic

crystal structure of y-AgxCu;_xI

2.3 Computational

As the structural data of tetrahedral Agl3~ and Cul~ complex ions in the ~-phase,
we used the lattice constants of AgxCu;_xI crystals determined by X-ray diffraction
measurements [36]. The coordinations in MI{™ (M = Ag, or Cu) ions were estimated as
M(0, 0, 0), I(~c/4, —c/4, —c/4), I(—c/4, c/4, c/4), 1(c/4, ~c/4, c¢/4) and 1(c/4, c/4,
—c/4), where ¢ denotes the lattice constant in the y-phase. The unit lattice constants
(c) was used as (6.20, 6.30, 6.39, and 6.48 A) for a Tyq Agl%~ complex ion, and (6.08,
6.20, 6.30, and 6.39 A) for a T4 Culi™ ion, respectively. The isolated complex ion model
and the schematic crystal structure of y-AgxCu;_xI is shown in Fig.2.1. Ag and Cu
chemical shielding constants were calculated by the finite-perturbation method using
the Gaussian 94 program [37] together with a DZVP basis set [38] for the Ag, Cu, and

I atoms. Then, ab initio MO calculations were performed on a DEC VT-Alpha 533

workstation.
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2.4 Results and Discussion for AgxCu;_xI

Complete solid solution AgxCu;_xI crystals in a zincblende structure was obtained,
as indicated by the X-ray diffraction measurement [36]. The *®Ag and %*Cu MAS
NMR signals of the AgxCu;_xI crystals shown in Fig.2.2 (a) and (b), respectively,
and Table 2.1 summarized the shift values with broadening to a low field relative
to Agl and Agy75Cugasl. It is emphasized that the low-field shifts of the Ag and
Cu signals were observed linearly with decreasing the lattice constant of the mixed
crystals shown in Table 2.1. Endo and co-workers reported experimental and theoretical
studies on the chemical shifts of metal NMR for metal complexes in solution and
solid [19-21]. Accordingly we consider that the metal low field shift with decreasing
the lattice constant will be explained by the ab initio MO calculations of isolated MI3~
(M = Ag, Cu) complex ions. The bond length, Ragcu-1, in MI{™ (M = Ag, Cu) was
calculated from the unit lattice constants of AgxCu;_xI (x = 0.0, 0.25, 0.50, 0.75, 1.0)

given in Table 2.1.

The Ag and Cu nuclear shielding constants and chemical shifts in MI3~ (M = Ag, Cu)
with the observed chemical shifts in AgxCu;_xI crystals (x = 0.0, 0.25, 0.50, 0.75, 1.0)
were summarized in Table 2.2. The calculated Ag and Cu shifts are given relative to the
reference molecules, Agly™ (Rag-1 = 2.81 A) and Culd™ (Reu_; = 2.77 A), respectively.
In the table, it is given the observed Ag and Cu shifts of AgxCu; _xI relative to the Agl
and Agp.75Cugsl, respectively. The calculated Ag and Cu chemical shieldings in MI3~
(M = Ag, Cu) are dominated by the paramagnetic term, since the diamagnetic terms
are constant (o4, = 4679 - 4680, and 2406 ppm for Agl3~ and Culj~, respectively).
For both metal complexes, the calculated shifts reflect the observed qualitative trends

well to the low field.
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ClonAgs sl
(2 AdopeC ity (b)
AGoeCiteg — -
M“W”M“ Agl 1
Wil e
W(A}J CUo,:(.J-"\gzusl
) ! | 1 ! e
200 100 0 -100 ppm 200 0 | -200  -400ppm
Figure 2.2: (a) !Ag and (b) %Cu MAS NMR spectra of
AgxCuj_xI crystal at room temperature.
Table 2.1: Observed Ag and Cu chemical shifts, half-line widths, and
unit lattice constants of AgxCu;_xI crystal.
AgxCu;_xI crystal
Cul AgpasCugrs] AgosCupsl AgprsCugasl  Agl
Ag Chemical Shift (ppm) 72.6 43.1 28.0 0.0
Ag half-linewidth (Hz) 200 120 120 85
Cu Chemical Shift (ppm) 32.9 18.8 6.0 0.0
Cu half-linewidth (Hz) 256 1608 1805 1427
unit lattice constant (A)  6.08 6.20 6.30 6.39 6.48
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2.4.

Results and Discussion for AgyCuy_x!

19

2.4.1 Bond length dependence of chemical shift

Let’s consider the reason why the calculated values of the isolated complex ions
are not in quantitative agreement with the observed ones. The calculated shieldings
of isolated MIj~ seem to be overestimated in comparison with the observed shifts in
solid AgxCu;_xI , because the electron donations from iodines to metal ions, and back
donations to iodines from d-electron of metal ions due to repetitive ion structures in
solid, become considerably less than those in the isolated complex ions. It is expected
that the results reflect the paramagnetic terms dominantly. A more quantitative ac-
cordance may be obtained at least by reflecting a lattice vibration of the metal on the
calculation, or by performing ab initio MO calculations of the MI3™ ion including the

nearest-neighbor MI3~ complex ions.

2.4.2 Electronic states

In order to clarify the theoretical reason for the low field shifts and the roles of the
electrons in the chemical bonds of Ag- and Cu-iodide complexes, we examined the
change in the valence atomic orbital (AO) densities of the Ag and Cu ions and I in
MIZ~ (M = Ag, Cu). The results are given in Table 2.3. In this table, the total density
increases in the ns and np AOs of Ag (n = 5) and Cu (n = 4) atoms and the density
decreases in the s and p AOs of iodine atoms indicate electron transfers from the iodines
to metal atoms. Back donations to iodines also produce holes in the (n — 1)d orbitals
of Ag (n =5) and Cu (n = 4) atoms due to dw(metal) - pr(ligand) interaction of metal
iodide complexes. It is interesting that the metal chemical shielding constants depend
on the electron and hole density increases in the valence s, p and d orbitals of metal

atoms with decreasing the bond length between the metal and iodine atoms.

Table 2.2: Calculated Ag and Cu chemical shielding constants and

the shifts of Tg4 Agli' and T4 Culi_ complex ions, respectively with

observed chemical shifts of AgxCu;_xI crystal

MI3~ complex calculated shielding constant  shift ~ AgxCui_xI observed shifts
Rm-1 Odia Opara Ttotal
(A) (ppm) (ppm)  (ppm)  (ppm) (ppm)
Ag shielding constant
Agldi~ (2.81) 4679  -1272 3407 0 Agl 0.0
Agl3~ (2.77) 4679 -1370 3309 98 Agy7sCupasl 28.0
Agld~ (2.73) 4680  -1472 3208 199 AgosoCugsol 43.1
Agld~ (2.68) 4680 -1588 3092 315 AgoasCugrsl 72.6
Cu shielding constant
Culd™ (2.77) 2406  -695 1711 0 Agp.75Cug.gsl 0.0
Cul’~ (2.73) 2406  -744 1662 49 AgosoCup.sol 6.0
Culd~ (2.68) 2406  -806 1600 111 Ago2sCugrsl 18.8
Cul?~ (2.63) 2406  -878 1528 183 Cul 32.9
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Table 2.3: The change* in total AO densities of Tq Agli~ and Ty Cul}~
complex ions.

orbital MI;™ MI3- MIZ~ MI3~ MI3~
Ry_) = 2.81A 2.77A 2.73A 2.68A 2.63A
Agli™ complex
silver
4d -0.0480 -0.0738 -0.1014 -0.1343
5s 0.0905 0.1022 0.1137 0.1262
5p 0.2679 0.2824 0.2977 0.3160
iodine
5s -0.0418 -0.0474 -0.0530 -0.0591
5p -0.0529 -0.0523 -0.0514 -0.0503
Culj~ complex
copper
3d -0.0672 -0.0854 -0.1098 -0.1406
4s 0.1423 0.1524 0.1654 0.1810
4p 0.2917 0.3132 0.3422 0.3789
iodine
5s -0.0268 -0.0331 -0.0411 -0.0508
op -0.0760 -0.0781 -0.0807 -0.0841

* The change of the density was evaluated relative to densities of

each atomic orbital in the neutral atom.

As reported earlier for solution *®Ag and ®*Cu NMR studies {20, 21], the chemical
shieldings of silver- and copper-iodide complexes can be governed by the paramagnetic
term. This will be explained by the following equation for '%Ag and ®*Cu chemical

shieldings:

Goure = <—2a2> {(<1/r3>pp,;> N ((1/7'3;; 3D§z>] | (2.30)

3 E, d

where Pg and D are the total populations of the p electrons and d holes, respectively.

The contributions to the paramagnetic term for Ag and Cu shieldings can be esti-
mated from E, 4 and (1/r3),4 as parameters in Eq.(2.30). We assume that E, ~ Ey,
(1/7%),p = 1.38 or 0.59 a.u. and (1/r*)(,_1)a = 3.67 or 5.00 a.u. for Ag (n = 5) or Cu
(n = 4), respectively. (The terms were obtained from the SCF functions by Clementi
and coworkers [39].

Thus, the contributions to the paramagnetic shielding constants of the Cu and Ag for
T4 MI3~ (M = Cu, Ag) complexes was showed in Table 2.4. It follows from this table
that for Ag complexes the p and d contributions are relatively close and competitive,

and for the Cu complexes the d contributions are larger than the p contributions.
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Table 2.4: Contributions to the paramagnetic term of the Ag and Cu

shielding constants from the valence d and p AO for Ty Mlz_ complex

ions.
orbital MIZ- MI3- MIS- MIS- MIS-
Ry = 2.81A 2.77A 2.73A 2.68A 2.63A

Agl}™ complex
4d-contribution
( 20*/3E4 ) unit -0.530 -0.811 -1.118 -1.479
Sp-contribution

(20?/3E, ) unit -0.370 -0.390 -0.411 -0.436

Cul3™ complex
3d-contribution
( 20*/3E4 ) unit -1.007 -1.281 -1.647 -2.111
4p-contribution

(202/3E, ) unit -0.172 -0.185 -0.202 -0.224

Chapter 3

Analysis of temperature

dependence of chemical shift

In previous chapter, the calculation technique of the chemical shift was shown for
the finite perturbation theory using the ab initio MO program. In the calculation of
the chemical shift, we assumed the isolated complex ion, MI3™ (M = Ag or Cu), as a
model of the AgxCu;_xI crystal. It was concluded that the chemical shifts came from

a change in the bond length between the metal and iodine.

Recently, the shielding values obtained from ab initio calculations [40 42] have been
getting quantitatively closer to the experimental ones for a molecule within a fraction
of a ppm. Shielding calculation is usually done for an isolated molecule in equilib-
rium geometry. However if this procedure was applied to solid-state compounds, the
most calculated results reproduced only the observed trends of the chemical shift, or
disagreed with the experimental ones. For a solid state, the shielding values are in-
fluenced by a deriving effect resulting from a point defect, a thermal vibration and a

diffusion, and these effects are strongly depended on a temperature. Therefore, it is

23
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3.1. Average shielding value calculation

necessary to consider a new calculation method for solids.

3.1 Average shielding value calculation

The lattice constants of Agl crystal were little change over the y-phase from X-ray
structure analysis by Kimura [36], as shown in Fig.3.1. The lattice constant in y-phase
was about 6.48A. That of a-Agl crystal also unchanged with increasing temperature;
it was 5.07A. Whereas Becky and co-worker reported that the solid-state 1 Ag NMR
signals of Agl shifted to high field with increasing temperature and obtained the similar
slopes of 0.33 ppm/K in both phases [18]. Namely the bond length between the silver
and iodine atoms was no change; nevertheless the chemical shielding values of the Ag
atom indicated the high field shift with increasing temperature. The purpose of this
chapter is in particular to examine the origin for the temperature dependence of the Ag
chemical shift in Agl crystal by introducing a concept of an “Average shielding value”.

We considered that the “density of atom” at temperature T can be written as
p(R,T), where R is the nuclear positions and p(R,T)dv is the probability density

of atom, then the average shielding value at temperature T, 0®¢(T), is
o*(T) = / _o(R)p(R, T)do (3.1)

where the integration is over the range of one unit lattice in the crystal. The Agl
crystal consists of the cage (iodine) and the mobile (silver) ions. If the cage ions are
rigid, R is referred to only the mobile ions position. Thus, the p(R,T) and the o(R)
are defined as a “density” and a “shielding surface” of only the mobile ion, respectively,
in the rigid sub-lattice of the iodine.

The shielding surface, which is applied to the present calculation, is mathematical

description of how the shielding (or chemical shift) property changes with the internal
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coordinates of atoms in a molecule, cluster of molecules, or a crystal. For intramolecular
effects, the shielding may be expressed as a function of bond lengths, bond or torsion
angles, and displacements from equilibrium position. The simplest shielding surface,
and identically the first one to be calculated was for the HJ molecule [43]. In recent
paper [44], Le and co-workers determined a protein secondary structure by creating a
map of how the shielding changes with two torsion angles in a fragment such as N-formyl
alanine amido. The map was called “Ramachandran shielding surface”. Although the
shielding surface has been applied to some theoretical NMR works in small or organic

molecules, no studies have ever tried to calculate a map of the metal chemical shifts.

3.2 ~-phase

In the «y-phase, if the atoms in the crystal slightly vibrate about their equilibrium
positions Re, with an amplitude which increses with temperature, then the probability

density p(r,T) with respect to the displacement r = R — R, is

p(r,T) = Ny exp[ ;i(ﬁ)zl : (3.2)

=1

where
No = (87!’3U11U22U33)r1_w1 , (33)

and Uj; is the harmonic temperature factor. For detailed arguments of the probability
density function, see Appendix A.
The shielding surface can be expanded in a Taylor series in terms of displacements

around the equilibrium position r = 0 as follows:

0%c

3.1
U(r) - +Z<ar‘>r 0r1+25(61‘161‘1)r= rirj—*—”.
= g +Zo r+20 O)rir; +--- . (3.4)
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Table 3.1: Temperature dependence of the isotropic temperature fac-

tors for v-Agl. The isotropic factor is defined as U = %(UH + Ugp + Uss).

Temp. U
(K) (A%)
300 0.0773
353 0.0963
413 0.124

Refered from [2].

where o(®)(0) is a zero-order shielding value at the equilibrium position. In the previous
chapter, it was regarded as the chemical shielding value of Ag or Cu atoms for the ~y-
AgxCuy_xI .

Substituting Eqs.(3.2) and (3.4) into the Eq.(3.1), the average shielding value is given

by

o (T) = Ny texp

unit

‘% g(U:(iT)ﬂ
X (0_(0)(0) + Z oM (0)r; + Z o (0)r;r; + > dv

= +Z[U (T) o™ (0 ]+ (3.5)

This equation indicates that the temperature dependence of the chemical shielding
value is depended on even-order coefficients of the expanded shielding surface and the
temperature factor. The temperature factors of y-Agl were reported in the neutron
diffraction study by Cave and co-workers [2], and is listed in Table 3.1. These factors

was estimated by using Zachariasen’s model [45].
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3.2. ~-phase

29

3.2.1 Computational

The shielding surface was also evaluated by the finite perturbation method based on
ab initio MO method. Isolated complex ion [Agly]*~ was employed to the model of -
Agl crystal. Four I~ ions were arranged at positions of (¢/4, v/2¢/4, 0), (¢/4, —v/2¢/4,
0), (—¢/4, 0, V/2¢/4) and (—c/4, 0, —/2¢/4) where ¢ is the lattice constant and the
2-y plane is (110) plane of the zincblende type crystal in the y-phase. Positions (z, v,
0) of Ag™ ion were varied from —0.5 to 0.5A in calculating the shielding values and the
origin is the equilibrium position. Step size is 0.10A for each direction. The schematic
complex ion model is shown in Fig.3.2. Calculations were performed at Hartree-Fock
level. The basis sets used for Ag and I atoms were DZVP [38] and LANL2DZ [46],
respectively. The calculations of the chemical shielding value were carried out with

Gaussian 98 [47].

3.2.2 Results and discussion for y-Agl

Fig.3.3 shows a contour plot of the Ag NMR chemical shielding surface on (110)
plane of the Agl crystal. The figure indicated that a shielding value at the equilibrium
position was the highest; in other words, the shift was the lowest field. The calculated
high field shifts were isotropic for small displacement from the equilibrium position.
In previous chapter, the high field shift came from the increasing bond length between
silver and iodine atoms, in this chapter the high field shifts due to the displacement of
the cation from the equilibrium position. In order to examine a displacement depen-
dence of the chemical shift, the calculated shift value vs. the displacement on O-P line
in Fig.3.3 were plotted in Fig.3.4. From the figure, best fit parameters in Eq.(3.4) were

estimated as 0¥ = —453 relative to the value at the equilibrium potion. The average

Figure 3.2: The isolated complex ion model for y-Agl. Four I atoms are
located at positions of (¢/4, v2¢/4, 0), (¢/4, —v/2¢/4, 0), (—c/4, 0, V2¢/4)
and (—c/4, 0, —v/2¢/4) where c is the lattice constant (6.48A). One Ag

atom located on the z — y plane.



30 Chapter 3. Analysis of temperature dependence of chemical shift

o

Shielding surface (A)

Figure 3.3: Calculated Ag chemical shielding surface on the z-y plane
corresponding to the (110) plane of v-Agl crystal by means of ab initio
MO program with basis sets DZVP and LANL2DZ for Ag and I atoms,

respectively.

shielding values can be calculated by substituting the temperature factor and the zero-
and second-order coefficients 02 into Eq.(3.5). The calculated Ag chemical shifts
were given relative to the reference shielding value at 300K. Comparison between the
calculated and the observed values of Ag chemical shifts at 353 and 413K are shown
in Fig.3.5. From the figure, the calculated shifts reflect the observed qualitative trend
well to the high field.

For the present, it is concluded that the observed % Ag high field shifts in the v-Agl

crystal are influenced by the spreading density distribution of the cation with increasing

3.2. y-phase

31

Chemical shift (ppm)

1 l 1 I 1

0 0.1 g2 0.3

Displacement (A)

Figure 3.4: Displacement dependence of Ag chemical shift value on
O-P line in Fig.3.3. Solid line is optimized by least square method

and provides for ¢(9) = 0 and o(?) = —453.
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Figure 3.5: Comparison between the calculated and the observed val-
ues of Ag chemical shifts at 353 and 413K. The Ag chemical shifts are

given relative to the reference shielding value at 300K.

temperature, since the equilibrium structure and crystal symimetry are no change.
Clearly the temperature factor in the y-phase is mainly due to thermal vibration of

atoms. In the a-phase, Ag atoms not only vibrate, but also rapidly diffuse in the Agl

crystal. Let us discuss the chemical shifts including an effect of the diffusive motion,

in the next section.

3.3 «a-phase

In the a-phase, the ionic conductivity of the Agl crystal is comparable to that of
liquid electrolytes due to the rapid diffusive motion of silver ions. So the Taylor series
expansion for the small displacement of the cation cannot be applied for the calculations
of both the probability density and the shielding surface. In order to calculate the

average shielding value, therefore, we will begin the numerical calculation of Eq.(3.1).

3.3.1 Probability density

The probability density function in the a-phase is more generalized and evaluated
by using the temperature factor which was also reported by Cave and co-workers [2].

The general probability density function p(r) is given by
L ki L kim
p(r) = po(r) |1+ 507 Hjp(r) + 507 ijlm(r) + ... (3.6)

where po(r) is Gaussian type function, ¢/ are the elements of the temperature factor
which are summarized in Table 3.2, and H; (r) are linear combinations of Hermite
polynomials, see appendix A. The probability density of the silver ion on the (100)
plane of a-Agl crystal was calculated by using the temperature factors and is shown

in Figs.3.6. The figure indicated that the density of the silver ion mainly located at
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Table 3.2: Temperature factors for a-Agl. Ag" ions occupy positions

12(d) (1/4,0,1/2) of space group Im3m.*

Temp. Un Uy C1p** ¢ T
(K) (x10%) (x10%)
473 0.316 0.170 0.375 1.160
013 0.342 0.192 0.491 2.400
oIS 0.367 0.198 0.423 =

*: Refered from [2]
¢ Cl9p = —Cya3; all other ¢ = 0.

% Other ¢k, = 0, omitted values were not siginificant.

the 12(d) sites and together with some densities at the 24(h) and the 6(b) positions.
Figs.3.6 (a) and (b) show the probability density of Ag atom at 473 and 573K, re-
spectively. It appeared that density distributions of Ag atom were broadened with
increasing temperature. The broadening is influenced by the thermal vibration and
the diffusion of the mobile ion. The distributions show intricate temperature depen-
dence, therefore we use numerical density set of Ag atom as the probability density.
Then, the Eq.(3.1) is deformed to a discrete expression as follows
unit
c®(T) = ) o(®i, Y5, 2) X ples, y5, 2, T) (3.7)
1,7,k

where the shielding surface is similaly deformed to the discrete expression.

3.3.2 Shielding surface

The computation of the shielding surface in the a-phase was carried out with the

same methods in the y-phase, except a model molecule. The model of the a-Agl

Gk

a-phase

35

Distribution  (A)

Figure 3.6: Distribution of silver scattering density at (a) 473K and
(b) 573K on (001) plane of the a-Agl crystal by the neutron-diffraction

study [2].
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Table 3.3: Calculated Ag chemical shielding values at the 6(b), 12(d)
and 24(h) sites. The chemical shifts are given relative to the shielding

value in the 12(d) site.

site O dia O pare Tearad shift
(ppm) (ppm) (ppm) (ppm)
6(b) 4679 1054 3625 9
12(d) 4677 1061 3616 0
24(h) 4679 -1134 3545 71

crystal employed isolated complex ion [Aglg]"™ by considering structure symmetry of
fixed iodine atoms. Eight iodine ions were arranged at positions of (¢/2, ¢/2, 0), (—¢/2,
¢/2, 0), (¢/2, —¢/2, 0), (—¢/2, —¢/2, 0), (0, 0, ¢/2), (0, 0, —c/2), (c, 0, ¢/2) and (c,
0, —¢/2), where ¢ is the lattice constant (5.07A). Positions (z, y, z) of silver ion were
varied from 0 to 2.40A in calculating the shielding values. Step size is 0.20A for each

direction. The schematic complex ion model is formation as shown in Fig.3.7.

A part of the calculation result is shown in Fig.3.8. This figure shows a contour plot
of the Ag chemical shielding surface on (001) plane of the a-Agl crystal. The iodine
atoms were fixed at four corners in the figure. The figure indicated that the shielding
in the octahedral 6(b) and tetrahedral 12(d) sites were comparable and high values,
in other words, the shifts were lower field. In vicinities of the trigonal 24(h) site, the
shift was the highest field. The calculated values in three sites were listed in Table
3.3. The calculated chemical shifts were dominated by the paramagnetic term similar
to our previous investigation [23], since the diamagnetic terms were almost constant

(4678+1ppm).

3.3

«-phase St

‘:I'ion
&
0
O

Figure 3.7: The schematic complex ion model [Aglg]”~. Solid circles (o)
denote the positions of the iodine ions and the shaded area indicates
the space in which Ag" ions are located. ¢, /A and () denote the 12(d),

24(h) and 6(b) sites for the cation, respectively.
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c/4

-c/4

Figure 3.8: Contour plot of the Ag chemical shielding surface on (001)
plane of the a-Agl crystal. Shielding value in the dark place gives
the high field shift. Contour interval is 30ppm. ¢ denote a lattice

constant (5.07A). ¢, A and () denote the 12(d), 24(h) and 6(b) sites,

respectively.

3.3. «a-phase - -

3.3.3 Average shielding value

The average shielding values at each temperature were calculated by the sum of
convolutions of the density set and the shielding surface in Eq.(3.7). The calculated
Ag chemical shifts in a-phase were given relative to the reference shielding value at
473K. Comparison between the calculated and the observed values of Ag chemical
shifts at 513 and 573K are shown in Fig.3.9. From the figure, the calculated shifts
reflected the observed qualitative trend well to the high field in analogy with the case
of the y-phase. The result indicated that the chemical shift in the a-phase could be
also explained by using the temperature factor that includes effects of the thermal
vibration and the diffusive motion of the mobile ion.

In Table 3.3, the shift of 24(h) site was the highest field in stable sites. So we
considered that the temperature dependence of the observed shift was attributable to
the increasing density at a vicinity of the 24(h) site, relative to other sites. From the
neutron diffraction study [2], Cave and co-workers also described that the increase in
density as being caused by the broadening of the density on neighboring 12(d) sites. It,
therefore, is concluded that the broadening due to the diffusive and vibrational motions
results in the NMR high field shift.

It is a debatable point that the calculated results reproduce only the observed trends
of the chemical shift, since the number of the probability densities of Ag atom have
been never observed enough to be enabled the quantitative discussion. By classical
molecular dynamics (MD) simulations, many studies have ever tried to investigate
local structure of the a-Agl crystal. In the next chapter, we will try to calculate the

chemical shift by using simulated probability density from the MD method.
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Figure 3.9: Comparison between the calculated and the observed val-
ues of Ag chemical shifts at 513 and 573K. The Ag chemical shifts are

given relative to the reference shielding value at 473K.

Chapter 4

MO and MD applications to

theoretical chemical shift

Some groups of theoretical investigators applied a classical molecular dynamics (MD)
method to obtain the microscopic information for a-Agl [12-15]. By using a soft-core
potential in the a-Agl system, they simulated the static and dynamic structures to
compare with some experimental results. Fukumoto and co-workers described that
the Ag* ions were preferentially distributed in oblong elliptic regions centered in the
vicinity of the 12(d) sites [12]. In the other MD work, Hokazono and Ueda showed a
diffusion process of Ag* ion that was continuous jumping from one 12(d) site to nearest-
neighbor (n.n.) 12(d) sites [14]. Although the MD simulations explained the dynamical
information for a-Agl in detail, no studies have ever been tried to apply the MD method
to illustrate the NMR spectral results which gave much detailed microscopic dynamical
structures, selectively.

In the present chapter, we will show the chemical shift calculations using the MD

simulation for the a-Agl. As mentioned in previous chapter, the average shielding value

41
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4.1. Chemical shift for a-Agl using MD simulation 43

is calculated by the sum of convolution of the shielding surface and the probability
density of the mobile ion. The probability density is estimated by the MD simulation
in this chapter. The dynamical structure of the mobile ion in the a-Agl will be discussed
by comparing the observed and the calculated chemical shift. Furthermore the ®3Cu
NMR chemical shifts for Agyg9Cugol crystal is measured over the temperature range
between 295K and 520K ( 7- to a-phase ). The experimental results of 3Cu NMR
chemical shifts will be also analyzed by using both the Cu NMR chemical shielding

surface and the probability density of the cation.

4.1 Chemical shift for a-Agl using MD simulation

In the analogy of previous chapter, we supposed that the density of atom at tem-
perature T can be written as p(R,T), then the average shielding value (0'¢(T)) is
expressed as

unit
o™(T) = Z;ca(wi,yj,zk) x p(zi, 95, 2, T) - (4.1)
iJ
where the sum is over the range of one unit lattice in the crystal. Thus, we calculated

the shielding surface and the probability density of the cation by using the methods as

described in computational section.

4.1.1 Computational details

The shielding values were calculated on the basis of the ab initio MO method. Iso-
lated complex ion [Aglg]’~ was employed to the model of a-Agl crystal. Eight iodine
lons were arranged at positions of (c/2, ¢/2, 0), (-¢/2, ¢/2, 0), (¢/2, —¢/2, 0), (—c¢/2,

—¢/2,0), (0, 0, ¢/2), (0, 0, —¢/2), (¢, 0, ¢/2) and (c, 0, —c¢/2), where ¢ was the av-

erage lattice constant that was estimated as 4.90A by the present MD simulation of
a-Agl. Positions (z, y, z) of copper ion were varied from 0 to 2.40A in calculating
the shielding values. Step size is 0.20A for each direction. The schematic complex ion
model is shown in Fig.3.7. The basis sets used for Ag and I atoms were DZVP [38]
and LANL2DZ [46], respectively. The calculations of the chemical shielding value were
carried out with Gaussian 98 [47].

The molecular dynamics (MD) calculation using ionic potential (soft-core potential)

was well employed to many ionic materials [10-12]. The potential was given by

s + ﬂj)n + ZiZj(fe)z
r

$ii(r) = ¢ S (4.2)
where m; and Z; were the effective core radius and valency of ion i, respectively. Here
the ionicity f was also introduced. The computation was carried out with total ion
number N = 500 in the temperature range of 500 to 600K. Initially, 250 iodine ions
were in the bcc arrangement, while 250 silver-ions were distributed at random in the
tetrahedral 12(d) positions. In this calculation, we chose m; = 2.20A, Tag = 0.63A, n=
7 and f = 0.6, as discussed by Vashishta and Rahman [9]. We also used the repulsion
parameter, ¢ = 0.0851eV by Kaneko and Ueda [15], and evaluated the coulomb terms
by the Ewald method [48]. The equations of motion were integrated up to 500,000
time steps by Verlet’s algorithm [49], where we started the sampling after the initial
10,000 time steps running; one time step being 9.28fs. The MD calculation techniques
in detail are shown in Appendix B. All sampled particles were determined a relative
position to the bce lattice of the iodines. The one unit bee lattice was separated 25 x
25 x 25 partitions, whose one side was 0.2A, and the probability density is evaluated

by counting particles in one partition.
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Table 4.1: Calculated Ag chemical shielding values at the 6(b), 12(d)
and 24(h) sites. The chemical shifts are given relative to the shielding

value in the 12(d) site.

site Tdia Tnara Ototal shift
(ppm) (ppm) (ppm) (ppm)
(S(I;T 7 4680 -1231 3448 29
12(d) 4678 -1259 3419 0
24(h) 4680 -1345 3335 -84

4.1.2 " Hesiwts

The Ag chemical shielding surface on (001) plane was a similar tendency to the
calculated one in the preceding chapter (see Fig.3.8). The calculated values in each
site are listed in Table 4.1. The calculated chemical shift was also dominated by the
paramagnetic term similar to our previous investigation [23], since the diamagnetic
terms are almost constant (467941ppm).

I'ig.4.1 shows a contour plot of the Ag probability density on (001) plane obtained
by the MD simulation at 500K. These results corresponded well to the experimental
ones for the Ag probability density determined by neutron diffraction method [2]. The
density of cation mainly located at the 12(d) sites and together with some densities at
the 24(h) and the 6(b) positions.

The average shielding values was calculated by the sum of convolutions of the Ag
chemical shielding surface and the probability density of the cation. The calculated
Ag chemical shifts were given relative to the reference shielding value at 500K. Fig.4.2

shows the comparison between the calculated and the observed values [18] of ' Ag

Chemical shift for a-Agl using MD simulation

c/4

-c/4

ARG

Figure 4.1: Contour plot of the Ag probability density on (001) plane
of the Agl crystal at 500K. Light place indicates the area of the high-

density value. ¢ denote a lattice constant.
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chemical shift for a-Agl in the temperature range of 500 to 600 K. The calculated shift
was in good agreement with the observed one. It was clear that the average shielding
value from the MD calculations should provide the temperature dependence of the
chemical shift for a-Agl. In addition, the MD simulation present a great information

of local structures in the crystal.

4.1.3 Population analysis in stable sites

In order to clarify the theoretical reason for the high field shift, we examined the

change of the density at each site at 500 and 600K. The results are given in Table 4.2.

The population of cations at 500K concentrated surely in the 12(d) site. From a
viewpoint of one unit lattice, however, the total population, that was estimated by
multiplying the one site population by the numbers of the site in one unit lattice, in
the 24(h) sites was the greatest in the stable site, since the number of the 24(h) sites

in one unit lattice is the greatest number (24 sites per one unit lattice).

At 600K, the populations in one 12(d) site and one 24(h) site became a comparative
value. It seerus that the comparative population came from a very fast jumping rate (
> 10" /s) of the mobile ions between the 12(d) and 24(h) sites from motional analysis
in the MD simulation. As a result, the total population in the 12(d) site relatively
decreased. It, therefore, was ccncluded that the chemical shift was mainly influenced
by an electronic structure of cations at the 24(h) site and the shieldings shifted to the

higher field than that at 500K.

The motional analysis of the mobile ion will be discussed in detail in the next chapter.

4.1. Chemical shift for a-Agl using MD simulation
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Figure 4.2: Comparison between the calculated and the observed val-
ues of 1" Ag chemical shift for a-Agl in the temperature range of 500

to 600 K.
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Table 4.2: Temperature dependence of population (p(R,T)dv*) in the
6(b), 12(d) and 24(h) sites at 500K and 600K. Total populations are
calculated by multiplying the one site population by the numbers of

the site in one unit lattice.

population 500K population 600K
site one site total one site total
(x107) (%) (x107%) (%)
6(b) 1.79 0.11 3.25 0.20
12(d) 4.00 0.48 2.61 0.31
24(h) 2.76 0.66 2.79 0.67

* . ody=8.0x 1073A3

4.2 %Cu NMR chemical shift in a-Ag.gCugol

The temperature dependence of Ag chemical shift in the a-Agl was produced by
considering the average shielding value. The observed temperature dependence (-
0.33ppm/K) was, however, determined by measurements at three temperature points
(18], since one could scarcely observe the solid ' Ag NMR signal in the superionic
phase owing to its extremely low intensity and very long spin-lattice relaxation time.
So, we will try to measure the temperature dependence of 3Cu chemical shift in -

AgpoyCup ! instead of a-Agl, and calculate the average shielding value for Cu atom.

4.2.1 Experimental procedures

We used the commercially available Agl and Cul reagents. The Aggg9Cug ;1 crystal

in the complete solid solution was prepared by the melt annealing method in a nitrogen

4.2, 63CU NMR chemical shift in O«’“AgUAQQCUUAU]I 49

gas to prevent oxidation.

Solid ®*Cu NMR measurements of AgggeCupol were performed at a frequency of
79.12MHz, using a Chemagnetics CM X-300 spectrometer. 128 transients were accurnu-
lated using a 4.9 - 9.5us (90°) pulse. The spectra were obtained under the magic-angle
spinning at a speed of about 3.0kHz; and 8k data points were collected over bandwidths
of 650kHz. All measurements were carried out over the temperature range of 295
520K.

%3Cu NMR chemical shift in Agy.99Cup ol at 295K was used as an external reference.

All chemical shifts for %Cu are defined by

Vg — Vyef
oP sam ref ’ (43)

Vref
where vgapy s the resonance frequency of the sample and v is the reference frequencys;
the shift defined in this manner was negative for higher field shift.

Fig.4.3 shows the temperature dependence of the ®3Cu chemical shift observed in the
range of 295 - 520K. The signals shifted to the high field with increasing temperature
in both - and a-phases. In the figure, we can see a discontinuity between the - and
a-phases in the transition temperature range of 440 ~ 450K indicating the first order

phase transition, and can obtain the similar slopes of -0.2 ppm/K in both phases.

4.2.2 Cu average shielding value for AggggCug;]

For the a-Agp 99Cug o1, the shielding surface was calculated by the same methods in
the a-Agl with the exception of the model molecule. The isolated complex ion [Culg]™~
was employed to the model of a-Agpg9Cug g1l crystal.

Fig.4.4 shows a contour plot of the Cu chemical shielding surface on (001) plane of

the AgygoCugg,l crystal. The iodine atoms were fixed at four corners in the figure.
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Figure 4.3: Temperature dependence of ®*Cu NMR chemical shift.
3Cu NMR chemical shift in Agp.99Cug.g1] is used as an external ref-

erence at 295K.

Table 4.3: Calculated Cu chemical shielding values at the 6(b), 12(d)
and 24(h) sites. The chemical shifts are given relative to the shielding

value in the 12(d) site.

site Odia Opara Ototal shift
(ppm) (ppm) (ppm) (ppm)
6(b) 2408 -535 1873 59
12(d) 2404 -591 1814 0
24(h) 2407 -620 1787 -27

While the shielding value in the octahedral 6(b) site was the highest; in other words,
the shift was the lowest field, in vicinities of the trigonal 24(h) site, the shift was the
highest field as similar to the case of Ag shielding surface in the preceding section. The
calculated values in each site are listed in Table 4.3. The calculated chemical shift was
also dominated by the paramagnetic term similar to our previous investigation [23],
since the diamagnetic terms are almost constant (2406+2ppm).

The average shielding values was estimated by the sum of convolutions of the Cu
chemical shielding surface and the probability density of the cation. The calculated
Cu chemical shifts were given relative to the reference shielding value at 500K. Fig.4.5
shows the comparison between the calculated and the observed values of ®*Cu chemical
shift for a-Agyg9Cug gl in the temperature range of 500 to 600 K. The calculated shift
was in good agreement with the observed one. It was concluded that the combined use
of the shielding surfaces from the ab initio MO calculation and the probability density
from the MD simulation should provide a useful way of local structure analysis for

AgxCu, _xI crystal.
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Figure 4.4: Contour plot of the Cu chemical shielding surface on (001)
plane of the Agg.99Cup.011 crystal. Shielding value in the dark place
gives the high field shift. Contour interval is 20ppm. ¢ denote a lattice

constant. ¢, A and () denote the 12(d), 24(h) and 6(b) sites for the

cation, respectively.
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Chapter 5

Spin-lattice relaxation by MD

simulation

We have discussed the relation between the metal chemical shift and the local struc-
ture in AgxCu;_xI crystal from 7- to a-phase. In this chapter, we will clarify the
dynamical diffusion process of the cation in the a-phase from an analysis of NMR
spin-lattice relaxation time.

In the first step, we observe 83Cu NMR spin-lattice relaxation times (Ty) for Agpg9Cugp!
crystal instead of a-Agl over the temperature range between 295K and 520K (- to
a-phase). The temperature dependence of the spin-lattice relaxation times will be also

analyzed by the MD method.

If there is no way of calculating the correlation function, one has to be satisfied with
phenomenological interpretations of the raw data. For instance, an obvious extension
of the Bloembergen-Purcell-Pound model [50] is the assumption that instead of one
process a distribution of jumping processes exists. Walsted and co-workers introduced
this model to NMR studies in Na f-almina as SIC [51]. The MD simulation, however,

99
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directly provides us the distribution of the jumping process, and the correlation function

becomes feasible to calculate by the distribution.

5.1 63CU NMR T1 in Ago.ggcuU.()lI

We used the commercially available Agl and Cul reagents. The Agpg9Cugo1! crystal
in the complete solid solution was prepared by the melt annealing method in a nitrogen
gas to prevent oxidation.

Solid ¥®Cu NMR measurements of Agyg9Cug.o1] were performed at a frequency of
79.12MHz, using a Chemagnetics CMX-300 spectrometer. 128 transients were accumu-
lated using a 4.9 - 9.5us (90°) pulse. The spectra were obtained under the magic-angle
spinning at a speed of about 3.0kHz; and 8k data points were collected over bandwidths
of 650kHz. All measurements were carried out over the temperature range of 295 -
520K. ®3Cu NMR spin-lattice relaxation time (T;) was measured using a 180° — 7 — 90°
pulse sequence. The error in the 7} measurements was estimated to be + 10%.

Figs.5.1 shows the temperature dependence of 3Cu NMR spin-lattice relaxation time
(T1) in AgpgeCug 1] crystal in the range of 295 - 520K. In the y-phase, the T} decreased
gradually with increasing temperature below 380K. This result was owing to the lattice
vibration. Over the temperature range of 380 - 440K, it could be seen a sudden change
of 77 owing to the first order structural phase transition of the Aggg9Cugol crystal.
In the a-phase (Fig.5.1(b)), 7} increased with increasing temperature above 450K.

The temperature dependence of 7} in the «-phase is explained by the Arrhenius
relation, since the relaxation in the superionic conductor is dominated by fast diffusive
motion where cations are jumping among the stable sites. We obtained the activation

energy of the Cut ion diffusion as F, = 11 kJ/mol. This activation energy was consid-

5.1. 63(:U NMR Tl in Ago.ggCUO.m'
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Figure 5.1: Temperature dependence of 63Cu NMR spin-lattice relax-

ation time observed in Agp.9g9Cug.011 .
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ered to be a barrier height for a jumping of the mobile (copper and silver) ions between

sites in the bcee lattice.

5.2 T by jumping model

While normal phonon contributions to the spin-lattice relaxation time (77) may be
present, the nuclear relaxation in a-Agpg9Cug1l is clearly dominated by the diffusive
motion, i.e., by the interaction of fluctuating electric-field-gradient (EFG) with the
nuclear quadrupole moments. We specialize our discussion of quadrupolar relaxation to
the case of I = 3/2 (®3Cu). In an applied field Hy we have four splitting energy levels E,,
(m = £3/2,+1/2) and the nuclear quadrupolar coupling gives rise to averaged shifts
and transitions among the levels E,, caused by the fluctuating part of the interaction

term.

Ho = Y > [Am(L) Viu(t)], (5.1)

i M=1

where subscripts 7, and M stand for the sth nucleus, and (first or second)-order tran-
sition, respectively. Ap (L), and Vip(¢) denote the Mth-order quadrupolar moment
term and the time-dependent EFG tensor at the i¢th nucleus, respectively.

The T is generally expressed by the time-dependent perturbation method, as follows:

2
7 = YD [mlAum)|?

myn’ 1 M=1
x / dr exp(iwnm ) (Viag (8) Viby ( — 7)) (5.2)
where (Vi (t) Vi3 (t—7)) is a spin-EFG correlation function for a possible environment
in which nucleus 7 finds itself during the relaxation process.
For the jumping model we neglect the transit time, because the time is much less

than 10713s. We consider that there are random orientations of spins in the stable
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sites, and the correlation function will be thus written in terms of both an averaged

EFG tensor and a correlation time function (f(7)),

(Vim () Vit = 7)) = [Vim

2 f(r) (5.3)

We can regard the correlation time as a resident time of a mobile jon 7 in one site.
The correlation function is usually defined as a single exponential function with an
averaged correlation time (7.), f(7) = exp(—7/7.), Walstedt and co-workers defined
the correlation time as the function with a distribution of an activation energy, since
there was no way of directly calculating the correlation function [51]. For the present,
by taking into account the resident times of mobile ions in the MD simulation, it was
found that the correlation time has a distribution with a finite width. We, thus, give
an assumption of the correlation function by the convolution of the distribution and

the exponential functions as,

f(r) = /Ooo dTTD(T,)exp(-L) (5.4)

Tr
where D(7,) is the normalized distribution function of resident times. If the distribution
is given by the Dirac’s delta function without a finite width, then the correlation
function becomes a single exponential correlation function in the BPP equation [50].
The assumption in this jumping model, therefore, is understood as an obvious extension
of the BPP model.
We make an assumption to consider the transition of only m' = m £ 1. By using

Egs.(5.2), (5.3) and (5.4), we obtain the following expression for T,

I = LYY (mlAulm 1)

m 1

X/d’/" exp(iw’r)lV}MP/O dr,‘D(T,)exp(—l)

Ty
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= lRllz/m er(T-)————QT" (5.5)
0 ! "1 (wT)?

where

RF = 5 X lonlAym £ 1)Vl

oo

The final equation is employed to analyze the spin-lattice relaxation time in the
jumping model. In the equation, it is needed only the information of the distribution
function for the resident time (D(7,)). The MD method yields directly the information
on the time and position of the mobile ions in the a-Agl.

Hokazono and Ueda [14] described by the MD simulation that mobile Ag ions jumped
rapidly into n.n. 12(d) sites in their successive movements. Although they determined
the diffusive motion from a sign of the velocity auto-correlation function of ions due
to events of pass through and of no-pass through, the NMR experiment is not able
to separate the events of pass through and no-pass through. We, therefore, propose
two type models for the diffusion process of the mobile ions in order to simulate the
NMR relaxation results; (1) 12(d) jumping model is defined a mobile ion jumping
from a tetrahedral 12(d) intrasub-lattice to the nearest neighbor (n.n.) 12(d) sub-
lattices, where the tetrahedral 12(d) sub-lattice is formed by four anions and a center
of this sub-lattice is the 12(d) site. (II) 6(b) jumping model is from an octahedral 6(b)

intrasub-lattice, that is formed by six anions, to the n.n. 6(b) sub-lattices.

5.2.1 Distribution of correlation time

We numbered all the sub-lattices and examined the number of the sub-lattice includ-
ing the Ag™ ion. The resident time of Ag*t ion was determined a time-interval between

two adjacent discontinuities on the number line. Similar to the case of calculating the

5.2. T} by jumping model
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Figure 5.2: Calculated distribution of the resident time of Cu™ ion at
(a) 500K and (b) 600K. The solid and broken lines correspond to the

6(b) and 12(d) model, respectively.
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probability density in the preceding chapter, the resident time (7,) of Ag* ion can be
regarded as the correlation time of Cu* ions in the corresponding sites. Figs.5.2 shows
the distribution curve of 7, in both the 12(d) and 6(b) jumping models at 500 and
600K. The most of mobile ions diffused very quickly through the bcc lattice of iodine,
since curves in both models had a peak at about 0.1 ~ 0.2ps. In the 12(d) model, the
distribution curve decreased rapidly from the peak position, while in the 6(b) model
the curve gradually decreased with a long tail down to 10ps. So it was estimated the
populations of correlation times at more than 1.0ps, as listed in Table 5.1. At 500K
the populations in the 12(d) and the 6(b) models were 13% and 45%, respectively.
This difference indicated that the jumping rate among the 12(d) sites was mainly more
than 10'2/s and among the 6(b) sites was 10'? ~ 10'°/s. Furthermore, the populations
in the 12(d) model were independent of temperature and in the 6(b) model decreased

with rising temperature.

5.2.2 Activation energy

It was calculated the spin-lattice relaxation times from Eq.(5.5). As an example,
Fig.5.3 shows the temperature dependence of the calculated T} in |R;|? unit in the
6(b) model. The activation energy E, in the 6(b) jumping model was estimated as 9.4
kJ/mol.

In Table 5.1, we summarized the activation energies of the cation in the 12(d)
and 6(b) models. The activation energy in the 6(b) model was in good agreement
with the observed value. Therefore it was concluded for the relaxation mechanism
in AgygeCugprl crystal that the observed diffusion process was due to the mobile

ion jumps from the octahedral 6(b) intrasub-lattice to the n.n. 6(b) sub-lattices

5.2. Ty by jumping model

63

Temperature ( K)
600 550 500

| | 1
I I 1

0.5 Ea = 9.4 kd/mol

Calculated T (|R1l2)

1.6 1.7 1.8 1.9 2 2.1

1000/ T (/K )

Figure 5.3: Temperature dependence of the calculated **Cu NMR spin-
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Table 5.1: Estimated the activation energies (F,) of the cation and the
population in the resident time of more than 1.0ps at 500 and 600K,
with the observed activation energy by the analysis of the *Cu NMR

measurement.

models population E,
500K (%) 600K (%) (kJ/mol)
12(d) 13 13 <0.1
6(b) 45 34 9.4
Obsd. ‘ 11

(1, = 107" ~ 1071%). The activation energy in the 12(d) model was too low to
reproduce the observed one. This reason was considered that the correlation time for
the jumping among 12(d) sites was too fast to contribute the temperature dependence
of the NMR spin-lattice relaxation.

In this chapter, we employed the distribution of the correlation time, D(7,), on the
basis of the MD simulation. The NMR T; was found to reflect the present of the
distribution for ionic motion in a-phase and the MD methods provided a rough but

effective probe of its profile when interpreted with NMR. spectra.

Chapter 6

Concluding remarks

In this study, we have investigated the local structure of the AgxCu,_xI crystal by
means of NMR, ab initio MO and MD methods as follows; first, in Agx Cuj_xI crystals
(X=0.0, 0.25, 0.5, 0.75 and 1.0), the observed chemical shieldings were analyzed on the
basis of the Ag and Cu NMR shielding calculations of tetrahedral MI3~ (M = Ag, Cu)
ions using the ab initio MO program. The results indicated that the X dependence
of the chemical shift was related the bond length between the metal and iodine, and
the shift was explained dominantly based on the paramagnetic shielding term, which

depended on the d-hole and p-electron densities of the Ag or Cu atom.

Second, according to the chemical shift calculation using the model molecule in
equilibrium geometries, the temperature dependence of the calculated chemical shift
in the Agl crystal were not in good agreement with the observed high field shift. So
we introduced an idea of the average shielding value for calculations of the metal
chemical shift. The average shielding value was given by the sum of convolutions of
the probability density and the shielding surface of the cation. The results could be
reproduced the observed trends of the chemical shift. In the Agl crystal, therefore, it
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was clear that the broadening of the cation density due to the diffusive and vibrational
motions resulted in the NMR high field shift.

Third, by using the MD simulation for the a-Agl crystal, a number of the probabil-
ity density were calculated in the temperature range of 500 to 600K. The calculated
temperature dependence of the chemical shifts was a pretty good agreement with the
observed one. From the analysis of the shielding surface and the density distribu-
tions, we concluded that the high field chemical shifts were mainly dominated by the
electronic structure of Ag* or Cut ions in the 24(h) site.

Finally, the activation energy of Cu® ion diffusion in the a-Aggg9Cug ol was esti-
mated as 11kJ/mol from the analysis of the *Cu NMR T} measurement. The temper-
ature dependence of T was simulated by the MD method using the diffusion process
in which the cations were jumping of two cases; among octahedral 6(b) sub-lattices
and among tetrahedral 12(d) sub-lattices. The calculated results indicated that the
diffusion process was mainly due to the cations jumping from the octahedral 6(b)
intrasub-lattice to the n.n. 6(b) sub-lattices, since the activation energy in the 6(b)
model was in good agreement with the observed value.

In the present work, it should also be emphasized that the combined use of the
shielding surfaces from the ab initio MO calculation and the probability density from
the MD simulation should provide a useful way of local structure analysis for solid-state
compounds. In NMR measurements, this method can be expected to be of most use in
situations where there are static and dynamic disordered materials to define structure,

or complicated molecules or protein to facilitate structure refinement and validation.

Appendix A

Generalized temperature factor

The Gaussian model of the probability density function py(r) for atomic thermal
motion is adequate in many cases. Where anharmonicity of curvilinear motion is
important, however, more elaborate models are needed.

In the classical (high-temperature) regime the generalized temperature factor is given

by the Fourier transform of the one-particle probability density function,

p(r) = N~ lexp —‘;(;)] (A1)
where
V(r)
N = /exp T ]dr (A.2)

In the cases where the potential V(r) is a close approximation to the Gaussian
(harmonic) potential, series expansions based in a perturbation treatment of the an-
harmonic terms provide a satisfactory representation of the temperature factors. That
is, if the deviations from the Gaussian shape are small, approximations obtained by

adding higher-order corrections to the Gaussian model are satisfactory.
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In an arbitrary coordinate system the number of significant high-order tensor coef-
ficients for the correction is large. It may be helpful to choose coordinates parallel to

the principal axes for the harmonic approximation so that
V( 13 2

=52 (7) (A3)
kT 2

Eq. (A.1) can be rewritten

po(r) = NU_1 exp|—

where
Ny = (87r3U11U22U33)_1 (A-5)

In the Gram-Charlier series expansion [52], the general probability density function

p(r) is approximated by

ik

p() 1-—6D+ DDk +(_1)p7_

DaDg P D< po(l‘) (A6)

The operator D,Dg ... D is the pth partial (covariant) derivative 07 /0r,0rp...0r¢
and ¢*+¢ is a contravariant component are symmetric for all permutations of indices.
The first four have three, six, ten, and ﬁfteen unique components for site symmetry
1. The third- and fourth-order terms describe the skewness and the kurtosis of the
probability density function, respectively.

The Gram-Charlier series can be followed using general multidimensional Hermite

polynomial tensors, defined by

] k

)D Dy...D; exp(— rjrk) (A7)

r'r
pHﬂﬁn-C(r) = (=1) eXP( U«
J

Setting w; = r"/Uj;c and nothig that Ujx = Uy; and wjwy = wewy, the first few general

Hermite polynomials may be expressed as

() = 1 (A.8)

'Hi(r) = w, (A.9)
*Hy(r) = wjwg — Uﬁcl (A.10)
3ij,(r) = w;wpw — ij,c_,1 — wkU,;l - w,Uﬁc1

= wjwyw, — 3w(;Ug") (A.11)
‘Hipm(r) = wjwgwwy, — 6w(wel;) + 30U (Uy,) (A.12)

Indices in parentheses indicate terms to be averaged over all unique permutations of
those indices.

The final expression of the Gram-Charlier series is then
L ki L kim
o) = po(e) |1+ 6™ Hyaa(6) + 6™ () + (A13)

in which the mean and the dispersion of py(r) have been chosen to make ¢/ and ¢/

vanish.



Appendix B

MD calculational techniques

B.1 Ewald method

The Ewald method is a technique for efficiently summing the interaction between
an ion and all its periodic images. It was originally developed in the study of ionic

crystals [53]. The potential energy can be written as

1 N N
Ve = 52'(zzzizj|rij+n|—l) (B.1)

n Ni=1j=1
where z;, z; are the charges. The sum over n is the sum over all simple cubic lattice
points, n = (nyL,n,L,n,L) with ng,ny,n, integers. This vector reflects the shape
of the basic box. The prime indicates to omit ¢ = j for n = 0. For long-range
potentials, this sum is conditionally convergent, i.e. the result depends on the order
in which we add up the terms. A natural choice is to take boxes in order of their
proximity to the central box. The unit cells are added in sequence: the first term
has |n| = 0; the second term, |n| = L, comprises the six boxes centered at n =

(£L,0,0),(0,+L,0),(0,0,£L). As we add further terms to the sum, we are building

up our infinite system in roughly spherical layers. When we adopt this approach, we
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must specify the nature of the medium surrounding the sphere, in particular its relative
permittivity (dielectric constant) e,. The results for a sphere surrounded by a good
conductor such as a metal (e, = 00) and for a sphere surrounded by vacuum (e, = 1)
are different [54].

2 2

V¥ (e, = 00) = V¥ (e, =1) — 308

2T

(B.2)

i
This equation applies in the limit of a very large sphere of boxes. In the vacuum, the
sphere has a dipolar layer on its surface: the last term in Eq.(B.2) cancels this. For the
sphere in a conductor there is no such layer. The Ewald method is a way of efficiently
calculating V* (e, = 00).

At any point during the simulation, the distribution of charges in the central cell con-
stitutes the unit cell for a neutral lattice which extends throughout space. In the Ewald
method, each point charge is surrounded by a charge distribution of equal magnitude
and opposite sign, which spreads out radically from the charge. This distribution is
conveniently taken to be Gaussian,

ziK3

pi(r) = e exp(—K"r?) (B.3)

where the arbitrary parameter « determines the width of the distribution, and r is the
position relative to the center of the distribution. This extra distribution acts like an
ionic atmosphere, to screen the interaction between neighboring charges. The screened
interactions are now short-ranged, and the total screened potential is calculated by
summing over all the molecules in the central cube and all their images in the real
space lattice of image boxes.

A charge distribution of the same sign as the original charge, and the same shape

as the distribution p?(r) is also added. This canceling distribution reduces the overall
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potential to that due to the original set of charges. The canceling distribution is
sumnmed in reciprocal space. In other words, the Fourier transforms of the canceling
distributions (one for each original charge) are added, and the total transformed back
into real space. There is an important correction: the recipe includes the interaction
of the canceling distribution centered at r; with itself, and this self term must be

subtracted from the total. Thus, the final result is

oo

5 >N2< S gz, Ul & n)

i In|=0 [rij + n]

1 472 —k?
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Ve, =1) =
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Here erfc(z) is the complementary error function which falls to zero with increasing z.
Thus, if & is chosen to be large enough, the only tem which contributes to the sum in
real space is that with n = 0, and so the first term reduces to the normal minimum
image convention. The second term is a sum over reciprocal vectors k = 2mn/L?.
A large value of x corresponds to a sharp distribution of charge, so that we need to
include many terms in the k-space summation to model it. In the simulation for the

a-Agl, the Ewald method was detailed in ref. [48].

B.2 Verlet’s algorithm

The most widely used method of integrating the equations of motion is that initially
adopted by Verlet [49]). This method is a direct solution of the second-order Newton’s

motional equation, ma; = f;. The method is based on positions r(t), accelerations
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a(t), and the positions r(t — dt) from the previous step. The equation for advancing

the positions reads as follows,
r(t + 6t) = 2r(t) — r(t — 6t) + dt*a(t) . (B.5)

There are several points to note about Eq.(B.5). It will be seen that the velocities do
not appear at all. They have been eliminated by addition of the equations obtained by

Taylor expansion about r(t);

r(t+6t) = r(t)+dtv(t) + %(5t2a(t) +...

r(t—6t) = r(t) —6tv(t)+%5t2a(t) - (B.6)

The velocities are not needed to compute the trajectories, but they are useful for
estimating the kinetic energy (and hence the total energy). They may be obtained

from the formula

o(t) = r(t + 6t)2—5tr(t =6t (B.7)

Whereas Eq.(B.5) is correct except for errors of order 6t* (the local error) the velocities
from Eq.(B.7) are subject to errors of order §¢%. More accurate estimates of v(t) can be
made, if more variables are stored, but this adds to the inconvenience already implicit
in Eq.(B.7), namely that v(t) can only be computed once r(t + dt) is known. A second
observation regarding the Verlet algorithm is that it is properly centered (i.e. r(t — 6t)
and r(t + 6t) play symmetrical roles in Eq.(B.5)), making it time-reversible. Thirdly,
the advancement of positions takes place all in one go, rather than in two stages as
differently from the standard predictor-corrector. Thus, these advancements make us

employ the Verlet’s algorithm.
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