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Chapter 1

Introduction

1.1 Background
The field of control engineering has developed over this century from its origins in the

investigation of feedback amplifiers, into a broad discipline concerning various issues of

modeling, dynamics, optimization and feedback control. On one side lie complex engi-

neering problems, such as regulation in chemical processes, trajectory tracking for robot

manipulators, stabilization of high performance aircraft and magnetic suspension systems,

or dynamics of queueing systems. On the other side lie tools from virtually every mathe-

matical discipline, from dynamical systems and differential geometry to stochastic processes

and operator theory. In the middle of this, the task of the control theorist is to abstract

a problem of significance in engineering, cast it in an appropriate mathematical setting,

and derive a solution, by which is meant a practically computable method of evaiuation of

the problem at hand. This eclectic mix of disciplines has made control theory the home of

people who have found it diMcult to choose between the fascinating worlds of engineering

and mathematics.

   While engineers are mainly concerned with real-world problems, and mathematicians

with the logical consistency of their abstractions, it is the job of those who attempt to

apply mathemat,ics to the real world to deal with the fundamental gaps between theory and

practice, which reflect themselves in uncertainty about the behavior of a real system when

one is given a mathematical prediction. This is particularly the case for control theory,

which treats the question of feedback, a technique used by both natural and artificial

systems to obtain reliability in spite of faulty predictions. A property of design feedback

compensator will effectively reduce the sensitivity of the systems to certain sources of

1
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uncertainty, but at t,he expense of increased sensitivity to order unniodeled effects, e.g.,

in an()ther frequency band. Coiise,que'ntly. a, t/heory of feedback rnust l)rovide nieans to

quantify these tradeoffs, vvrhich can onl.v be a,chieved if in addition to a niatheniatical

inodel, one utilizes sonie forn) of quantification of n'iodel uncertainty.

   [I"his thesis is concerned with the robust Iil..,/LL control of real niechatronic systeins

from the point of view of the effect of uncertainty. The fundamental challenge in this area

ha,s been tio refine as much a,s possible the uncertainty deg.cription in a rnodel of a coniplex

system, compatible with t,he possibility ()f a tractal.)le evaluation of it,s effect,. I describe a

set of inodels and perforin Lvorst-case analysis b.y using ff.,/tt, synthesis and analvvsis, a. i}d

evaluat/e its effe('ts by inechatronic experiinents.

1.1.1 ControlofRealPhysicalSystem

No inatheinatica} systen) can exactly inodel a, real physica,1 systeni. For this reasoii w•e

niust be aware of how rnodeling errors niight a,dve.rsely affect the stability and perforniance

of a control system. In the physical sciences, very accurate niodels in themselves are the

objective. To obtain these physical laws, one often distills the phenomenon to its siniiplest

forin. In this c()ntext. uncertainty is interpreted in a, narrow sense as referring to t/he liinits

in the predictive powcr of the best availa,ble models.

   I odels play a different role in engineering science; they are tools employed in analysis,

simulation and design of complex, artificial systems. Consequently, rriodels fidelity must be

traded off with the complexity of the modeling process and the tractability of the resulting

mathematical and computationa,1 problems. From this point of view the best model is the

siinple,st sun)niary o{" t,lie rnain aspects of the physical systern which are relevant to the

eiigiiieei'iiig (luestioii at haiid.

   'The issue of uncertainty is at the main theme of cont,rol engineering, since a feedback

configuration can significantly affect the sensit,ivity of t,he sy, stein behavior to unce.rta,inty at

the coniponent Ievel. This is the nia,in n]otivation for the construction ()f feedl)a(:k f .vstenis,

but also the main potential danger as unmodeled effects can. Consequently, to perform

good designs, the control engineer must• be furnished v"'ith rich descriptions of uncertainty

and tools to a,ssess their impact in a complex system.

   It is very iinport,ant a,nd difficult• to t/reat various niodels of plant uncertainty. H.,/tt,

control has a good structure t,o treat/ uncertainty. In this paper robust stability, stabilit,y in

the face of p}ant uncertaint.y, in stuclie.d using the srriall-gain theorem and Nyquist stability

CHAPTER1. INTRODUCTION 3

criterion. Further robust performance,

is also discussed.

guaranteed tracking in the face of plant uncertainty

1.1.2 Uncertainty and Robustness

A fundamental problem in t,he design of control systems is to cont,rol accurately the out-

puts of a system(plant) whose dynamics contain significant uncertainties. For example,

characteristic of niagnetic force is so complex that analysis of this force is very difficult and

no mathematical models can express the exact behavior of it. In the latest few decd"des

there have been great advances in the. theory for the design of robustly uncerta,inty-tolerant

feedback control systerns [9]. rl"he probleni in robust feedba,ck control systein design is t,o

synthesize a control Iaw whicb maintains system st,ability and perf()rma,nce and error signals

to within pre-specified tolerances despite the effects of uncertaint,y of the systeni [11].

   Uncertainty may take a lot of forms but among the most/ significant are

e Paramet,ric Uncertainty

e Disturbance Signals

o Unmodeled Linear Dynamics

e Unmodeled Nonlinear Dvnamics
                       v

   Uncertainty in any form is no doubt the major issue in most control system designs

This mot,ivates researchers to seek a quantit/at,ive measure for the size of the uncertainty

e.g., the U2 and H,., norm, the real/complex structured singular value LL, and so on.

'

1.1.3 Previous Work

It is a few decades since Hoo/LL control theory has been studied extremely as a design tool

[6] for the robust controlled systeni. H../LL control theory provides a direct, a,nd reliable

procedure for synthesizing controller which optiinally satisfies t,he U.. norn)/ structured

singula,r va,lue IL specifications. This method has an advantage to quantify the effects of

unmodeled dynamics and to clarify the stability margin.

   rl"here are so many theoretical results and papers in robust control fields. Nowadays

the most challenging issue is its app}ication to real physical systems. Applications of H..

control to industry is now expect/ed.
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   Many application papers have been published, but almost of them employ poor control

problems and groundless generalized plants. Just a few papers focus on real uncertain-

ties/perturbations.

   Doyle and Balas applied H../pa control theory to a flexible structure[5], and they in-

troduced the large-scaled and complicated interconnection structures for the plant. Hyde

and Glover also controlled a VSTOL by using H. control law [29][30][31]. Steinbuch used

pa-synthesis for control of a compact disc player [75].

   In order to design a H../pa conirol system, it is very important to choose suitable design

parameters for ea,ch control problem and a plant. The problem is how to construct the

generalized plant• and how to select design paramet/ers. In the previous research, even as

the above papers, tuning of the design parameters depended on experimental/simulated

trial and error. Tuning of design parameters, especially frequency weighing functions is

very heavy burden for control design engineers. Development of systematic tuning method

of design parameter is now ex. pected.

   Further, in the previous works, physical limit of allowable perturbation for robust sta-

bility/performance was not clear. NVeightings for uncertainties werejust design parameters,

but ph.vsical stability and performance margins against perturbations were not considered.

   The second problem is that there are just a few application papers of U./pa control

theory in real nonlinear mechatronic systems, as robot manipulators. Robot dynamics is

highly interfered, nonlinear, and complicated. Experimental evaluation is now expected.

Hashimoto and Asai treated H. control or pa syrithesis of a robot manipulator, but dynamic

couplings between joints were not considered, and the uncertainties caused by modeling

errors was treated the external disturbance[27][4].

1.2 Goal and contribution ofthis paper

The goal/contributions of this paper is as following three items.

e As described in the last subsection, in order to design a H../pa control system with

  better properties, it is very important to choose design parameters suitably, and we

  expect them to be selected more systematically and meaningfully.

  The first goal of this thesis is a proposal of a more systematic quantification of the

  model uncertainty.
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  We make a set of plant model and quantify the rnodel uncertainties, and clarify the

  limit of allowable class of perturbation for robust stability and performance.

e There are just a few papers of Hoo/pt application in real robot manipulator con-

  trol field, because robot dynamics is hjghly i'nterfered, nonlinear, and complicated.

  Experimental evaluation is now extremely expected.

  The second goal of this thesis is a robust control of robot manipulators by using H..

  control theory.

  We guarantee the robust stability of the robot manipulator control system against

  model perturbations and dynamic couplings.

  Further we apply the robust Hoo/pa control theory to a robot manipulator in order

  to evaluat•e its effectiveness for nonlinear systems.

  Our approaches taken here are as follows.

    - pt-synthesis with exact linearization

    - constant scaled H.. control considering structured uncertainties

    - pa-synthesis using linear parameter varying representation

e Third, we apply the advanced H../pa control theory to real mechanical systems, then

  evaluate the performance of the control theme and expressive ability of LFT against

  various forms of uncertainties.

  We experimentally show that H../LL control theory has a very good framework to

  treat uncert,ainties, in order to guarantee robust stability and robust performance.

  Our mechatronic plants employed to evaluat/e robust control theory are as follows.

    - magnetic bearing: linear, MIMO, unstable

    - pantograph system with linear DC motor: linear, SISO, stable, but highly

      oscillatory

    - robot manipulator: nonlinear, MIMO, stable

1.3 Organizationofthethesis

Organization of the thesis is represented in the diagram of Fig.1.1

   This thesis has a small hierarchy.
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1) Framework of the Robust Control
2) Hoo Control Theory

3) " -Analysis and Synthesis
4) Quantity of Uncertainty

1) " -Synthesis of EMSS
       ,

2) Gain Scheduled Hoo
 Control of MB

Chapter 3

Chapter 2

Robust Control of
APS

Chapter 4

Linear Systems

Figure 1

1
l

I
I
1
t
1
I
l
1
1
l
l
1
l
I

1) pt -Synthesis of RM Using
  Exact Linearization

2) Robust Hco Control of RM

3) u -Synthesis of RM Using
  LPV Representation

.1: Organization of the thesis

Chapter 5

Robot Manipulator
(Nonlinear Systems)

   Chapter 2 explains a general robust control problem and asserts a main approach to

quantify uncertainties. In this chapter, at first, framework of the robust control is de-

scribed, especially about modeling, uncertainty, and uncertainty descriptions. Then H.

control problem/theory, and pa-analysis and synthesis approach is introduced. Mathemati-

cal definitions and theorems are also given in Chapter 2. The article entitled "Quantity of

uncertainty" is written in section 2.4, which is a main assertion and concept of this thesis.

   Then we apply this methodology proposed in section 2.4 to three mechatronic systems,

and results are presented in chapter 3, 4, and 5, respectively.

   In chapter 3, robust control of magnetic suspension systems is described. Section 3.1 is

entitled with "pa-Synthesis of an Electromagnetic Suspension System". And section 3.2 is

entitled with "Application of Gain Scheduled H.. Robust Controllers to a Magnetic Bearing

". In section 3.1, we show a result of pa-synthesis approach with a simple SISO magnetic

suspension system. Section 3.2 is an extension version of section 3.1. Here the controlled

plant is a MIMO(four inputs, four outputs) multivariable magnetic bearing system. We

derive an advanced gain scheduled H. control method by utilizing free parameter of the

controller, and applied the method to this magnetic bearing system.

   In chapter 4, robust control of active pantograph system by using linear DC motor, is

CHAPTER 1. INTRODUCTION 7

described. Here we considered both parametric uncertainties and dynamical uncertainty

which is an unmodeled uncertainty of the piant in the modeling process, and construct the

interconnection structure by LFT. For controller design, we employ thsynthesis approach.

The experimental results show the effectiveness of the proposed modeling and design by a

comparison with a conventional modeling and H. method.

   In Chapter 5, robust H.. control of robot manipulators is discussed. This chapter

is constructed with three main sections, and the following approaches are taken in this

chapter.

e pa-synthesis with exact linearization

e constant scaled H.. control

e linear parameter varying representation approach

   Robot manipulator dynamics is written with nonlinear ordinary differential equation.

This makes robot manipulator control complicated.

   In the first approach, we employ the exact linearization, and then for the obtained

linearized plant, we apply the linear pa-synthesis method. In the second approach, we divide

the original nonlinear dynamics with linear nominal model and nonlinear perturbation.

Then we used constant H.. problem and small gain theory to guarantee the robust stability

for nonlinear perturbation. The third approach utilize the recent advanced topics, gain

scheduling for linear parameter varying system. Dynamics of robot manipulator with

flexible links is written as linear parameter varying system. We derive the LPV equation

of the plant and pa-synthesis approach is used for control system design.

   In chapter 3 and 4, we treat linear systems and in chapter 5 our plant is a robot ma-

nipulator, which is a typical nonlinear system. From section 3.1 to 3.2, complexity of the

plant is extended from SISO to MIMO. From section 3.1 to chapter 4, description of the

model uncertainty is extended from the unstructured one to the structured.

Finally, we conclude this thesis in Chapter 6.



Chapter 2

Robust Control and Uncertainty

Description

Recently H.. and pt-synthesis theories have been developed [12] [13]. The H.. theory

provides a direct, reliable procedure for synthesizing controller which optimally satisfies

singular va,lue loop shaping specifications. Robust stability in the H.. control framework

is guaranteed by the small gain theorem, this theorem provides reliable results for unstruc-

tured uncertainties, but it is well knovv'n that it gixres conservative evaluations for structured

uncertainties as robust performance problems.

   To improve this property, by using the multivariable Nyquist stability criterion, the

pa-analysis and synthesis method provides a, less conservative valuation for a structured

uncertamty.

2.1 Framework of the Robust Control

2.1.1 Modeling and Uncertainty

Any mat•hematica,I models can not exactly express a behavior of the real physical system.

For this reason we must be aware of hovv' modeling errors might adversely affect the stability

and performance of a control system.

   Fig. 2.1 shows a,n usual framework of the control system design and real-time control.

Generally we derive a model for the real plant and by using the obtained model, a con-

troller is designed. We implement this controller and apply it to the original real plant.

But the contro}ler was just optimized for the 'model' and not for the real system. The

8
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uncertainty between the real physical system and the nominal model depresses the stability

and performance of the closed-loop system.

   In the physical sciences, very accurate models are the objective in themselves. To obtain

these physical laws, one often distills the phenomenon to its simplest form. In this context,

uncertainty is interpreted in a narrow sense as referring to the limits in the predictive power

of the best available models. For example, the uncertainty associated with prediction in a

chaotic systems, or the uncertainty principle in quantum mechanics refer to fundamental

limitations in predictability.

   Models play a different role in engineering science; they are tools employed in analysis,

simulation and design of complex, artificial systems. Consequently, models fidelity must

be traded off with the complexity of the modeling process and the tractability of the

resulting mathematical and computational problems. From this point of view the best

model is the simplest summary of the main aspects of the physical system which are

relevant to the engineering question at hand, Correspondingly, the term "uncertainty"

is used here in a broader sense: is not only describes what one is fundamentally unable

to predict, but also, and often predominantly, many aspects of the system which one has

chosen to neglect or simplify. For uncertainty in this broad sense, there is by definition

no detailed model, but often the modeling process yields a crude description which allows

one to assess its implications on the overall system. There descriptions of uncertainty

appear commonly and in various forms in engineering models, whatever they result from

"black box" system identification techniques, from "first principles" models obtained by

application and simplification of physical laws, or a combination thereof.

   As remarked in Introduction, the issue of uncertainty is at the heart of control engi-

neering, since a feedback configuration can significantly affect the sensitivity of the system

behavior to uncertainty at the component level. This is the main motivation for the con-

struction of feedback systems, but also the main potential danger as unmodeled effects

can, for example, lead to instability. Consequently, to perform good designs, the control

engineer must be fumished with rich descriptions of uncertainty and tools to assess their

impact in a complex system. It should be clear from the nature of these descriptions that

no hard "guarantees" can result from this assessment; ultimately, the control engineer must

be the final mediator between the mathematics and the real system.

   In Fig. 2.1, the uncertainty A causes various problems when we design a controller and

control of a real physical system. We know A is a gap between the real physical system

and the model, but we have to discuss the A in detail. Our problems are as follows.
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            Figure 2.1: General framework of design and real-time control

   e What is physically included in A ?

   e How is A expressed?

   e How can we measure/quantify A?

These problems are discussed in the following sessions.

2.1.2 UncertaintyDescriptions

Traditional methods for uncertainty characterization in dynamical systems include para-

metric uncertainty, disturbance signals, and system perturbations to account for unmodeled

dynamics. We now describe how these typically arise in modeling. For more motivation

we refer to [14].

Parametric Uncertainty

Parameters are present in most engineering models, representing a rea} physical quantity

which can be assumed to be a real constant within the range of validity of the model. The

following are some reasons for uncertainty in the value of a parameter.

   o It could be obtained indirectly from experimental data, which leads to statistical

     deviations.

cHAPTER 2. ROBUST CONTROL AND UNCERTAINTYDESCRIPTION 11

  e It could represent a standardized component (e.g., electrical resistor) subject to man-

    ufacturing tolerances.

  e It could represent an operation condition which varies in an unforeseen way. A

    constant parameter is a reasonable model when this variation is very slow (e.g.,

    ambient temperature). In other cases the rate of variation of the operation condition

    is comparable to the modeled dynamics (e.g., aerodynamic eMcient of an airplane

    executing a sharp maneuver). In this case a time-varying parameter may be preferred.

   The most straightforward representation of parametric uncertainty is in terms of an

interval of the real line, such as

                          p == po + k,6, 6 E [-1, 1].

In models of linear dynamical systems, it is common to encounter rational dependence of

a transfer function on an uncertain parameter.

Disturbance Signals

Another commonly used method to account for model uncertainty is the injection of dis-

turbances, which are thought of as generated by an external process. Some ways in which

they arise are

   e To account for microscopic fluctuations which are not included in a large scale

     model(e.g., wind turbulence, thermal noise in a circuit).

   e To describe more systematic effects which are neglected in a simplified model (e.g.,

     ripple in a voltage source, quantization error in an A/D converter).

   e In identified models, frequently used as an error signal needed to account for the

     data.

   The two standard choices for characterization of disturbances are in terms of a stochastic

process, or in terms of a set of signals.

Unmodeled Linear Dynamics

The most commonly used dynamical system model for purposes of control is linear, finite

dimensional time invariant system, which is equivalent to a set of linear ODEs, preferably of
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low order. Assuming for now that nonlinear effects are negligible, a low order approximation

amounts to neglecting linear dynamics, in particular distributed effects.

   This uncertainty is expressed as follows

   e Additive Uncertainty:

                                 H=P+ W,AW,.

   e Multiplicative Uncertainty:

                                H = (I + W,AW,)P.

   e Coprime Factor Uncertainty:

                             H = (?VI + AM)-i(N + A.).

Unmodeled Nonlinear Dynamics

If nonlinear are very significant in the range of operation, the model itself must be chosen

to be nonlinear. Uncertainty descriptions for nonlinear models are not very well developed,

and are one of the main open challenges for a satisfactory theory of robust nonlinear control.

CHAPTER 2. ROBUST CONTROL AND UNCERTAINTYDESCRIPTION 13

2.2 H. ControlTheory
Robust stability against unstructured uncertainty in H.. control framework is guaranteed

by small gain theorern. Detailed definition and proof are written in [87].

   In this section, the results by Keith Glover and John C. Doyle[25] is introduced.

   There are so many other state-space formulae for all stabilizing controllers that sat-

isfy an H.. norm bound, but this one is the original and the most famous and typical

characterization, which is emp}oyed by MATLAB and MATRIXx.

2.2.1 ProblemFormulation

The most general block diagram of a control system is shown in Figure 2.2 . Where P is

the generalized plant and Is' is the controlier.

   Since the work of Zames[86], there has been much interest in the design of feedback

controllers for linear systems that minimize the H.. norm of a specified closed-loop transfer

function. Let a linear system P(s) be described by the state equation

                        th (t)=Ax (t)+Biw(t)+B2u (t), (2.1)

                      z(t)= Cix (t) +Diiw (t)+Di2u (t), (2.2)

                       y(t)= C2x (t)+D2iw (t)+D22iL (t). (2.3)

   where

             x(t) E R", w(t) E RMi, iL(t) E RM2, z(t) E RPi, y(t) E RP2

   The generalized plant P contains what is usually called the plant in a control system

plus all any frequency-dependent weighting functions.

   The signals, w(t), z(t), y(t), and zL(t) are vector-valued functions of time. x(t) is the

state vector. The components of

w : are all the exogenous input: reference, disturbances, sensor noises, and so on.

z: are all the signals we wish to control: tracking errors between reference signals and

     plant output, actuator signals whose values must be kept between certain limits, and

     so on.
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                 Figure 2.2: Most general Control System

   contains the outputs of all sensors.

   contains all controlled inputs to the generalized plant.

The transfer functions will be denoted as follows

           p(,) ,= (pP,il pPli)

                 - (S,'l S;;)+[g,'i2](si-A)-i[B,

s

A
Ci

C2

Bi B2

Dll D12

D12 D22

sc
   The diagram is also referred to as a linear fractional transformation(LFT

2.3.2) on A' and P is called the coefficient matrix for the LFT.

transfer function from w to z is denoted by T..

                    .11 li(P, K) := P,, + P,,K(I - -P,,K)

   The H.. control problem is then to choose a controller K(s)

system internally stable ( see [25]) and minimize

                               (2.4)

                 B,] (2.5)

                               (2.6)

                               (2.7)

                      ; see subsection

             The resulting closed-loop

== .7'li(P, K), where

         -i P,,. (2.8)

           , that makes the closed-loop

Il'11Ti(P,K)11oo,
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   where

              11Gll.. = supa(G(]'w)) (o := maximum singular value). (2.g)
                       w
   We will in fact be considering the closely-related problem of finding all stabilizing K

such that

                              ll.JEIi(P, K)ll.. s{l7 (2.Io)
   for some prespecified 7 E R

   It is the purpose of the present note to give a state-space parametrization of all con-

trollers that satisfy (2.10); this solution will only involve two algebraic game-type Riccati

equations, each of degree n[25] [12].

2.2.2 Characterizing all solutions

This section will give a state-space characterization of all stabilizing controllers K(s) such

that ll.1Ti(P,K)".. < 7. We will make the following assumptions that are also typically

made in the corresponding LQG problems.

Assumption 2.1

   e (Al) (A,B2)is stabilizable

   e (A2) (C2,A) is detectable.

   e (A3) rank Di2 = m2 (Di2 is full column rank.)

   e (A4) rank D2i =p2 (D2i is full row rank.)

   e(As) rank [A-c('WI DBi22]=n+m2 Vw
                                                ( full column rank)

                       o

    Pi2 does not have any zeros on the imaginary axis.

                       o
    There are no unobservable poles of (A - B2Di2Ci, DiÅ}2Ci) on the imaginary axis•

   e (A6) rank [A -c12'tuI DB2',]=n+p2 Vw (full row rank)

                       o

    P2i does not have any zeros on the imaginary axis.

                       o
    There are no uncontrollable poles of (A - BiD2tiC2, BiD2ii) on the imaginary axis•
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   e (A7) A scaling of u and y, together with a unitary transformation of w and z,

     enables us to assume without loss of generality,

     Di2 == [I9,], D2i == [o I,,], D22 ==o

   Assumptions (Al) and (A2) are required for the existence of a stabilizing K. These

assumptions are equivalent that the real plant is stabilizable and detectable, and the weight-

ing functions are stable.

   (A3) and (A4) are sufficient to ensure that the controllers are proper, but there are sen-

sible problems when it is violated. Di2 = Pi2(oo), D2i = P2i(oo), then these assumptions

mean Pi2 and P2i do not have any zeros at 7' = oo. If these would be deleted, expansion

of equations are more complicated.

   (A5) and (A6) are need for spectral factorizations.

   (A7) ensure that the solution to the corresponding LQG problem is closed-loop asymp-

totically stable, and is also convenient for the present problem.

   The main result is now stated as follows.

Theorem 2.1
For the system described by (2.1)-(2.3) and satisfying the assumptions (Al)-(A7), There

exists an internally stabilizing controller Isr (s) such that l1.1 li(P, K)1I.. < or if and only if

(i) 7 > max(0[Diin, Dni2],0[Dliii, Di*i2i]),

where
                           D,,-[Sli,ll D.llli],

   Dml E R(Pi-M2)Å~(Mi-P2),Dll12 E R(Pi'M2)XP2,Dl121 E RM2Å~(Mi-P2), Dl122 E RM2XP2.

   and

(ii) there exist X.. ) O and Y.. 2 0 satisfying (2.11) and (2.12) respectively and such that

Amax ( Xoo Yoo ) < ry 2,

where

         XOO == RiC ([- c4* c, -0A*] - [- cE. D,.] R-'i[D le Ci B' ])' (2'11)

          Yoo = RiC([".,i;,'Br -OA]-[-B9b;,]R-'[DeiBr C]), (2.12)
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               R= Dr.Di.'P2(I/Mi :], Die=[Dii Di2] (2'13)

               R ., D.,D:,-[AX2oiPi g], D.,=[Sll] (2.i4)

  The solution X.. and Y.. to an algebraic Riccuti equation (ARE) are denoted via its

Hamiltonian matrix as (2.11) and (2.12).

Theorem 2.2
Given that the conditions of Theorem 2.1 are satisfied, then all rational internally stabi-

lizing controllers A' (s) satisfying llJZ ;i(P, A')1Ioo < 7 are given by

                 1'-s,' := .7 li(I"s',".,<l>) = IT•s,'ii + I-s,ii2Åë(I- .l-is,f22<I>)-i1'"s,'2i, (2.15)

                         Åë E R-Hoo, s•t• llÅëlloo < ty,

where

             is'. :- klll ;llli]2 • (2•i6)

              A= A+ HC+B,b,-,i O,, (2.17)
              B, = -H,+B,b,-,iD,,, (2.ls)
              B, = (B,+H,,)b,,, (2.lg)
              O, = F,Z+b,,b,-,iO,, (2.2o)
              02 = -b2i(C,+F,,)Z, (2.21)
             Dii = -Dii2iDIm(72I-DmiDrm)-iDm2mDii22, (2•22)

bi2 E RM2XM2 and b2i E RP2XP2 are any matrices (e.g., Cholesky factors) satisfying

                bi2bi'2 == I'Dn2i(72I-DliiiDim)-'D:i2i, (2•23)

                b2'ib2i = J-Dli2i("x'2I-DimD;m)-'Dn2i, (2.24)

                       Fl1

                F : Fi2 =-R-'[Dr.Ci+B'Xoo], (2.25)
                        F2

                H = [Hii H,2 H,]=-[B,D:,+Y.C*]R-i, (2.26)

                Z == (I-7ny2YooXoo)-', (2•27)

A B,B,
D,,b,,

b,,o
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FII E R(Mi'P2)Xn, F12 E RP2Xn, F2 E RM2Xn, Hn E RnX(Pi'M2, H12 E RnXM2, H2 E RnXP2.

F and H are called the 'state feedback' and 'output injection' matrices, respectively. In

(2.16), Åë(s) is called free parameter. And if Åë(s) == 0, then controller K(s) should be

Kii(s) from (2.16). Kii(s) is generally called 'central controller'. The central controller is

formulated as

Is'11(s) ==
A B,

Oi b,,
(2.28)
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2.3 pa-Analysis and Synthesis

The small gain theorem provides reliable results for unstructured uncertainties, but it is

well known that it gives conservative evaluations for structured uncertainties as robust per-

formance problems. To improve this property, by using the multivariable Nyquist stability

criterion[41], the pa-analysis and synthesis method provides a less conservative valuation

for a structured uncertainty.

2.3.1 Structured Singular Value pa

In this section I devote to defining the structured singular value, a matrix function denoted

by pa [13]. Consider matrices M E C"Å~". In the definition of pt(M), there is an underlying

structure A, (a prescribed set of block diagonal matrices) on which everything in the

sequel depends. For each problem, this structure is in general different; it depends on the

uncertainty and performance objectives of the problem. Defining the structure involves

specifying three things; the type of each block, the total number of blocks, and their

dimensions.

   There are two types of blocks-repeated scalar and full blocks. Two nonnegative in-

tegers, S and F, represent the number of repeated scalar blocks and the number of full

blocks, respectively. To bookkeep their dimensions, we introduce positive integers ri,...,rs;

mi,...,mF. The i'th repeated scalar block is ri Å~ ri, while the ]"th full block is mj Å~ mj.

With those integers given, we define A c CnX" as

           A == {diag[6il.,,•••,6sl..,Ai,...,AF] : 6i E C, Aj E CMJXM)} (2.29)

   For consistency among all dimensions, we must have

                                SF
                               2ri +2mj =n (2.3o)
                               i=1 j'--1
   We will often need norm bounded subsets of A, and we introduce the following notation

                          BA={AEA:0(A) -<d. 1} (2.31)
   Note that in (2.29) all of the repeated scalar blocks appear first. This is just to keep the

notation as simple as possible, in fact they can come in any order. Also, the full blocks do

not have to be square, but restricting them as such saves a great deal in terms of notation.
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 Definition 2.1 [13]

    For iV E CnX", xLA(A,I) is defined

                                           1                 pa"(M) := min{o (A) :AE A, det (I- MA) = o} (2'32)

    unless no 2x E A makes I - MA singular, in which case paA (M) :== O.

    An alternat,ive expression for /LA (Al) follovv's froni the definition(2.32')).

                            paA(M) := .Il}gx.p(MA) (2.33)
    From (2.33) continuity of the function LL: C"Å~" - R is apparent. In general, though,

 the function LL: C"Xn -> R is not a norm, since it doesn't satisfy the triangle inequality.

 However, for any a E C, xL (aAI) = lalpa (A'1). so in soine sense, it is related to how "big"

 t;he matrix is in a norm sense.

   We can relat,e LL (ct.M) to familiar linear algebra quantities when A is one of two extreme

set,s.

   e IfA= {6I :6G C} (S z 1, I7 = O, ri = n), then pt(.M) =p(A4), the spectral

     radius of M.

   e If A= C"Å~" (S = O, F == 1, mi = n), then pt (M) =0(M).

   For a general A as in (2.29) we must have

                          {6I. :6E C} cAc C"Xn (2.34)
   Hence directly from the definition of pa, and the two special cases above, we conclude

that,

                          p(?Vl) S paA (?VI) -< a- (IVI) (2.35)

   These bounds alone are not suflicient for our own purposes, because the gap between p

and o can be arbitrarily large. They are refined by considering transformations on M that

do not affect paA (fuI), but do affect p and e. To do this, define the following two subsets

of Cnxn
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                          Q={9EA:9'9=In} (2•36)

               D -(di}g,[e'U,l'.P, B,dYZ',1 'S '6g,CJeiKasM6] :1 (2•37)

   Note that for any AE A, (? E Q, and D E D,

                         9' E Q, (?A E A, A(? EA

                          o(9A) -a(AQ) == o(A) (2.38)

                                 DA :AD (2.39)
   Consequently

Theorem 2.3:
   For all (? EQ and DED

                paA (M9) == ptA (9M) = paA (M) = paA (DMD-i) (2.4o)

   Therefore, the bounds in (2.35) can be tightened to

            E?gQXp(9M) S .Ieftx.p(AM) - va (M) s B2So(DMD-i) (2.4i)

   where the equality comes from (2.33). Note that the last element in the D matrices in

(2.37) is normalized to 1 since for any nonzero scalar ty, DMD-i = (7D)M(tyD)-i.

Bounds
   Here I will concentrate on the pa bounds. From (2.41)

                   s}gQxp(9M) S va (M) S B2So (DMD-') (2.42)

   The lower bound is always an equality. Unfortunately, the quantity p((?M) can have

multiple local maxima which are not global. Thus local search cannot be guaranteed to

obtain pa, but can only yield a lower bound. So we use a slightly different formulation
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 of the lower bound as a power algorithm which is reminiscent of power algorithms for

 eigen values and singular values. While there are open questions about convergence, the

 a,lgorithm usually works quite well and has proven to be an effective method to compute

 pa•

2.3.2 Linear Fractional Transformations

Using only the definition of pa, some simple theorems about a class of general matrix

transformations called Linear Fra,ctional Transformations can be proven. To introduce

these, consider a complex matrix AI partitioned as

                              fvl=[.?ztl,IIII AfVi,ii] (2.43)

   and suppose there is a defined block structure A2 which is compatible in size with M22

( for any A2 E A2, M22A2 is square). For A2 E A2, consider the following loop equations,

                                [S.]-"[S]

                                  zv=A2 :• (2.44)
   These equations (2.44) are called well posed if for any vector d, there exist unique

vectors w, .7., and e satisfying the loop equations. It is easy to see that the set of equations is

well posed if and only if the inverse of I- M22A2 exists. If not, then depending on d and M,

there is either no solution to the loop equations, or there are an infinite number of solutions.

When the inverse does indeed exist, the vectors e and d must satisfy e = .Jr;i(M, A2)d, where

                  .JZ "il(Al, A,) = ,ivI,,+ rvI,,A, (I- M,,A,)-' rvI,, (2.45)

   .7Ti(M,A2) is called a Linear Fractional Transformation on M by A2, and in a

feedback diagram appears in Figure 2.3 .

   The subscript l on JlTi pertains to the "lower" loop of M is closed by A2. An analogous

formula describes .JZ T.(M, Ai), which is the resulting matrix obtained by closing "the upper"

loop of M vv'ith a matrix Ai E Ai•

   In (2.45) , the matrix Mii is assumed to be something nominal, and A2 E BA2 is

viewed as a norm bounded perturbation from an allowable perturbation class, A2. The

matrices Mi2, M2i and M22 and the formula .1 7i refiect prior knowledge on how the unknown

perturbation affects the nominal map, Mii.
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               Figure 2.3: Lower Linear Fractional Transformation

  The constant matrix problem to solve is:

  e determine whether the LFT is well posed for all A2 E A2. with 0(A2) -< 3, and,

   e if so, them determine how "large" 1li(M,A2) can get for this norm-bounded set of

    perturbations.

   The next section has simple theorems which answer this problem.

2.3.3 Well posedness and Performance for LFT's

Let M be a complex matrix partitioned as (2.43) and suppose there are two defined block

structures, Ai and A2, which are compatible in size with Mii and M22 respectively. Define

a third structure A as

                           A, O
                   A=: :A,EAI,A,EA2 . (2.46)
                            O A,

   Now there are three structures with which we may compute pa with respect to. The

notation we use to keep track of this is as follows: pai(•) is with respect to Ai, pa2(•) is with

respect to A2,: paA(•) is with respect toA. In view of this, pai(AIii), pa2(M22) and paA(Al)

all make sense, though for instance, pai(Al) does not.

   Let A2 E A2. The linear fractional transformation, JFi(M, A2) is well posed if I-M22A2

is invertible, and in that case is defined as
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              .JET, (M, A,) = M,, + M,,A, (I - M,,A,)-i 7Vl,,

The first theorem is nothing more than a restatement of the definition of pa.

(2.47)

Theorem 2.4:
   The linear fractional transformation .7'li (M, A2) is well posed for all A2 E BA2 if and

only if pa2(IVI22) < 1•

   As the "perturbation" A2 deviates from zero, the matrix .7 li (M, A2) deviates from Mn .

The range of values that pai(.1 li (M, A2)) takes on is intimately related to paA(M), as follows:

Theorem 2.5:
   The following are equivalent:

               paA(M)g1 o (.,Ieg.pa.2,(paM,2(22,f)slllAa:g)<1 (24s)

   This theorem forms the basis for all uses of pa in linear system robustness analysis,

whether from a state-space, frequency domain, or Lyapunov approach. The frequency

domain pa tests play a key role in robustness analysis.

2.3.4 Robust Stability

The most well-known use of pa as a robustness analysis tool is in the frequency domain.

Suppose P(s) is a stable, multi-input, multi-output transfer function of a linear system.

For clarity, assume P(s) has n. inputs and n. outputs. Let A be a block structure, as

in (2.29) , and assume that the dimensions are such that A c CnzXnw. We want to

consider feedback perturbations to P which are themselves dynamical systems, with the

block-diagonal structure of the set A. To do so, first let Ms denote the entire set of

real-rational, proper, stable, transfer matrices. Associated with any block structure A, let

M(A)      denote the set of all block diagonal, stable rational transfer functions, with biock

structure like A.
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M(A) := {A (•) E Ms :A(s.) EA for aH s. E C+} (2.49)

Theorem 2.6:
   Let 6 > O. The loop shown below is well-posed and internally stable for all A(•) E

M(A) with "Alloo < e if and only if

                         llPilA :- segyA (P (jtu)) s5 (2.so)

   The peak value on the pa plot of the frequency response that the perturbation sees

determines the size of perturbations that the loop is robustly stable against.

2.3.5 RobustPerformance

Often times, stability is not the only property of a closed-loop system that must be robust

to perturbations. Typically there are exogenous disturbances acting on the system (wind

gusts, sensor noise) which result in tracking and regulation errors. Under perturbation,

the effect that these disturbances have on error signals can greatly increase. In most cases,

long before the onset of instability, the closed-loop performance will degrade to the point

of unacceptability. Hence the need for a "robust performance" test. Such a test will

indicate the worst-case level of performance degradation associated with a given level of

perturbations.

   Assume P is stable, real-rational, proper transfer function, with n. + nd inputs, and

                         AAnw + n, outputs. Partition P in the obvious manner, so that Pii has n. inputs and

n. outputs, and so on. Let A c CnwX"z be a block structure, as in (2.29). Define an

augmented block structure [13]

                           AO
                  Ap := :AE A, AFECndXne (2.sl)                            O AF

   The setup is to theoretically address the robust performance questions about the loop

shown as Figure 2.4
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2.4 QuantityofUncertainty

In the previous research, tuning of the design parameters depended on experimental/ sim-

ulated trial and error. Tuning of design parameters, especially frequency weighing func-

tions is very heavy burden for control design engineers. Development of systematic tuning

method of design parameter is now expected. Further, physical limit of allowable perturba-

tion for robust stability/performance was not clear. Weightings for uncertainties were just

design parameters, but physical stability and performance margins against perturbations

were not considered.

   Hence, we expect design parameters to be selected more systematically and meaning-

fully. In this section, I make a set of plant model and quantify the model uncertainties by

iterative design method, and clarify the limit of allowable class of perturbation for robust

stability and performance.

The perturbed transfer function from d to e is denoted by 1.(P, A).

Theorem 2.7:
   Let 6 > O. For all A(s) E M(A) with IIAII.. < h, the loop shown above is

internally stable, and l1.11.(P,A)ll.. ff{ fl if and only if

                       ll-PlI.. :- Åí:R ptA. (P (i'w)) s{ 6

well-posed,

(2.52)

2.4.1 IterativeDesign

Our approach taken here is to treat quantization of uncertainty as one of control system

design process. The problem of uncertainty quantization cannot be separated from control

system design. These two parts are correlate closely with each other.

   We would like to make the closed-loop system possess robustness. If the system has an

over-robustness property, however, the performance of the system would be deteriorated.

Hence a balance of robustness and performance is a matter of great importance to a control

system design. Quantization of uncertainty depends on the synthesis.

   The following items are interrelated.

   e quantization of uncertainty

   e performance specification

   e construction of interconnection structure

   e design(synthesis)

   Our proposal is iteration of uncertainty quantization, which is as follows. As a re-

sult of this iteration, the class/quantity of uncertainty which is guaranteed robust stabil-

ity/performance should be obtained.
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Iterative Design Procedure

 Stepl: make a set G: Construct a plant model set G which involves the nominal linear

     model G. This set should be represented by a matrix function; linear fractional

                                   AA     transformations(LFT) as G := .JIli(G,A), where G involves a nominal model G and

     weighting functions for uncertainties, and 4 is given by

           A == {diag[6ilr,,•..,6sl,.,Ai,...,AF] : 6i E C, Aj E CM'XM"}. (2.53)

Step2: set a performance spec: Set a performance specification by using weighting

     function Wp,,f, e.g., integral property for disturbance elimination, and tracking to

     the reference signal.

Step3: construct the interconnection structure: First, construct the generalized plant

     O from a and Wp,,f, then put A together with Ap,.f as

                   AP = ([e A,O.,f ] AE A, Aperf E CndX"el (2 s4)

Step4: synthesis: Solve H../pt Control Problem to achieve H.. norm, or the structured

     singular value pa test, and obtain the controller K.

Step5: judgement: The upper bound 7 of the ll.ITi(a,K)ll.., or pa4.(JrTi(G,K)) is ob-

     tained in Step4. If 7 < 1, then go to Step6, but if 7 2 1, return to Stepl and reselect

     a set of plant model G.

Step6: experimental evaluation: By experiments, the stability and performance of the

     obtained closed-loop system are evaluated for a set G.

   In the above iteration, making a set G performs a key role. The method to make a set

G is described in the next subsection.

2.4.2 How to make a set G

Our approaches to make a set G are following three items. For the simplicity, in this

section I explain just SISO systems, but it can be extended to MIMO systems.
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                   Figure 2.5: Flow Chart of Iterative Design

(1) set of parameters:

   This set is used in order to take the parametric uncertainty into account. According

   as the state x(t) of the system, parametric numerical value changes. Usually, the

   nominal values of the parameters are decided as the value when the state x(t) E

   R" is on the equilibrium point, and the obtained values are employed around the

   equilibrium point. But, at the neighborhood of the equilibrium point, numerical

   values of parameters should be perturbed.

   First, select the k state variables xi(i --": 1,..,k) c x which are expected most to be

   regulate, then set the range (the upper and lower bound) which is guaranteed robust

   stability/performance.

                         Ximin :i{l Xi <- Vimax, i-- 1,'''k' (2t55)

   By these change of state variables, the m model parameters pj(j' ---- 1,...m) which

   are included in A, B matrices are perturbed as

     PJ'min S{ Pj'(Xi) S{ Pjmax, (Ximin -< Xi b< Ximax,i--': 1,•••,k, ]' "-'-: 1,•••,M) (2•56)
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Then the nominal value of pj and the weighting of parametric uncertainty should be

decided as follows.

                 1)jnom = 1)jlxJ=xJnom (2•57)
                  2Vpi = MaX(Pj'rnax-Pjnom,Pj`nom-P3'min) (2'58)

Hence the set of parameter is written as,

               Pj := {Pj.om + 62"p, : l61 < 1•}, 1' -'-' 1, •••, m• (2.59)

 Pl
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                     Figure 2.6: Parametric Uncertainty

(2) set of linear models:

   This set is used in order to take the neglected linear dynamics into account. Here we

   assume that the plant can be represented as a following linear model.

                               x = Ax+BzL,

                               y== Cx, (2.60)
   where A E R"Å~", B E R"Å~i, and C E RiXn.

   Prepare the (k+ 1) combinations (Ai, Bi), (i --- O, . . . , k), which are system matrices,

   and these are derived according to the precision/assumption of modeling. And we

   define that (Ao, Bo) represents a combination of nominal model. Hence the nominal
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    transfer function Gn..(s) and the k magnitudes of perturbed dynamics are as foilows.

           Gnom(s) := C(sl-Ao)-'Bo (2.61)
        llW(2`w) ll oo ) llC(2'wl - Ai)-' Bi -'- C(1'wl "-" Ao)-' Bo ll oo , (i ---- 1, . . . , k)

                                                                        (2.62)

    Hence the set of linear dynamics is written as,

                     Gi(S):={Gi...(S)+AW(s): llAilooS1•}• (2•63)

 (3) linear dynamics with nonlinear perturbations: This set is employed in order to

    take the neglected nonlinear dynamics into account. Here we assume that the plant

    can be represented as a following nonlinear model.

                          th == f(x)x+Bu,

                             = {A + (f(x) - A) }x + Bu,

                             := {A+D(x)}x+Bu, (2.64)

    where f(x),D(x) E R"Å~". If we put the bound of perturbation as follows,

                         lwi,•l == max ld(x)ial, i,2' '-'---- 1,...,n, (2.65)

    where wij• is iielement of the matrix W E R"Å~", and W is calculated by equation

     (2.65).

    Then the set is written as

                                  k.
                       th:={(A+26iWi)x+Bu: 16ilS1}, (2.66)
                                 i.--1

           A    where Wi E RnXn.

     The parametric uncertainty in the nominal system is refiected by the k scalar un-

     certain parameters 6i,...,6k, and we can specify them, say by 6i E [-1,1]. The

     structural knowledge about the uncertainty is contained in the matrices Viili. They

     reflect how the i'th uncertainty, 6i, affects the state space model.

   I apply this proposed iterative design procedure to robust control systems design in the

following chapters, and evaluate this method.



Chapter 3

Robust Control of Magnetic

Suspension Systems

Since magnetic suspension systems are unstable by nature, feedback control is always

necesg.ary. In order to synthesis a feedback controIler, a precise mathematical model for

the plant is re.quired, however uncertainty is inevitable between the plant and the model.

The controller is required to have robustness for stability against model uncertainties.

   This chapter deals vvTith two magnetic suspension systems. One is a simple SISO elec-

tromagnetic suspension system, and the other is a complicated MIMO magnetic bearing,

the latter is an expansion and application of the former in a sense.

3.1 pa-SynthesisofanElectromagneticSuspensionSys-

       tem

This sect/ion deals with pa-synthesis of an electromagnetic suspension system. First, an

issue of modeling a real physical electromagnetic suspension system is discussed. We

derive a nominal model as well as a set of models in which t•he real system is assumed to

reside. Different model structures and possible model parameter values are fully employed

to determine unstructured additive plant perturbations, which directly yield uncertainty

frequenc.y weighting function. Second, based on the set of plant modeis, we setup robust

performance control objectives. Third, we make use of the D - Is' iteration approach for

the controller design. Finally, implementing the controiler with a digital signal processor,

experiment•s are carried out. VV'ith these experimental results, we show robust performance

of the designed control system.

                                     32
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3.1.1 Introduction

Electromagnetic suspension systems can suspend objects without any contact. The in-

creasing use of this technology in its various forms makes the research extremely active.

The electromagnetic suspension technology has already applied to magnetically levitated

vehicles, magnetic bearings, and so on. Recent advances on this field are shown in [1], [32].

   Feedback control is indispensable for magnetic suspension systems, since they are es-

sentially unstable systems. In order to synthesis a feedback control system, a precise

mathematical model for the plant is required. However it is known that a design model

can not always express the behavior of the real physical plant. An ideal mathematical

model has various uncertainties such as parameter identification errors, unmodeled dy-

namics, neglected nonlinearities. The controller is required to have robustness for stability

and performance against uncertainties on the model.

   Recently, pa-synthesis which is constructed with both H.. synthesis and pa-analysis, has

been developed for the design of robust control systems [61], [74]. Beyond the singular

value specifications, the pa-synthesis technique can put both robust stability and robust

performance problems in a unified framework. Applications of the pa-synthesis method

have been reported in [19j-[24], [75][78][79][34]. In the case of applications of H../pa control

to real physical systems, it is quite important to select appropriate design parameters.

These parameters construct some parts of the generalized plant, e.g., uncertainty and

performance weightings.

   In this section, we evaiuate pa-synthesis methodology experimentally with a real electro-

magnetic suspension system. We model the additive uncertainties and decide the frequency

weighting function for uncertainty accurately and reasonably. Experimental results show

that the closed-loop system with a pa controller achieves robust performance.

3.1.2 ExperimentalSetup

Electromagnetic Suspension System

The structure of the electromagnetic suspension system is shown schematically in Fig-

ure 3.1. The objective of our control experiments is to suspend an iron ball stably and

firmly without any contact by controlling the attractive forces of an electromagnet. Note

that this system is essentially unstable.

   In Figure 3.1, a cylindrical electromagnet as an actuator is located at the upper part
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of the experimental system. Mass of the iron ball is 1.75 kg, and it has a diameter of 77

mm. A gap sensor of our own producing is placed at the bottom of the system to measure

the gap length between the iron ball and the electromagnet. The sensor is scaled for a

gap of 2.4 mm per volt. It is a standard induction probe of eddy-current type. Physical

parameters of this experimental machine are shown in Table 3.1.

I+i

E+e

X+x
][

l'li x

  x

f

mg
k

Electromagnet

Iron Ball

Gap Sensor

Figure 3.1: Schematic diagram of the Electromagnetic Suspension System

Digital Controller

The experimental machine is controlled by a digital controller using a DSP (Digital Signal

Processor). The experimental setup basically consists of the DSP which is sandwiched

between A/D and D/A converters. Real-time control is implemented with a processor

NEC paPD77`230, which can execute one instruction in 150 ns with 32-bit floating point

arithmetic. This device has enough fast processing speed to stabilize a relatively simple

magnetic suspension system in Figure 3.1. The control algorithm is written in the assembly

language for the DSP and a software development is assisted by a host personal computer

NEC PC-9801 under the MS-DOS environment. The data acquisition board MSP-77230

consist•s of a 12-bit A/D converter and a 12-bit D/A converter with the maximum conver-

sion speed of 10.5 pas and 1.5 pss, respectively.

   The sensor outputs are filtered through an analog low-pass circuit, and then converted

to digital signals by A/D converters. The DSP calculates the control input signals. These

digital signals are converted to analog signals by D/A converters with a range of Å}5 V•
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The converted signals and the steady

to actuate the electromagnet. Steady

maximum voltage of a regulated DC
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current signals are added and amplified by 10 times

state voltage of the electromagnet is 24.6 V and the

power supply is 70.0 V.

3.1.3 Model of Electromagnetic Suspension System

Our purpose in this section is to introduce an ideal mathematical model and an uncertainty

weighting function for the system. See [23] for details.

Model Structures

We employ four different model structures for the system depicted in Figure 3.1. All of the

models are finite-dimensional, linear, and time-invariant of the following state space form:

                            th == Ax+Bu, y=Cx (3.1)

                       x == [x cic i]T, 2L == e, y == x,

First, we introduce ideal mathematical models for the real electromagnetic suspension

system. Due to the idealizing assumptions that we make, two types of ideal mathematical

models can be derived hereafter, which are composed of nonlinear differential equations.

We define them as Type[A] and Type[B], respectively.

   Since the behavior of the electromagnetic force is nonlinear, we then employ the lin-

earization procedure around an operating point. In order to account for the neglected

nonlinearity, we derive two types of linear model, respectively. Thus, we derive four linear

models according to the following manners:

e Model[Al]: L = CONSTANT; and the nonlinearity of the electromagnetic forces

  are approximated up to the first-order term in the Taylor series expansion.

e Model[A2]: L =COI STANT; and the nonlinearity of the electromagnetic forces

  are approximated up to the second-order term in the Taylor series expansion.

e Model[Bl]: L = L(a'); and the nonlinearity of the electromagnetic forces are

  approximated up to the first-order term in the Taylor series expansion.

e Model[B2]: L = L(x); and the nonlinearity of the electromagnetic forces are

  approximated up to the second-order term in the Taylor series expansion.
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Ideal Mathematical Model: Type[A]

We derive ideal mathematical models for the real electromagnetic suspension system, where

the following assumptions on the electromagnet are considered.

   e (A.1) 1.VIagnetic permeability of the electromagnet is infinity.

   e (A.2) Magnetic flux density and magnetic field have not hysteresis, and they are

     not saturated.

   o (A.3) Eddy current in the magnetic pole can be neglected.

   Using (A.1) and (A.2), we can treat the coil inductance L as a function of variable x.

Then, the system can be written by the following nonlinear differentia} equations

           mdd2tf = mg - f, f=k(. t .,)2, e= Ri + IStT {L (x) i}, (3•2)

where the coeMcients k and xo in (3.2) are constants determined by identification experi-

ments. Further, we introduce another assumption for Type[A].

   e (A.A) The coil inductance is constant near an operating point. Furthermore,

     the electromotive forces due to the differential of gap can be neglected.

Then from (3.2), we get
                                         di
                               e== Ri+L,7t. (3.3)
The ideal mathematical model: Type[A] is represented by (3.2) and (3.3) .

Model[Al]
In view of (3.2) and (3.3), we can obtain the linear model (3.4); Model[Al]

                    O1o o IT
           A= or(illiEL:isxk+i2.,) O -nt(J?tl{ixpxk+i.,) , B= O, C= O • (3•4)

                    oo -5 i o
 Model[A2]

We can further obtain another linear model (3.5); Model[A2].

                  O1o o IT
         A= ;.Klf;;is(xk.i2,) Ay O -;.rf:l{E;i7(xki,) Ay , B= O, C= 0 , (3•5)

                  oo -S t o
                Ax=xf.,, Ai=f, Ay=i-gAx+Å}Ai.

In this way, we deal with the deviation x and i as fixed numbers, at the second-order term

in the Taylor series expansion and include them in the matrix A as Ax, Ai and Ay.
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Ideal Mathematical Model: Type[B]

For the ideal mathematical model Type[B], we also consider the assumptions; (A.1), (A.2),

(A.3) and here in addition to them, we introduce the next assumption (A.B) instead of

(A.A). Using this assumption, we can obtain more accurate model than one of Type[A].

   o (A.B) The coil inductance L is a function of a gap x, and written as follows.

                                         9
                               L(x) =.+ x. +Lo (3.6)

where the coefficients 9, X.. and Lo are also the constants determined by identification

experiments. For any given current i in a coil with inductance L, the magnetic co-energy

is shown as SLi2. Hence electromagnetic forces between the electromagnet and the iron

ball in (3.2) is equal to the change rate of co-energy with respect to the distance x, i.e.,

               f- iiZ.7 (5L(x) i2} - Si2aLa.(x) - g (. +ix..)2. (3.7)

Comparing (3.2) with (3.7)

                              Xoo=xo, 9=:2k (3.8)
Then from (3.2), (3.6) and (3.8), we get

                    e= Ri- (. ilikg,), Ii/ÅÄ+(. lk.,+L,) gil. (3.g)

Now we obtained the ideal mathematical model: Type[B] which is constructed with (3.2)

and (3.9).

Model[Bl]
From (3.2) and (3.9), the linear model (3.10); Model[Bl] is derived.

A= nt(iee:"rxk+i.2,) O -nt(s?:I{EKi7xk+i.,) ,B= O ,C=O
         0 (x+.,){2k2+kiL,(x+.,)} 'iitSiilkl21:;I+Lo(x+xo) iAtPi$?lilKY+ioffl+xo) (391o)

Model[B2]
Moreover, the linear model (3.11); Model[B2] can be derived.

                O1 O      A= m(iee:isxk+ii,)Ay O -or(fttxi7xli.,)Ay , (3•11)
                o x+.o2k2ikii2AA.X++LAo2x+xo -2ki-ARxXiLXoOx+xo
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                                 o IT

                     B= O ,C= O.
                               x+x O                          Lo(X+xo +2k 1-Ax)
Thus, now we obtained four linear model structures: Model[Al], Model[A2], Model[Bl],

and Model[B2].

Model Parameters

In order to account for unpredictable perturbations in the model parameters, we set the

nominal value as well as the possible max./min. value of each parameter in every linear

model. To obtain the possible max./min. value of each parameter, consider the steady-

state gap X=5.0 mm (nominal). I ow let us perturb it with X=4.5 mm and X=5.5 mm

(perturbed Å}O.5 mm). And, for these cases, we measured the three sets of the parameter

values, The results of measurements are shown in Table 3.1.

Nominal Model

We derive the nominal model using the simplest Model[Al] structure and the nominal

model parameter (X= 5.0 mm case). Its state space form is then of the following form

                olo o IT
      Anom= 4481 O -18•43 , Bnom= O , Cnom= O • (3•12)

                0O -45.69 L969 O
And the corresponding nominal transfer function is as follows.

                                      -36.27
                    G"OM = (s +66.g4) (s - 66.g4) (s+ 4s.6g)' (3'i3)

Modeling Unstructured Uncertainty

In order to account for unstructured uncertainties, we should consider not only a nominal

model but also a set of plant models in which the real system is assumed to reside. Consid-

ering only unstructured uncertainties, we get all unstructured uncertainties together into

1-full block uncertainty.

   In order to estimate the quantities of additive model perturbations, we employ differ-

ences of gain between the nominal transfer function and the perturbed transfer function

with only one parameter changed and the others fixed, where we did not consider that plu-

ral parameters change together. In such a way, 24 perturbed models have been employed•
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They are shown in Table 3.2. With these notations, we can define the corresponding

perturbed transfer functions G'ij in an obvious way.

                    A,j := ai, -G... (1 SiS 12, ]' =a, b). (3. 14)

Frequency responses of these additive perturbations IAi,(1'w)l are plotted in Figure 3.2,

with 24 dotted lines. Now let us consider the set of plant models. Here we assume the

following form

                     G:= {Gnom +Aaddi[!Vadd : 11Aaddli.. S 1}• (3•15)

in which the real plant is assumed to reside. AII of the uncertainties are captured in

the normalized, unknown transfer function A.dd. It is natural to choose the uncertainty

weighting W.dd as follows(shown in Figure 3.2 ). Here it should be noted that the

magnitude of the uncertainty weighting W.dd covers all the model perturbations shown in

Figure 3.2.
                       1.4 Å~ 10-5 (1 + s/8) (1 + s/l70) (1 + s/420)
                                                                        (3.16)                Wadd ==
                            (1 + s/30) (1 + s/35) (1 + s/38)
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  Table 3.1:

 ROBUST CONTROL OF MAGNETIC SUSPENSION SYSTEMs

Parameters of Electromagnetic Suspension System

Parameter Max.value Nominalvalue Min.value

m [kgl

X [m]

I [A]

.T [M]

i[A]

L [H]

R [9]

k [Nm2/A2]

xo [m]

q [Hm]

Xoo [M]

Lo [H]

5.50 Å~ lo-3

   1.18
5.00 Å~ lo-4

 1.18 Å~ 10-i

5.57 Å~ 10-i

 2.37 Å~ 10i

3.35 Å~ 10-4

-3.32 Å~ 10-4

6.70 Å~ lo-4

-3.32 Å~ 10-4

3.96 Å~ 10-i

   1.75
5.00 Å~ 10-3

   1.06

   o.oo

   o.oo
5.08 Å~ lo-i

 2.32 Å~ 10i

2.90 Å~ 10-4

-6.41 Å~ 10-4

5.79 Å~ 10-4

-6.41 Å~ 10-4

3.75 Å~ lo-i

4.50 Å~ 10-3

   0.93
-5.00 Å~ lo-4

-1.26 Å~ 10-i

4.65 Å~ 10-i

 2.27 Å~ loi

2.53 Å~ 10-4

-9.42 Å~ lo-4

5.06 Å~ 10-4

-9.42 Å~ 10-4

3.54 Å~ 10-i

1 o'4
UNCERTAINrv WEIGHTHING

10
-5

L.i.l

g
i lo'6

2
E

10

10

-7

-8

i,,••t,••-s•i•-t,t,,,,t,.,,,t,,,,`s;::;;;:l1•::::'i,'4:it';`,";:`•t;•IIt:T..;';

::::=:::::::::;::::

      s:tl i, I• I' Il

     I.':•     ::illllilll•l-illliiit

 .

  iii{i ;• t/ i. i. ll

       .      jll   ,Iillllt

.l,l'll:'

l::

  ..,,1::.

:ll:,:r

10"   1 oO

Figure 3.2

   .....•••• •, ', 1, I, i:1: 1:,,':. i' /1 ,;:1..

     ,,lk;it.,. ..,,lt.I.l.

... , i"t{:J,i,il,,:.':i••lill//t:•/;/t/t'i//////L/'i//g/t,;///t.,;,,,,.,,

                   'x ', '•,';.'-1•Irt,:,
                    i V.';,.i,i,t;,,
                    i                      l t t- -- E-       12     10                10

FREQUENCY (radls)

: Uncertainty Weighting

10
3

CHAPTER 3.ROBUST CONTROL OF

Table 3.2

,WIAG.NETIC SUSPENSION

: Definition of Perturbed Models

SYSTEAitlS

Perturbed Model Model Structure Parameter Change

model(la) Model[Al] k-kmax
model(1b) Model[Al] k'kmin
model(2a) Model[Al] Xo'-+XOmax
model(2b) Model[Al] Xo-Xomin
model(3a) Model[Al] R-Rmax
model(3b) Model[Al] .R-Rmin
model(4a) Model[Al] L-"Lmax
model(4b) Model[A1] L.Lmin
model(5a) Model[A2] tlX-Xmax
model(5b) Model[A2] ttX--'>Xmin
model(6a) Model[A2] .t'tZ-Zmax
model(6b) Model[A2] 't.tZ-Zmin
model(7a) Model[B1] k-kmax
model(7b) Model[Bl] k'kmin
model(8a) Model[Bl] Xo-XOmax
model(8b) Model[Bl] Xo-Xomin
model(9a) Model[B1] R-Rmax
model(9b) Model[B1] R-Rmin
model(10a) Model[Bl] Lo-Lomax
model(10b) Model[Bl] Lo-LoTnin
model(11a) Model[B2] ttX-Xmax
model(11b) Model[B2] ttX-Xmin
model(12a) Model[B2] 't.tZ-Zmax

model(12b) Model[B2] .I•IZ-Zmin

41
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3.1.4 Design

Control Objectives

Electromagnetic suspension system is essentially unstable. We must design a robust con-

troller to stabilize the closed loop system, furthermore, we would like to design a controller

to maintain the performance against unpredictable disturbances and the uncertainties.

   Let us consider the feedback structure shown in Figure 3.3. The box represents the set

of the models: G of the real system.

1 d

Aadd

Wadd-r Watldl- Wperf-l

r=O+ + + Wperf-rK Gnom
+ +

-
Greai

                        Figure 3.3: Feedback Structure

   Robust stability requirement for the additive uncertainty can be evaluated using the

closed-loop transfer function KS, where S := (I+ GK)-i. Hence robust stability test for

G E G is equivalent to

                      Wadd. A' (I+Gnom lS')-1 "/add, .< 1. (3.17)

It is noted in Figure 3.3 that we factor the uncertainty weighting as IiVadd = Wadd, Å~ Wadd.,

where

     w.dd, == i.oÅ~io-5, vv.dd. == i'4i(+t ,+/3So/iii(ii,/Sii.)70(l(+t ,+/3Ss/l20). (3.is)

   In order to reject t,he disturbances at low frequency band, the performance weighting

function ut/p,.f is now chosen as follows.

                                      200.0                             l'Vperf =                                                                      (3.19)                                     1 + s/O.1
We also factor the performance weighting as Wp,.f = VVp,rf, Å~ Wperf., where

                                              2.0 Å~ lo7                   W'perfi =1'OÅ~10-57 Uiperf. =1+s/o.1' (3'20)
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In practical situation, however, we would like to achieve this performance specification

for all the possible plant G E G. A necessary and sufllicient condition for this robust

performance is

                     Wperf. (I+GK)-i liVperfi ..<1, VGEG• (3•21)

Now the control objective is to find a stabilizing controller K which achieves the following

two conditions

   e The closed-loop system remains internally stable for every plant model G E G,

   e The weighted sensitivity function satisfies the performance test (3.21) for every plant

     GEG.

The design objectives have been specified as the requirements for particular closed loop

transfer functions with the frequency weighting functions W.dd and VVp,.f. The above

control objectives exactly fit in the pa-synthesis framework by introducing a fictitious un-

certainty block Ap,.f. Rearranging the feedback structure in Figure 3.3, we can build the

interconnection structure shown in Figure 3.4.

A.dO
OApeof

Wpe,f-l Wpe,f-r

w Z
Wa`ldl- Watldr-

u 6nom + + y

++
P

-K

Figure 3.4: Interconnection Structure
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thSynthesis

We first define a block structure Ap as

                 A=p =([ A8dd A,O..f] Aadd E C, Aperf E CI (3 22)

Next, consider a generalized plant P partitioned as

                              p=[pP,il pPl,2]. (3.23)

Obviously in Figure 3.4, we can get a lower linear fractional transformation .7 li(P, K) on

P by Is'

                   .1 li (P, Is'):: P" +Pi2K (I- P22Is-)-i P2i. (3.24)

Finally, robust performance condition is equivalent to the following structured singular

value tL test

                         sup paA. (.7 Ti (P, K) (j'w))<1. (3.2s)
                         wER
The complex structured singular value LLA. is defined as

                                         1              paA.(M),= .                                                                      (3.26)
                         mm{0(A) :AE A, det (I- rvIA) = O}'

unless no A E A makes I-MA singular, in which case paA (M) : = O. In this case a matrix

rv1 in(3.26) belongs to C2Å~2

D-K iteration

Unfortunately, it is not known how to obtain a controller K achieving the structured

singular value test (3.25) directly. But we can obtain the lower and upper bounds of pa.

Our approach taken here is the so-called D - K iteration procedure.

   The D - A' iteration involves a sequence of minimizations over either K or D while

holding the other fixed, until a satisfactory controller is constructed. First, for D = I

fixed, the controller Is'i is synthesized using the well-known state space H.. optimization

method. Let Pi = P denote the given open-loop interconnection structure in Figure 3.4,

and JFi(P, K) be the closed-loop transfer function from the disturbances iD to the errors z•

   Then, solving the following H. control problem

                       ll.1li(P,,K,)ll.<•>•,, •>t, == 1.3. (3.27)

The problem (3.27) yields the central controller Ki below
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Kl =

CONTROL

-5.22 Å~
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lo8(s + 12.46)(s + 30.0)(s + 35.0)(s + 38.0)

(s + O.10)(s + 31.6 - ]'5.12)(s + 31.6 + ]'5.12)(s + 39.77)

             (s + 45.69)(s + 66.94)

45

Å~
(s + 315.2 - ]'329.6)(s + 315.2 + 1'329.6)(s + 734.7)

(3.28)

   Here we try to assess robust performance of this closed-loop system using pa-analysis

associated with the block structure (3.22). The maximumsingular value and pa upper bound

of the closed-loop transfer function JFi(Pi , Ki) are plotted in Figure 3.5. It is noteworthy to

point out that the peak value of the upper bound pa plot is not less than 1. This reveals that

the closed-loop system with this H.. controller Ki does not achieve robust performance

condition.

   Next, the above calculations of pa produce a scaling matrix at each frequency In this

design, we try to fit the curve using a lst order transfer function.

   Now, let P2 denote the new open-loop interconnection structure absorbing the scaling

matrix D. This time, from the following H.. control problem

                        ll `JEIi (P2, K2)ll .. < '>`2, 'y2 =1.0, (3.29)

we can calculate the controller K2 as follows.

                -8.01 Å~ 109 (s + 10.54) (s + 15.75)(s + 30.0) (s + 35.0)(s + 38.0)
Is'2 -
       (s + O.10) (s + 19.59 - 1'5.32) (s + 19.59 + ]'5.32) (s + 38.48 - 1'2.70) (s + 38.48 + 1'2.70)

       . (s+4s.6g) (s+66.94) (s+169•6) . (3.3o)
         (s + 176.6) (s + 420.1 - j'272.8) (s + 420.1 + ]'272.8) (s + 818e) .

The maximum singular value and pa upper bound of this closed-loop system are plotted in

Figure3.6. Since the value of pa is less than 1 in Figure 3.6, robust performance condition

is now achieved.
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SV AND MU PLOT OF THE FIRST D-K ITERATION
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3.1.5 ExperimentalResults

The designed controllers Is'i and K2 are continuous-time systems. In order to implement

these two controllers with the digital controller, we discretized them via the well known

Tustin transform. The controllers Ki and K2 are discretized at the sampling period of

45pas and 60pas, respectively.

   We succeeded in the stable suspension of the iron ball using both of the controllers Ki

and K2. In the Section 4, robust stability and robust performance objectives were con-

sidered as the control problems. The obtained H.. controller A'i achieves robust stability

condition, and pa controller K2 achieves not only robust stability but also robust perfor-

mance specification. Hence, we evaluate robust performance as well as robust stability of

the closed-loop systems with responses against various external disturbances.

   There the disturbances are added to the experimental system as an applied voltage in

the electromagnet. It is noted that there are four types of disturbances. Taking account

that the steady-state force of the electromagnet is equal to 17.15 N, we added the following

disturbance forces to the fioating iron ball:

                   downward 17.15 N, downward 34.30 N,

These disturbances are large enough to evaluate the robustness of both these two con-

trollers. Experimental results are shown in Figure 3.7 through Figure 3.10.

   E5
   g
   E
   :o
   I
   s•

   a -5
       o

Figure 3.7 : Res

 O.2 O.4 O.6 O.8 1.0           TIME (s)
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   First of all, these experimental results in Figure 3.7 through Figure 3.10 show that

the iron ball is suspended. Responses in Figure 3.9 are vibrating extremely, however, their

vibration get on the decrease. This shows the closed-loop systems with both the controllers

Ki and K2 remain stable against these disturbances. Comparing Figure 3.7 with Figure 3.9,

the responses with Ki deteriorate extremely against relatively large disturbances. While in

Figure 3.8 and Figure 3.10, the responses with the controller K2 maintain good transient

responses against these disturbances. Now we can see the following observation.

   e The closed-loop system with the pa controller K2 achieves robust perfor-

     mance, while the closed-loop system with the H.. controller A'i does not.

3.1.6 Conclusions

In this section, we experimentally evaluated a controller designed by pa-synthesis methodol-

ogy with an electromagnetic suspension system. We have obtained a nominal mathematical

model as well as a set of plant models in which the real system is assumed to reside. With

this set of the models we designed the control system to achieve robust performance ob-

jective utilizing pt-synthesis method.

   First, four types of different model structures were derived based on the several ideal-

izing assumptions for the real system. Second, for every model, the nominal value as well

as the possible maximum and minimum values of each model parameter was determined

by measurements and/or experiments. Third, a nominal model was naturally chosen. This

model has the simplest model structure of all four models and makes use of nominal param-

eter values. Then, model perturbations were defined to account for additive unstructured

uncertainties from such as neglected nonlinearities and model parameter errors. Fourth,

we defined a family of plant models where the unstructured additive perturbation was

employed. The method to model the plant as belonging to a family or set plays a key role

for systematic robust control design. Fifthly, we setup robust performance objective as a

structured singular value test. Next, for the design, the D - K iteration approach was

employed. Final}y, the experimental results showed that the closed-loop system with the

pa-controller achieves not only nominal performance and robust stability, but in addition

robust performance.
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3.2 Gain Scheduled H. Robust Control of a Mag-

       netic Bearing

This section deals with the problem of an unbalance vibration of the magnetic bearing

system. We design a control system achieving the elimination of the unbalance vibration,

using a loop shaping design procedure (LSDP). After the int/roduction of our experimental

setup, a mathematical model of the magnetic bearing js shown. Then, the gain scheduled

H. robust controllers with free parameters are designed, based on the LSDP, so as to reject

the (listurbances caused by unbalance on the rotor asymptotically even if the rotational

speed of the rotor varies. Finally, several simulation and experimental results show the

effectiveness of this proposed methodology.

3.2.1 Introduction

This section proposes a gain scheduled robust control scheme for a rotating active magnetic

bearing (AiMB) system. By using magnetic bearings, a rotor is supported without any

contact. The technique of contact-less support for rotors becomes more important in the

wide industrial application fields[t50].

   Imbalance in the rotor mass causes vibration in rotating machines. Balancing in the

rotor is very diflicult, there is often a residual imbalance. But, this imbalance problem

can be conquered by active control. It is well known there are two methods to solve the

above imbalance problem of magnetic bearings. The first method is t,o compensate for

the unbalance forces by generating electro-magnetic forces that cancel these forces. The

other method is to make the rotor rotate around its axis of inertia (automatic balancing).

In this case no unbalance forces are produced. There are several effective methods in

the literature to achieve automatic balancing in the magnetic bearings [65][33][55]. If the

magnetic bearings should be applied to precision machines, however, the rotor would be

expected to rotate around its geometrical axis, hence our approach taken here is the first

method.

   This section is concerned with the problems of the interference caused by gyroscopic

effect and the problem of the vibration caused by unbalance on the rotor. In [19], the

control system has been designed by using the Loop Shaping Design Procedure (LSDP)

[44], and we have experimentally demonstrated their attenuating effect of the unbalance

vibration. The attenuation was only achieved at the fixed-regular rotational speed of the
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rotor in [19], however, the elimination of the variable unbalance vibration caused by the

variable rotational speed is expected in the next step. The vibrations caused by unbalance

of the rigid rotor can be modeled as frequency-varying sinusoidal disturbances. Hence, in

this section, we propose the gain scheduled H.. cont.rollers with the free parameter as a

function of rotational speed to eliminate frequency-varying sinusoidal disturbances. This

gain-scheduling approach is very simple and utilizes the free parameter of the H.. controller

[76],[77]. The other gain-scheduling approaches for H,., control are reported in references

[3] [59] [60] [83] .

   Outline of this section is as follows. First, we introduce the magnetic bearing system,

and derive the mathematical model of the system [18][47]. Next, we adopt the H,,, problem

with boundary constraints to the normalized Left Coprime Factor robust stabilization Hoo

problem [76][77], the conditions for existing of controller are derived with LSDP. Thirdly,

we design the controllers that achieve asymptotic disturbance rejection and robust stability.

Finally, we present simulation and experimental results with the obtained H.. controllers,

and indicate the effectiveness of this proposed approach.

3.2.2 Modeling

Magnetic Bearing System

The magnetic bearing system employed in this research is a 4-axis controlled horizontal

shaft magnetic bearing with symmetric structure, the axial motion is not controlled ac-

tively. The diagram of experimental machine is shown in Fig. 3.11. The diameter of the

rotor is 96 mm and its span is equal 660 mm. A three-phase induction motor (lkW,four

poles) is located at the center of the rotor. Around a rotor, four pairs of electromagnets

are arranged radially on both sides. And four pairs of eddy-current type gap sensors are

located on outside of the electromagnets. Further this system employs a tachometer in

order to measure the rotational speed of the rotor. The experimental machine is controlled

by a digital control system that consists of a 32-bit floating point Digital Signal Processor

(DSP) DSP32C(AT&T), 12-bit A/D converters and 12-bit D/A converters. Using these

systems, the final discrete-time controllers including a free parameter are computed on the

DSP. The diagram of digital control system is shown in Fig. 3.l2.
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                                                 Z ,,a'

                    segnasPor
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                                    motor magnetlc
                             magnetlc bearing
                             bearing

                  Figure 3.11: Diagram of Experimental Machine

Mathematical Model of the Magnetic Bearing

In this section, we derive the state equation of a magnetic bearing system with the following

assumptlons:

  1. The rotor is rigid and has no unbalance.

  2. All electromagnets are identical.

  3. Attractive force of an electromagnet is in proportion to (electric current / gap

    length)2.

  4. The resistance and the inductance of the electromagnet coil are constant and inde-

    pendent of the gap length.

  5. Small deviations from the equilibrium point are treated.

Based on the above assumptions, a mathematical model of a magnetic bearing has been

derived in reference [47] [49], and the obtained result is as follows.

            [S,V]=[-,A.V., PiVh][:,V]+[iiV .O,][:,V]+,2[.E,V]. (33i)

                            [yY,V]==[ZV cO,][.X,V] (3.32)

where the subscripts 'v' and 'h' in the vectors and the matrices stand for the vertical motion

and the horizontal motion of the magnetic bearing, respectively. In addition, the subscript
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                        Figure 3.12: Digital Control System

'vh' stands for the interference term between the vertical motion and the horizontal motion
                                                                               '
and p denotes the rotational speed of the rotor. Each vector in (3.31) and (3.32) can

be defined as

                      Xv == [gn gri 9ii bri iti iri]T,

                      xh =: [gi3 g.3 9i3 g.3 ii3 i.3]T,

                      iiv = [eii eri ]T, uh = [ei3 e,3 ]T,

                               c sin (pt + K)

                              'r cos (pt + A)

                      W= 6cos(pt+K) (3'33)
                               7' sin (pt + A)

where

     gj : deviations from the steady gap lengths

         between the electromagnets and the rotor

     ij : deviations from the steady currents of the

         electromagnets

     ej : deviations from the steady voltages of the

         electromagnets

     E, T, K, A: unbalance parameters [47][49]

     (2' = ll,rl,l3,r3.)
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The subscripts 'l' and 'r' denote the left-hand side and the right-hand side of the magnetic

bearing respectively, and the subscripts '1' and '3' denote one of the vertical directions and

one the horizontal directions of the rotor respectively. Each matrix in (3.31) and (3.32)

can be defined as follows.

Cv

For the notations

                  OIO
        Av := Al + A2A4v O A2Asv ,

                  O O -(R/L)I

                  O .l O
       Ah:= Al+A2A4h O A2Ash ,
                  O O -(R/L)I

         ooo o  A.h:== O A3 O, B.=Bh:= O
         OOO (1/L)I
                            o

== Ch := [I O O], E. :== Ei. , Eh :=

                            o

Ai-

,,i,,[:,i:ii.m;((/l,;i,iM.I,`i;:i:,'E-/--l,.-,glJi/I.

                  1 l? 1                               lllr
       A, ,= -M-i 'M+7J
                -!+!L,CLir -l-L? '
       A3 = 'y(`7iirl17.i` Zii.]<Y

                2      A4v := - iJl7 diag[Fii + Fi2, Fri + Fr2],

                2      A4h := - iJ{7 diag [Fi3 + Fi4, Fr3 + Fr4],

      Asv := 2diag [ft/i + k/2, l7ki + ;,ri],

      Ash := 2diag [lt/3 + {l/il4, lil33 + ll44],

      E't = [Il I`i,(ti-t)l,ll)) g oO]'

      E,, - [:g i, fi,.(l,"--tll,l))]

, as well a,s t/he parameter values, see Table 3.3.

 ,

EoO

,h

l]•

'

In the above equations,
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Table 3.3: Parameters
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of Experimental Machine

Parameter Symbol Value Unit
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Mass of the Rotor

Moment of Inertia about X

Moment of Inertia about Y

Distance between Center of

Mass and Left Electromagnet

Distance between Center of

Mass and Right Electromagnet

Distance between Center of

Mass and Motor

Steady Attractive Force

Steady Current

Steady Gap

Resistance

Inductance

  m
 Jx

 Jy
  ll

  lr

 lm

Fn ,ri

Fl2rv l4

Fr 2rv r4

-I-

l1,r1

Il2rv l4

Ir2tN,r4

 lxVi

 R
  L

 1.39 Å~ lol

1.348 Å~ lo-2

2.326 Å~ lo-i

1.30 Å~ lo-1

1.30 Å~ lo-1

    o

 9.09 Å~ 10

 2.20 Å~ 10

 2.20 Å~ 10

6.3 Å~ lo-1

3.1 Å~ lo-1

3.1 Å~ lo-1

5.5 Å~ lo-4

 1.07 Å~ 10

2.85 Å~ lo-i

  kg

kg•m2
kg • m 2'

  m

m

m

N

N
I

A
A
A

m
9

H

a denotes the

and hence we

with Table 3.3

coeMcient of the force which occurs when

set a = O. The numerical values of these

, and the result is written in reference [18].

the rotor eccentrically

matrices can be easily

deviates
       ,
obtained

3.2.3 Hoo Gain Scheduling

In order to attenuate the unbalance vibration of the rotor, we design the robust H..

controllers which achieve the sinusoidal disturbance rejection asymptotically. As is well

known, the controllers must have the imaginary poles at the frequencies corresponding to

the rotational speed to possess high stiffness. For such a control system design, the LSDP

based on the normalized Left Coprime Factor (LCF) robust stabilization method [44] is

employed. Using the free parameter method which have been proposed in the reference

[19], it is possible to obtain the gain scheduled controllers by the free parameter as the
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 function of rotational speed, We therefore show the condition for existing of controllers, by

 adopting the control problem with boundary constraints [76][77] to the normalized LCF

 robust stabilization problem, and we design a robust controller which satisfies the derived

 specifications using the LSDP.

    Let (N,M) represent a normalized left coprime factorization of a plant G. Let these

 coprime factors be assumed to have uncertainties AN, AM and let GA represent the plant

 with these uncertainties.

                         GA == MA-iNA

                             = (M+AM)-i(N+AN) (3.34)

where IVA and MA represent a left coprime factorization of GA, and

                A={[AN, AM]ERHoolll[AN, AM]ll..<e}• (3•35)

GA can be written in the form of an Upper Linear Fractional Transformation (ULFT) as

follows.

                      G!A : Fu(P,A)

                          = P22+P,,A(I-P,,A)biP,,, (3.36)

where

                       P=[;',', ;Ii]= . (3.37)

The robust stabilization problem for the perturbed plant GA can be treated as the next

Hoo control problem:

                       [S'] (I -- GK)"M" -<- e-' :=7 (3.38)

                                          ooIt is known that the solution of this problem and the largest number of 6 (= 6..x:---7min ) can

be obtained by solving two Riccati equations without iterative procedure. All controllers

Is'  satisfying (3.38) are given by

                 K == FL(Ka,di) := Kii+Ki2di(I-K22di)'iK2,, (3•39)

where

Ka=
[.K,ii

oM-1 IG

M-i G

.K
.Isi,

(3.40)

iM

cHAPTER 3. ROB UST CONTROL OF MA GNE TIC S USPENSIOIV SYS TEMS s7

                                    ll`Z}lloo fi{ll" (3•41)

For the calculation of Ka and cmax, see [44]. In order to eliminate the unbalance vibration

of the rotor, which can be modeled as sinusoidal disturbances [47], the robust controller

should be designed to achieve sinusoidal disturbance rejection asymptotically. In this

case, as is well known, the controller must have the imaginary poles at the frequencies

corresponding to the rotational speed of the rotor [76][77]. Hence, for the achievement of

sinusoidal disturbance rejection whose frequency is wo [rad/s], K(s) is required to satisfy

                 K(Å}7'wo)= oo O {I-G(Å}2'tuo)K(Å}]'wo)}-' =O. (3.42)

We then derive the conditions, by adopting the H. problem with boundary constraints

[77] shown in Appendix to this problem, whereby there exist the controllers satisfying both

(3.38) and (3.42). The boundary constraint {L,ll, !P} corresponding to (3.42) is given

by

                      L= [O I], ll == M(Å}]'w.), pt=O. (3.43)

The basic constraint {LB,!IkB} in (3.66) (Appendix) is described by

                       LB=Pf2(Å}2'Loo)=[-G(Å}1'Loo) I], (3.44)

                     tpB=Pii2(Å}1'wo)Pn(Å}1'wo)=M-'(Å}j'wo). (3.45)

It is obvious that {L,ll,!P} is satisfying condition (b) in Theorem A, and the extended

                    AAboundary constraint {L,gZZ} in (3.67) (Appendix) is given by

                        L=[-G(t]'wo) i], {b .. [6]. (3.46)

After some straightforward calculation, we have

                               ty0(fV(Å}2'wo))>1, (3.47)

where
                      0(N(Å}jwo))-(,.a-2.(,G((i(7.'w,o.2i)))ii2,

                        a(e) : the maximum singular value.

from the condition (c) of Theorem A.

   If we choose free parameter di(s) such that

                             di(Å}1'Wo)= K.--.'(Å}1'wo) (3.48)
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under the conditions (3.41) and (3.47) , it can be seen that we obtain the controller with

the imaginary poles at Å}7'tuo from (3.39) . Based on it, we design the control system using

the Loop Shaping Design Procedure (LSDP) [44]. The procedure is briefly outlined below:

Loop Shaping Design Procedure (LSDP)

< Step 1> Loop Shaping
Selecting shaping function Wi and W2, the singular values of the nominal plant G are

shaped to have a desired open loop shape. Let Gs represent this shaped plant

                              Gs=VV,GWi (3.49)
VVi and W2 should be selected such that Gs has no hidden unstable modes.

< Step 2 > Robust Stabilization

The maximum stability margin 6... is calculated. If 6... << 1, return to Step 1, then Wi

and W2 should be selected again. Otherwise, 7 is appropriately selected as 7 l}l 7min = 6m.x

and K. is calculated. The free parameter di is selected such as (3.48) under the conditions,

then the H. controller: K.(s) is synthesized for Gs from (3.39) .

< Step 3 > Final Controller

The final controller K can be obtained by the combination of VVi, W2 and Koo

                             K== W,K.W2 (3.50)
In this procedure, c... is treated as a design indicator rather than the maximum stability

margin of Gs. Thus, we can design the robust controllers achieving sinusoidal disturbance

rejection asymptotically using the LSDP. Moreover, utilizing the free parameter for such

design, it is possible to obtain the gain scheduled controllers by scheduling the free param-

eter as the function of rotational speed of the rotor, which achieve the elimination of the

unbalance vibration even if the rotational speed of the rotor varies.

         'The H. controller: K.(s) with the free parameter Åë is shown as follows.

                            Koo =FL (Ka, di) (3•51)
where

                     AKa                          BKal BKa2
                                               r
              Ka== CK.i Dk'.n DK.i2 , Åë=l

                     CKa2                                               L                          DKa21 DKa22

Adi Cdi

Bdi Ddi

r-
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AKoon AKoo12

AK.21 AK.22

CKoo1 CKoo2

BKoo 1

BK.2

DKoo
' -

Ak'.+Bk'a2ZoCKa2 Bk'a2Xo BKa1+BKa2ZoDKa21
YoCK.2 A{p+YoDK.22Cdi YoDk'.2i

DKa12Xo DKall+Dk'a12ZoDKa21-

where

Xo : (I- DÅëDKa22)" Cdi, Yo = Bdi (I'Dk'.22Ddi)nyi ,

   Therefore the final H. controller K is as

                               K ---- W,K.W,

where we define the weighting functions Wi and W2 as

Awl Cw1

Bwl Dwl

59

then

K=

Wl ==
'

W2 :dia

(3.52)

Zo : (I -' DdiDK.22)-i Ddi.

gonal constant matrix, (3.53)

-

Awl BvvlCK.1BwlCK.2 BwiDAt.W2
o AKoollAKoo12 BKoo1VV2

o AKoo21AKoo22 BKoo2W2

DwlCKoolDWICKoo2DwlDk'.I'V2

Avvi BVV1(CKai+DKai2ZOCKa2) Bw1DKa12XO BW1(DKa11+DKa21ZODKa21)W2
o AKa+BKc2ZOCKa2 BKa2Xo (BKa1+BKa2ZODKa21)W2
o YoCKa2 -t4di+YODKa22Cdi YoDKa21W2

Cw1 DW1(CKa1+DKa12ZOCKa2)DwlDKa12XO DYV1(DKa11+DKa12ZODKa21)W2-

The block diagram of this final controller is shown in Fig.

3•2.4 ControllerDesign

In this section, the feedback controllers are designed with th

speed p =O in the nominal plant G. In this case, we can

3.13.

(3.54)

e LSDP. We assume rotational

 see that there is no coupling
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       Figure 3.13: The gain schedulcd H.. controller wit/h the free pa,rameter <Z}

between the vertical motion and horizontal motion in (3.31) . Therefore, the plant, model

can be f eparat/ed into the vertical plant G,(.s' ) := C,,(sl- ,4.)-i B. and the horizontal plant

Gh(s) := Ch(sl - Ah)-iBh, respectively.

                              G=[G6V GO,,] (3.ss)

Then, two controllers are designed for the each plant, respectively. The final controller Ix'

for the entire plant G is constructed with the combination of these two controllers.

                             is' == [iS6V i,O.,] (3.s6)

where A' . denotes the controller for the vertical plant, and Is'h denotes the controller for the

horizontal pla,nt. The shaping functions and the design parameters are selected as follows.

(v) Design for vertical motion

      wi.(s) - (i3.00,(/'(,',.S./i.2,r`,)')'7)[iii,'/i,/il?T,i,3)5))(),(ii,/S(/,(,2,4i,5,Oii) [6 ?] (3s7)

                          w2.(s)=ioooo[6 ?] (3.ss)

                     Cv.max == O•19944, 6.-i = 7. = 5.25 (3 .59)
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(h) Design for horizontal motion

      w,,(,) - 1100(1 + S/(2 7r ' 5))(1 + s/(27r • 25))(1 + s/(2T . 4o)) 1 o

61

In this design,

the controllers

    (1 + s/(2T • O.01))(1 + s/(2T • 7oo))(1 + s/(2r . 12oo)) [o 1] (3 60)

               w,,(s)=loooo[6 ?] (3.61)

          Ch-max == O•27432, 6h-i == tyh=3•75• (3.62)

verifying the condition (3.47) , it can be seen that it is possible to design

below cuo = 324.63 [rad/s] (p = 3100 [rpm]) from Fig. 3.14.

    1
  10

Z ioO

>A

t
   -1ee iO

s
9tio'2

ca

   -3
  10

Vertical

Horizonta1

                   -1 O1234                 10                          10                                  10                                          10 10 10
                               FREQUENCY [Hz]

                        Figure 3.14: Magnitude of 7a(Ns)

   Hence we design the controllers within the above bound. In order to satisfy the condi-

tions (3.41),the free parameters are selected as

                          did(s) = Cdid(sl-Adid)-i Bdid (3.63)

where
             AÅëd=[-oad nyObd], Bipd=:[II], Cdid=[Cdi,d Cdi.d]

              cdi,d = aS,a(d2.,+-WOil) {w,E}l(kri,id(]'co,)) + bdJox(Ki,i,(]'tu,))}
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              CÅë2d=alifttlZIIIirlili3-Zb,+-"02){cvoi}it(Ar2'2'dOcx?o))+adck's(A'i2'd(i'Lvo))}

                                 (d = v, r)

Furthermore, in order to satisfy the condition (3.41),the parameters ad , bd of Adid and

CÅëd are respectively adjusted as Table 3.2.4.

               Table 3.4: Parameters ad , bd of Free parameters

                      1000 N1600 8 8
                                                 2800                                        2800                                                        16                                              16                      16oo n- 22oo

Rotationalspeed(rpm) av bv ah bh

2200 tv 2600

26oo rv 2goo

2900 ev 3100

      25

2500
      37

      27

2500 36

      40

   When we obtain the shaped plants, a model reduction technique has been employed.

The procedure of the model reduction is `The Nominal Plant Model Reduction Procedure'

as shown in [44, Procedure 5.5]. The order of the each shaped plant has been reduced from

12 states to 8. As a consequence, the final controller has 36 states. For an example, we

show the frequency responses of the designed controller, which is denoted by Ki3oo, with

wo = 136.14 [rad/s](p == 1300 [rpm]). The singular values of the shaped plants and the open

loop transfer functions are shown in Fig. 3.15. And Fig. 3.16 shows the singular values of

the sensitivity functions. From these figures, we can see that sensitivity approaches zero

at the frequency tuo .

   In this design, we ignored the interference terms, which express the gyroscopic effect,

as p = O. We therefore verify the robust stability of this system against changes in the

rotational speed of the rotor. Let the perturbed plant (p 7C O) be denoted by G, and the

additive perturbation Ap of from G is as follows.

                                Ap=Gp -G (3•64)
Then the robust stability is guaranteed within the the following inequality (3.65) •

inFig.3.i7,thesinguiarvaiua es(` )]a)iytw/il(6i,'97iS-).:k.(A,).t,,,=i67s.s[,(..3d'6/5,i

(p == 16000 [rpm]) are plotted. From this analysis, we can see the closed-loop system iS

stable at ulo S 1675.5 [rad/s].
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3.2.5 SimulationResults

The simulation results based on the derived nominal mathematical model, which are carried

out by using SIMULINK [8], are shown in Fig. 3.18 and Fig. 3.19. These figures show the

displacement on the left side of the rotor when the rotational speed is varied at the rate

of 2 rpm a second. For the comparison, the linear time invariant H.. controller Ki3oo was

employed, where, the controller Is' i3oo has the fixed pole at fo = 1300/60 = 21.7Hz, and

no gain-scheduling is adopted.

   The results with the time-invariant H. controller: Ki3oo are shown in Fig. 3.18(a) and

Fig. 3.18(b), which indicate the response of the rotor when the rotational speed is varied

from 1200 rpm to 1400 rpm. And the corresponding results with the Gain Scheduled Hoo

controller A'  are shown in Fig. 3.19(a) and Fig. 3.19(b), respectively.

   Fig. 3.18(a) and 3,19(a) show the vertical rotor displacement with the variable rotating

speed, and Fig. 3.18(b) and 3.19(b) show the horizontal rotor displacement. From these

simulation results, it can be seen that even if the rotational speed of the rotor varies, the

unbalance vibration of the rotor is eliminated by the proposed Gain Scheduled H. robust

controllers.

CHAPTER 3.ROB UST CONTROLOF MAGNETIC SUSPENSION SYSTEMS

5

4
3

2
1

o
-1

-2
-3

-4
-5

x 10
-5

g
:
-e)i)

-Z[•]}
:;l

pt

v<Apt

9
c>

o 25   50
TIME [s]

75 1OO

1200

-5S4
se.3

-2Ki
EO5-i
<-2
A..3

9-4
A.s

x 10
-5

1250 1300 1350 ROTATIONAL SPEED [rpm]

     (a) Vertical case

1400

o 25    50
"ME [s]

75 1OO

       1200 1250 1300 1350                    ROTATIONAL SPEED [rpm]

                       (b) Horizontal case

Figure 3.18: Displacement versus rotational speed with

1400

the controller Ki3oo

65



66 CHAPTER 3.

e- 5

S4
=oo3

-2.Zi

EO8-i
<-2
al-3

9-4
A-s

x 10

ROBUST CONTROL

-5

OF MAGNETIC SUSPENSION SYSTEMS

o 25   50
TIME [s]

75 1OO

1200

-E
L...-.l

th
-oo

-z;zQ
l;il

L[1

U<-2
Acx.,

ii!2

a-

-5

1250 1300 1350 ROTATIONAL SPEED [rpm]

     (a) Vertical case

1400

Figure 3.19:

x 10
5

4
3

2
1

o
1

2
3

4
5
o 25 50

TIME[s] 7510
  1200 1250 1300 1350               ROTATIONAL SPEED [rpm]

                 (b) Horizontal case

Displacement versus rotational speed with the gain

1400

scheduled Hoo controller

cHAPTER 3. ROB UST CONTROL OF MA GNE TIC S USPENSION SYS TEMS 67

3.2.6 ExperimentalResults

we have carried out experiments using the experimental machine shown in Fig. 3.11. In

order to evaluate the practical effect of this proposed approach, the experimental tests were

run within the limits of the rotational speed from 1000 to 1600 rpm (see Table 3.2.4).

   The designed continuous-time controllers , Ki3oo and Gain Scheduled H.. controller are

discretized via the well known Tustin transform at the sampling rates of 252pas and 415pas,

respectively.

   The controller Ki3oo is linear invariant dynamical controller, hence the computing bur-

den for real-time calculation of control input is only matrix multiplication and addition.

   On the other hand, for the implementation of the gain scheduled H. controller A-(Åë),

however, we have to renew K(Åë) every sampling period by using (3.54) . After it has

obtained, the control input zL is calculated. It takes longer time for the implementation of

K(di).

   All through the experiments, a small weight(20[g]) is attached at the left side of the

rotor in Fig. 3.11 so as to increase the residual unbalance.

   We have measured the orbits of the center of the rotor for a period of O.5s under several

conditions. Fig. 3.20(a), 3.20(b) and 3.20(c) show the results with Ki3oo, and Fig. 3.20(d),

3.20(e) and 3.20(f) show the results with Gain Scheduled H.. controller, at 1100, 1300 and

1500 rpm, respectively. Compared the Gain Scheduled Hoo controller K with A' i3oo, the

results with Gain Scheduled H.. controller A' indicate better performance than the one

with Ki3oo in the elimination of the unbalance vibration except at 1300 rpm.

   However, it is well known that direct switching and interpolation between the controllers

does not capture the dynamic effects and may lead to instability, even if the controllers

can stabilize the closed-loop system for each frozen value in the parameter space. This is

especially true if the scheduled parameter changes rapidly.

   By the numerical simulation, we have confirmed that the closed-loop system is stable

when the rotational speed changes at the rate of 2 rpm/s or less(see Fig. 3.l8 and Fig.

3•19). If the rotational speed changes more than 2 rpm/s, the system became to be instable.

   But magnetic bearing should be able to change the rotating speed, but it does not

need high changing speed from a practical point of view. In this plant, due to the power

limitation and the safety of the induction motor, the rotational speed can not be changed

rapidly.

   From a theoretical point of view, Gain Scheduled H.. controller should completely
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attenuate the unbalance vibration even if the rotational speed of the rotor varies. However,

this requirement for the performance have not been achieved completely. This performance

deterioration may be due to measurement precision of the rotating speed. Gain Scheduled

H. controller relies on the accuracy of the rotational speed so much, and the bandwidth of

the rotational speed that can eliminate the unbalance vibration is very narrow. Therefore if

the signal of rotationai speed includes some errors, effectiveness of the unbalance vibration

suppression would be deteriorated.

   Further investigation and experiments for the measurement precision of the rotating

speed and the scheduled parameter's changing rate, will be made in the future.

3.2.7 Conclusion

In this section, we proposed the gain scheduled H.. robust control scheme with the free

parameter for a magnetic bearing in order to eliminate the unbalance vibration. We

treated the changing unbalance vibration caused by varying rotational speed as the known

frequency-varying disturbance, and adj usted the controller gain according to the rotational

speed of the rotor using the free parameter di of the Hoo controller. The obtained controller

K has high gain at the operating frequency.

   First, the dynamics of the AMB system was considered and a nominal mathematical

model for the system was derived. Next, the conditions for the existence of controllers

were derived, and, we designed the gain scheduled H. robust controllers using LSDP. It

rejected the sinusoidal disturbance of the varying rotor speed.

   Finally the simulations and experimental results showed the effectiveness of this pro-

posed method.
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                    APPENDIX of Chapter 3

e Definition A. " Hoo problem with boundary constraints"

  Find the K(s) satisfying

   (sl) K(s) stabilizes Fu(P, O) ,

   (s2) llPzwll.. S{ e-' := "y,

   (s3) LP..(1'Lv)ll == !IZ,

  where P.. = FL(P, K)

e Definition B. " Basic constraints "

                  LB :== PiÅ},(1'Lo), qZB := P,i.(2'cv)P,,(1'co) (3.66)

where P,Å}, (s)Pi2(s) =O

e Definition C. " Extended constraints "

                      -L,..[LLB], ,p,=[!Prjii)-iiZ] (,.,,)

  where L and !P are row full rank.

Theorem A.
H. problem with boundary constraints {L, ", e} is solvable, iff the following three condi-

tions hold:

  (a) The H.. problem is solvable.

  (b) rank[LLB gP3ll] = rank[LLB]

    AAAA  (c) LL' > 72!pr(ll*fl)-i {p*.



Chapter 4

Robust Control of Active

Pantograph Systems

This chapter is concerned with robust force control for an experimental system of the panto-

gra,ph with a Linear DC Motor. Recently higher train speeds have caused various problems

such as power supply and aerodynamic noise. One of the approaches to solve these prob-

lems is to optimize the overhead wire-pantograph system. The low-noise pantograph is now

being researched and developed, and needs active force control to stabilize the current. In

this chapter, we use a Linear DC Motor (LDM) as an actuator of the pantograph in order

to control the contact force between the overhead wiring and the pantograph. An exper-

imental machine has been designed and developed, and has an oscillatory characteristic.

We designed the robust force controller for the system in order to improve step response

and the frequency-domain performance by considering model parameter perturbation and

unmodeled dynamics.

   At first, the experimental machine and the digital controller of the active pantograph

system are introduced. Next, its linearized model is formulated in a state-space form. Then,

pt controller is designed by considering parametric uncertainty and unmodeled dynamics•

Finally, t/he several experiments are carried out so as to evaluate the control performance

of the designs, where the proposed control scheme is compared with the conventional Hoo

control.

   In section 3.1, uncertainties caused by a change of the operation point is written as

just a unstruct/ured uncertainty, in this chapter, however, I express the various types Of

uncertainties as structured in order to reduce conservativeness of the robustness evaluation•

72

cHAPTER4. ROBUSTCONTROLOF ACTIVE PAIVTOGRAPH SYSTEMS73

4e1 Introduction

Recently the research for high-speed train has been done, especially for pantograph to

supply electric power[26]. According to high speed, a resonance frequency of overhead

wiring has become increasing, hence the present passive pantograph can not follow its

vibration. Further disturbance from wind and rain, and vibration from the train body

disturb a pressure between an overhead wiring and a pantograph, which cause problems,

e.g., injury of power supply, and abrasion of pantograph. Hence the research for active

controlled-type pantograph has been started in order to regulate a pressure between a

pantograph and overhead wiring[81][38]. T-type pantograph has been developed to reduce

the noise which was made by wind pressure. This pantograph has a limited surface area,

hence it is considered to be effective for reducing the wind noise[42].

   In this research, our objective is to control of a simply constructed T-type pantograph

with a linear direction motor(LDM) as an actuator, especially in order to regulate a contact

force between a pantograph and overhead wiring in spite of various disturbance.

   Linear direction motor has a characteristic as follows: simple architecture, quick motion

is available, fine servo characteristic, and so on[37]. On the other hand, motor does not

have servomechanism by itself, we have to do feedback control by using sensor.

   Up to now, researches of pantograph control has been done by using an experimental

system of pantograph [48][51][57]. In these research, LQ and H.. Control[25] for design was

used. Pantograph is suffered by the force of the natural wind and rain, and wind caused

by passing each other and tunnel. Further sharp drop in rail level brings disturbance, it

should be robustly controlled. And it has an oscillating characteristic, so it needs to possess

robust performance on the frequency range. Until today, research for active pantograph

[48][51][57][85] has been done, but the resulting robust performance is not enough at the

resonance frequency. Further, at the resonance frequency, motion range of mover become

wide, that varies the value of model parameters, especially electro-force constant K..

   Hence, we measure uncertainties, model variations, and unmodeled dynamics by exper-

iments. We setup the robust performance problem by using ps-synthesis for those uncer-

tainties, and improve a frequency characteristic for disturbance. There are several reports

which utilize pa-synthesis [34][78][79][24], and show the effectiveness of pa-synthesis. In this

research, we focus on parametric uncertainties caused by mover, and unmodeled dynamics,

and measure it by experiments and clarify a meaning of physical uncertainties. At last,

several experimental results show the effectiveness of this design methodology.
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4.2 ExperimentalEquipment

4.2.1 PantographExperimentalEquipment

A rough sketch of T-type pantograph experimental machine is shown in Fig.4.1. This

pantograph is in the shape of capital t from the front, as its name, it moves vertically

to train and overhead wiring. It has small front area against a present diamond-shaped

pantograph[26].

     Beam

Moving Coil Sensor

                                                       Spring 2

               Spring 1 spring

                                                      LDM

                                                     S tator

                         Linear Bearing Permanent Magnet
                                                (SmCo)

                        Figure 4.1: Experimental System

   The system is formulated mathematically by the differential equations of overhead

wiring, pantograph, train, and all their connections[85][43]. As an actuator, LDM is em-

ployed, where this LDM is included Moving Coil Type LDM, especially it is called Voice

Coil Motor(VCM) in it. This type of LDM is characteristics of good servomechanism•

Mover goes up and down along the rail when an electric current is sent to LDM. By con-

trolling this current, we can regulate the pressure to be constant (20[N]) between beam

and mover under no disturbance. Our objective is to control the pressure to be 20[N]

   --against/  various disturbance. LDM is attached on stater, and stater is supported by four

springs at/ the corners, and beam is supported by spring at the tip, hence beam and the

stater moves oscillatory. Force sensor is attached at the tip of the mover. The beam is

correspondent with overhead wiring and the mover with pantograph, and stater with train
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                          Figure 4.2: Motion of the LDM

body, respectively.

   The state of movement of this system is shown in Fig. 4.2.

   In the real railroad system, the mover should be a pass of a high current, it is dificult

to attach the force sensor at the tip of the mover, it is unlikely to be realized. Making it

fit for practical use, a force sensor should be attached at the other place which does not

contact the overhead wiring, or we should not employ force sensor and utilize the state

estimator (like Kalman filter).

4.2.2 DigitalControlSystem

Configuration of Digital Control System is shown in Fig.4.3. We utilize the multi-input,

multi-output digital control system AC-100/C (Integrated Systems Inc.) for the real-time

control. AC-100/C is manipulated through Ethernet by the host computer; VAX station

3100 M76(DEC) CPU of AC-100/C is 80386(Intel) whose maximum clock is 20[MHz],

and instruction cycle is 100[ns]. We employ Computer Aided Design(CAD); MATRIXx,

System-build as an implementation tool of the controller. Further, this system has an I/O

mterface; 8channel 12bit-A/D, and D/A converters, respectively.
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digitalcontroller AC1OO

D/A Power
Amp

Experimental
System

:x

Intel386
},x

AD LPF Sensor

VAXWorkstation

MATRJXx

Figure 4.3: Configuration of Digital Control System

4.3 Modeling

In this section, we derive a mathematical model of the controlled plant. Fig. 4.4 is a

simp}ified model for the modeling of the Fig. 4.1.

   In this system, coil current is relatively small, hence a flux density made by permanent

magnet is rather bigger than one by coil current. It is reasonable if we assume the flux

density is constant at center of the permanent magnet[85][37].

   When the mover is at the end of the permanent magnet, flux density should be small,

as a result of it, electromagnetic force is getting down, control performance should be

deteriorated. In this section, at first we derive the nominal state-space model of the plant,

and further quantify the parametric uncertainties caused by the motion of mover, and

neglected dynamics.

4.3.1 Differential Equation of Beam, Mover and Stater

In Fig.4.4, variable xi, x2 is positive it it tend to upward, and they are derivative from the

steady state. If the beam is on a parallel with the baseline, xi = x2 == O. The differential

equation of the beam is written as follows
                                   ,
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                  Jdd2ti = -M,gL, + f,L, -4Is',L,2e -4D,L,2 :iil, (4.1)

where J is inertia, and it is expressed by J = 4MiLi2/3. The deviate angle of the beam;

0 is very sma}1, we assume LiO = xi, then we obtain the following equation (4.1),

                     gM, dd2i' =-Mig+f, -4Is-ixi -4Di ddXti (4.2)

   Differential equations for mover and stater are written by using thrust of LDM: f.,

respectively.

                    d2xi
                 M2 dt2 =-M2g'fc+fm (4.3)
                    d2x2                                                           dx2                 M3 dt2 = -M3g-fm-K2(x2+X2)-D2 dt (4.4)

From equation (4.2) and (4.3), the output pressure f, is represented by equations of the

form

                        MiM2g                                 4Mi fm                                           4M,                                                         dx1
                  fC=- 3M + 3M +M(KiXi+Di dt ), (4.5)
where M =4Mi/3 + M2. The thrust of LDM f. is written as

                                 fm=Ka(I+i), (4.6)
   where I is the steady coil current,i is a deviation from I. A'. is a thrust constant

of LDM, where K. == 2NBT, ?V is turns of coil, B is flux density, T is depth of LDM.

Equation of electric circuit is given as follows,

                              di                                                dxl dx2
                     E+e == Liil+R(I+i)+Ka( dt - dt ), (4•7)

where, E is steady state voltage of coil, e is a deviation from E, L is inductance of coil,

R is resistance. The third term of the right side of equation (4.7) is velocity electromotive

force.
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Figure 4.4: Simplifi ed iModel of the Experimental System
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4.3.2 state-space model

From equations (4.2), (4.3), (4.6), if we cancel f,, then we obtain follovv'ing equation.

             MditX,' = -(Mi + M2 )g + Isr.(I+i) -4Kixi -4Di ddXt' (4.8)

In the steady state, the following three equations hold.

                                      E= RI (4.9)
                              (Mi+M2)g == K.I (4.10)
                        M3g+Kal+K2X2 == 0 (4.11)
From equation (4.9), (4.10), (4.11), rearranging (4.4), (4.8), we have

                       d2 x2                                              dx2                    M3 dt2 2dt (4.12)                            = -Kai-K2X2-D
                       d2 xi                                               dx1                     Mdt2 = Kai-4Il-iXi-4Di dt• (4.13)

We define vi := dxi/dt, v2 := dx2/dt, from (4.5), (4.7), (4.12), (4.13), we derive the

following linear time-invariant state space form,

                            dr = Ax+Bu, (4.14)
                            y= Cx, (4.15)
where

A=

C=
Nominal

[z xi vi r2 v21T, u -

  -E o -!,51i o !.i}L

   OO 001  i<tft},,-ltVE}IIx,,-i4vfl2,,o o,

   OO OOI -tht3o o-tht3-iDIclt,

[ftSi{l7kllV( ltlf, ft!(XS(l]IV -1,{ f42L{XlzYiM,? oo]

model parameters of experimental s

B- [t OOo

                                     ystem are probided in

these nominal parameter's values, we can easily derive the nominal A

O]T,

Table 4.1. By using

, B, C. From these
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matrices, the transfer function G(s), which is from the control input ze to the output y is

as follows.

           G(s) == C(sl-A)-iB (4.16)                     63.27 • (s + O.3846 Å} ]'95.27)(s + 4.348 Å} j'22.67)

                 = (s + 42.50)(s + 8.289 Å} ]'25.21)(s + 27.30 Å} j'67.00)

From equation (4.16), the plant is stable and has a very oscillatory characteristics. This

plant model has oscillation modes at 22.7[rad/s], 95.3[rad/s] which are caused by spring 1

and spring 2, respectively. Frequency Response of this transfer function (4.16) is shown in

Fig. 4.5.

                  Table 4.1: Nominal Parameters of the Plant

Symbol Parameter Value Unit

Ml MassofBeam 0.195 kg

rv12 MassofMovingCoil O.58 kg

M3 MassofStater 4.6 kg
.lls'

1 SpringConstant1 590 N/m
Is'

2 SpringConstant2 2450 N/m
Dl DampingCoefficient1 O.05 Ns/m
D2 DampingCoefficient2 40 Ns/m
It'

a MagneticCoeMcient 19.42 N/A
L Inductance O.095 H
R Resistance 9.95 9
B iMagneticFluxDensity O.38 T
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4.3.3 Parametric Uncertainty and Neglected Dynamics

When the beam moves, mover shakes against stater, and model parameter of the plant

varies. Furthermore we consider the neglected Iinear dynamics of the plant. In this section,

we measure these two types of uncertainties by experiments.

Perturbation of Model Parameters

When the distance between the stater and beam, mover sticks out of permanent magnet of

stater, then the thrust goes down. Inductance of coil, resistance and spring constant vary

according to the motion of mover. In this subsection, we measure and decide the limit of

parameter variation. Parameter perturbations caused by the motion of mover and stater

are shown in Fig. 4.6.
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   From these figures, we decide the limit of the perturbation as Table 4.2. We can see

that a perturbation of electromagnetic thrust constant A'. is biggest. Here we did not

measure a perturbation of parameter Di, and we assumed that a limit of perturbation of

Di is same as one of parameter Isl.

                        Table 4.2: Parameter Variation

Parameter

Variation[%]

Is'.

15

L10 R5 Is-1

12

Di

12

Uncertainties caused by neglected dynamics

In this subsection, we consider the uncertainties which was not contained in equation (4.14),

(4.16). A real transfer function G(s)...i was measured by experiments. For measurement,

FFT CF-6400 (Ono Sokki) was employed.

   Uncertainty caused by unmodeled dynamics: A..d is written as output uncertainty

that follows.

                            Great - G(s)
                    Aumd :=                                       ,IA(jw)ISIr(jw)l (4.i7)                               G(s)
   A..d is plotted with solid line, and the upper bound of A..d r(2`w) is plotted with

dashed line in Fig. 4.7, where r(j'Lv) is decided as

                         r(1' Lo) =6• 10-3(1+2.1 .`Vo.1 ). (4.18)

This is the lst order improper function.
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4.4 ControlSystemDesign
In this section, we design a controller which satisfies the robust performance specification

by using pa-synthesis[61] against uncertainties considered in the last session.

4.4.1 Reviewofpa-synthesis

                                A

K

                  Figure 4.8: Closed-Ioop with Uncertainty

  In Fig.4.8, for T.. : : Fi(G, A-) E C"Å~", the set A E C"Å~" whose structure is block

diagonal is generally defined as,

        A :== {diag(6i lr,,' ' ', 6s lr., Ai,' ' ', AF)l6, E R; A, E CMjXM' } (4.19)

               SF              i.Åí1 rz +j;.1 mj =n

Now, the structured singular value pt is defined as follows

                                           '
                                     1            pa"(TZW) := min{a...(A)IA E A, det(I- AT..) = o}' (4'20)

unless no A E A makes det(I - AT..) = O, in which case, paA(Tz.) := O•

  If Ft(G,K) is stable, then, for all A, the system in Fig. 4.8 is internal stable and,

llFu(Tziu,A)llco < 1 if and only if the structured singular value p satisfies the inequality,

                            ptA(Tzw)<1• (421)
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4.4.2 Construction ofthe Generalized Plant

 Introduction of parametric uncertainty

 Based on Table 4.2, we select the uncertain physical model parameters as K.,L, R, Ki, Di.

 And we define that the lst order parameter Pa with uncertainty is expressed by

                   Pa=(1+64)Pao, 6:== {616ER, I61 f{l 1}, (4.22)

where Pao is nominal value, C is the bound of perturbation. Further, we treat over 2nd

order parameters R/L, K./L, 1/L as lst order parameters.

   Now we can calculate the generalized plant P which is considered parametric uncer-

tainties as equations (4.23), (4.24). And its block diagram is shown in Fig. 4.9.

                      x = Ax+Mwd+Nw.+Bu
                       y = Cx + Owd
                                                                  (4.23)
                      zd == Kdx

                      zu == Kuu

                    A :== {di ag [6dj 6. ] l6dj, 6. E R,
                                                                  (4.24)
                      il 6dj' ll oo < 1, ll 6u ll oo < 1}(.7' = 1, ' ' ', 6),

where

           -1 O -11 O O
            oo ooo o
     M= O 7[i,;;, OO-th,;,-7Iil,;;,, O==[O ste;,;, OO i4tif3X, i4til{}sc,],

           oo ooo o
           O -th, o o o o

                              K, = R,.}Ci',,

                                            Eo ooo

                                            K. o ooo
       "A[rd=diag[4?,.6A-.C,Ei'ga6,Ei•tG'aeK,CD,], -Rrd== oO oO {Si oO ,I7:zf,sO'

                                            O Is'i OOO
                                            O O D, OO
                          A-v A N 1                     K.=Is'.k'., Ar. == 6t , A'. = [z

    AAand, Kd, Is-. are bound of parameter perturbations[%].
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  Figure 4.9: Block Diagram of the Closed Loop System with Parameter Uncertainty

                               .Introduction of Neglected Dynamics

In this section, we utilize A..d which was derived in the previous session, and treat it as

unstructured multiplicative output uncertainty, and we guarantee the stability against this

uncertainty. This A..d includes the uncertainties of K2 which is spring constant of stater

and friction of linear bearing, and so on.

  I ow we utilize its upper bound r(]'tu), and select the weighting function W2(s) as

following lst improper function,

                             W2=ao+ctzis. (4.25)

Specification for Contro} Performance

To improve the control performance, we introduce the weighting Wi for sensitivity function.

The weighting function Wi should have integral property to reject disturbance. The state

space model of Wi is defined as,

                         thwi = AwlXwl + Bwl ZLwl,

                         Ywi = CwiXwi+Dwiuwi• (4.26)

Generalized Plant

From equations (4.23), (4.24), (4.25) and (4.26), the final generalized plant ]P is as follows,

and its block diagram is shown in Fig. 4.10, where we transfer the state variable to contain

the pressure f. in state variable.

L
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                Figure 4,10: Block D gram of Generalized Plant

4.4.3 ControllerDesign

After some experimental trial and error, in order to reject the disturbances at low frequency

baRds, the performance weighting function Wi is chosen as

                                        5.0          Wi(S) s s s s• (4•31)                   (1 +                             )(i+                                        )(1+                                                    )(i+                                                               )
                       2T•1.0                                  2T•8.0                                             2T•8.5                                                         27r • 9.0

   From Fig.4.7 and (4,18), we choose the unstructured uncertainty weighting function

W2 for neglected uncertainty as

                     W2 (s) =r(s) =6• 10-3(1+ 2. 9o.1 ). (4•32)

Then, we calculate the controller K which satisfies (4.21) and (4.29) by using D - K

iteration[61] approach. On each iteration, we approximated D matrix as an over 2nd order

real rational function, and after five times iteration, we obtained final controller to satisfies

equations (4.21) and (4.29) which achieves robust performance specification.

   The order of this controller is 52 states, hence we employed balanced truncation method,

and obtained 10-state fiBal controller pa. Of course, we confirmed K. met the spec• The
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transfer function of the final controller K, is written in equation(4.33) and shown in Fig.

4.11.

               AA   Here, ilDsFi(P,K.)Ds-'il.. = O.885, and suppaA(Et(P,K.)) = O.851. And the fre-
                                          wquency responses of the maximum singular value and the structured singular value pa with

the controller Ki which was obtained lst iteration and the controller K. are shown in

Fig.4.12.

                            -, (s + 26.5)(s + 3.64 • 10")(s + 5.40 Å} ]'lo6)
           Is-.(s) == 1.75 • 1 0
                              (s + 6.01)(s + 5.36 • 10`)(s + 5.77 Å} 2'23.0)
                      (s + 8.93 Å} 1'28,4)(s + 16.7 Å} j' 74.3)
                     Å~ (s+6•69Å}1'104)(s+7.o4Å}]'log) (4•33)

                 1o2

               vOio'
               e
               'e
               :P o
               Eio

                 1 o'i
                  loO loi lo2 lo lo                                  Frequency [rad/sec]

                  50

               T               8
               Iii'
               ei}
               Z -50
               i{ii

                -1OO                  loO loi to 10 10                                  Frequency [rad/sec]

                Figure 4.11: Frequency Response of Controller Kpa

4.5 ExperimentalResults
In this section, we evaluate the performance and stability of the obtained controller Isia

against various force disturbance, compared with conventional H.. controller[57].

4•5•1 H.. controller based on differential game theory

For a comparison, we introduce H. controller based on differential game theory[82][57].

This controller was designed to improve a step response in the time domain[57]. We define
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                                                               'it Ar g..,. The transfer function of the controller Isr g.., is written in (4.34),

response of K. and Kg.., are plotted in Fig.4.13, by solid and dashed line,

                    . 529.0 • (s + 3.14)(s + 4.71)(s + 5.54 Å} 1'22.7)
           ISrgame(S)

and frequency

respectively.

                        (s + O.625)(s + 2.05 Å} j'22.5)(s + 2.79)(s + 6.42)
                          (s + 38.2 Å} 7'67.9)(s + 54.7 Å} 2'16.3)
                        Å~(s+85•7)(s+496)(s+lo.4Å}1'gs.4) (4•34)

   Kg.., has a higher gain at the low and middle frequency range, and lower gain at the

high frequency range, than K.. On the other hand, a phase of K. Ieads at the middle and

high frequency in comparison with Kg... which shows robust stability.

4.5.2 Experiments

Controller design was done in continuous time domain, then we have to discretize obtained

controllers, because we utilize digital controller. Obtained controllers was discretized by

the well-known Tustin transform as

                                    2 z-1
                                S== T',+1) (4.35)
where sampling rate is 1[ms].

   We gave `2.5[N] force disturbance at the output of the piant all through the experimentS,

where reference force is 20[N]. It is said that system should be controlled up to about 20 [HZ]

;

:

j
I

l
i

1

1

!
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                 Figure 4.13: Frequency Response of Kpa and A-g..,

to control the real active pantograph. We consider this specification, we applied following

four types of disturbance to the plant in order to evaluate control performance.

  (i) Step disturbance

 (ii) Sinusoidal disturbance (25.1[rad/sec])

 (iii) Sinusoidal disturbance (75.4[rad/sec])

 (iv) Sinusoidal disturbance (100.5[rad/sec])

   Frequency of the disturbance (ii) and (iv) are both resonant frequency of springs, and at

this point, mover and stater would vibrate extremely. Each experimental results is shown

in Fig. 4.14, 4.15, 4.16, 4.17.

4.5.3 Consideration

The results of experiments (i) are almost same with both controllers, however, the response

of K. shows that a little steady state error is left.

   This result with K. was caused by the low gain of Is'. at the low frequency. Improvement

of the robust stability of Is' , made its gain Iower at the low frequency.

   The results of experiments (ii) show good disturbance attenuation property of both

controllers Kg... and K"•
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   In experiments (iii) and (iv), both mover and stater vibrate extremely, distance between

mover and stater is getting long. According to this motion, parameter perturbations get

largest of all situations.

   Especially on experiment (iii), compared with both controllers, pa controller K" atten.

uates disturbance, however, H. controller Kg.., can not follow the speed, and amplifies

vibration. Further, Frequency response of disturbance attenuation property is shown in

Fig.4.18. This figure indicates K, presses the vibration peak at the 75[rad/s].

   And we can see that controllable frequency range of Is'g... is only 100[rad/s], but one

of K. is wider, and the limit is about 180[rad/s]. As a result, pa controller sacrifices the

performance at the low frequency, and improves performance and stability at the middle

and high frequency, then we conclude this pa controller is a well-balanced in the frequency

range.
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4.6 Conclusion

In this chapter, we improved the control performance of active pantograph system which

has very oscillating property, at the resonance frequency by applying pa-synthesis approach.

   We considered parametric uncertainty and uncertainty caused by unmodeled dynamics,

and measure their quantities, and we expressed them as structured uncertainties via LFT
                                                                              '
setup the robust performance problem. And then, we solved the above problem, designed

a robust controller.

   Finally, we showed several experimental results, and indicated the effectiveness of pro-

posed control system design methodology by comparing conventional H.. controller with

time and frequency response.



Chapter 5

Robust Control of Robot

Manipulators

Robot dynamics is highly interfered, nonlinear, and complicated. Experimental evaluations

of H../pa control to nonlinear plants are now expected. Hashimoto and Asai treated H.

control or pa synthesis of a robot manipulator, but dynamic couplings between joints were

not considered, and the uncertainties caused by modeling errors was treated the external

disturban ce [2 7] [4] .

   In this chapter, I apply robust H../pa control to robot manipulators and evaluate its

effectiveness. We guarantee the robust stability of the robot manipulator control system

aga,inst model perturbations and dynamic couplings.

   Our approaches taken here are as follows.

   e pa-synthesis with exact linearization (Section 5.1)

   e constant scaled H. control considering structured uncertainties (Section 5.2)

   e linear parameter varying representation approach (Section 5.3)

5.1 pmSynthesisoftheRobotManipulatorUsingEx-
       act Linearization

In this section, I evaluate the controller performance depends on the sampling period,

and indicate high-speed processing system are indispensable for a sufiicient achievement

of H./pt control. pa-synthesis and high-speed DSP are utilized in order to achieve robust

performance of the trajectory tracking control for a robot manipulator.

                                     96
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   First, we consider the dynamics of the robot manipulator, and derived a linear mode}

as well as the uncertainties for the plant. Then we construct a generalized plant considered

the time delay, and setup robust performance objectives. After that, we apply pa-synthesis

to robust control for a real robot manipulator. We design control systems by D - Is' itera-

tion approach, and three controllers designed in consideration of time delay are obtained.

Finally, the experimental results show that high-speed processors can bring out the high

performance of the designed controllers.

5.1.1 Introduction

 The latest digital signal processors have high-speed and high-precision performance, and

 they cut time delay and quantization errors of real-time control. This contributes the

 development for practical use of H../pa control theory[61][74]. If you do Hoo/pa design,

the order of an obtained controller would be far higher than the order of a model for the

plant. And when you control robot manipulators, you have to deal with nonlinearities of

dynamics. In order to implement high order controllers or to compensate nonlinearities

of the plant dynamics, we let processors do a tremendous number of multiplication for

computing of control inputs. Implementation of high-order controllers and/or nonlinear

compensations would be so complex that usual digital controllers could not realize designed

controllers very well. The latest digital signal processors have high-speed and high-precision

performance, and they cut time delay and quantization errors of real-time control.

   Here we particularly consider a time delay. The sampling period of controllers mainly

depends on the time delay which includes a hardware specification, controller computation,

and so on. High-speed processors can bring out the high performance in the designed

controllers. Even if you design a complex controller which may have a good performance,

an usual slow processor could not realize its performance [28]. In this section, we utilize

pa-synthesis and high-speed DSP in order to achieve robust performance of the trajectory

tracking control for robot manipulators. Further, we evaluate the performance of the

controller depends on the sampling period experimentally.

   The remainder ofthis section is organized as follows. At First, we consider a dynamics of

the robot manipulator, and derived a linear model as well as the uncertainties for the model.

Next, we construct the generalized plant which is considered the above uncertainties. Then,

we design control systems by D - A' iteration approach, and three controllers designed

in consideration of time delay are obtained. Finally, we carry out experiments using a
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DSP. The experimental results show that high-speed processors can bring out the high

performance in the designed controllers. Robust performance can be realized owing to the

latest high-speed digital signal processors.

5.1.2 Robot Manipulator Dynamics and Uncertainty Modeling

We know that the ideal dynamics for an n-link manipulator derived from the Euler-

Lagrange equations is shown as follows [10].

                              M(q)ij+h(g, 0) -u (5.1)

where q(t) E Rn denotes the generalized coordinates which represents joint positions,

M(q) is a positive definite n Å~ n generalized inertia matrix, and h(q, a) represents coliolis,

centripetal, gravity forces, moments and frictional forces. The control input iL E R" denotes

the vector of generalized input forces. Let

                           gd(t)-(qg(t),..., gg(t))T (s.2)

represent a desired path in joint space that we would like to the manipulator to track. We

assume that qd(t) is continuously differentiable with qd, 4d, ijd. For the problem of tracking

the desired trajectory (5.2) and its velocity, we define the error vectors

                        e= [ei, e2]T =[g-qd, Q- ad]T. (s.3)

Now (5.1) and (5.3) give the error dynamics shown as follows.

                                   el=e2 (5.4)
                          e,=-M-ih+M-iu- ijd (s.s)
We replaced the problem of path tracking by one of stabilizing the system (5.4) and (5•5)

m error space. Next, we define an implementing model of the ideal dynamical model (5•1)

as

                              AA                             M(q)ij+h(g, q) =u (s.6)
      AAwhere M and h are the available models of M and h, respectively.

   Given the plant (5.1) and the available model (5.6) we shall implement a feedback

control law of the following form.

                         iL (t)= M(G)(ijd+v)+A(a, a) (s.7)
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Equation (5.7) represents the familiar inverse dynamics a}gorithm, but applied to the avail-

able model rather than to the real physical model, and moreover, it uses the measured and

hence noisy values of the state. Substituting the control law (5.7) into (5.5) and (5.6), we

have

                                    el :e2, (5.8)
               e, = -M-ih + M-i (?s2f (a)(ijd + v) + h(G, Q) + 2L d) - ad. (s.g)

The equation (5.9) is rewritten as follows.

                        e2 == v+ny (5.10)
                         n= E(ijd+v)+M-'(Ah+ud) (5.11)

where

                     E := M-i A2t -I, Ah == ft (g, d) - h(q, g) (5.12)

Finally, the error equations (5.8) and (5.11) may be written in the following state-space

form:

                              e= Ae+B(v+n) (5.13)
                              y:= Ce (5.14)
where
                e-[,e,'], A=[,O oi], B-[9], c-[i o].

Next, we consider the system (5.13), (5.14) when the control signal v is the output of a

linear controller applied to the measured tracking error e. Let the transfer function of

the plant G(s) = C(sl- A)-'B. Note that G(s) represents a set of uncoupled double

integration. The system (5.13), (5.14) may now be represented by the block diagram of

Fig. 5.1, where the lower loop has been closed by a controller Isr (s) which is to be designed.

From equation (5.12), we define the function H(•) : Rn Å~ R" Å~ R" . R" as follows.

                   H(gd(t),q(t),Q(t)) = n-Ev (5.15)
                                     == Eijd + M-i(Ah + ud).
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5.1.3 ControlSystemSynthesis

For the control system design, we employ the pa-synthesis in order to achieve robust per-

formance of the trajectory tracking control. A computing environment pa-analysis and

synthesis toolbox [6] with MATLAB is then employed to calculate controllers.

Construction of the Generalized Plant

Consider the block diagram in Figure 5.1. We must design a robust controller to stabilize

the closed loop system for the function E and fl which have uncertainties. Furthermore
                                                                          ,
we would like to design a controller to maintain performance against disturbances and

noises. These control objectives should be fitted in pa-synthesis formulation[6][74]. First,

we employ the following assumptions for the uncertainty function E and H.

Assumption

   e We treat the functions H and E as a linear time invariable uncertainty depend on

     y(t) and v(t), respectively. And they can be written using pH E C"Å~", pE E C"Å~",

     VLXE E CnXn, VVH E CnXn, AH E CnXn, AE E CnXn, as follows.

                          H=pHAHWH, llA.Il.Sl. (s.16)

                          E= pE AE WE, ll A. ll. sl l. (5.17)

pH, pE, WE and WH are the weighting functions for AH and AE. Rearranging the block

diagram in Fig. 5.1 with these weighting functions, we can construct the generalized plant

shown in Fig. 5.2. The fictitious uncertainty block Ap (llApll.. S 1) is introduced in order

to  fit the above control objectives exactly in the pa-synthesis framework. The appended
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uncertainty block Ap is used to incorporate the robust performance calculation. pp E C"Å~"

and Ap E CnX" are the weighting function for Ap. pH, WH, pE, WE, pp, VVp are all design

specifications as well as design parameters.

   Then the block diagram TD represents time delay which is given by,

Time delay

                                TD (s)=Ie-ST, (5.18)
   where T is a sampling period. The open-loop interconnection P which includes TD in

Fig. 5.2 is often referred to as the generalized plant. The problem to be evaluated in this

section is as follows.

Problem

            The controller performance depends on the sampling period.
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5.2. We first define a block structure A

:ApECnXn,AEECnXn,AHECnXn .

as

 (5.19)
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r ext, we treat the consider a generalized plant P partitioned as

                               p=[lllllll Åíl,2] (s.2o)

Obviously, we can get a lower linear fractional transformation JZli(P, K) on P by K

                    .1 li (JP, A') := I),,+P,,K (I-.P,,A-)-' P,,. (s.21)

   Then, robust performance condition is equivalent to the following structured singular

value test

                          sup paA (Ji Ti (P, AJ) (]to))<1. (5.22)
                          wER
   For A(I E CnX", paA(M) is defined as

                                          1               paA(M) := min{o(A) :AEA, det (I-MA) ., o}' (5'23)

   unless no A E A makes I - MA singular, in which case paA (M) :== O.

5.1.4 Application of pa-synthesis for a Robot Using DSP

In this section we apply the previously described pa-synthesis methodology to design a

control system for a parallel link robot manipulator.

Parallel Link Robot Manipulator

A simple parallel link robot manipulator with two degrees of freedom is utilized for exper-

iments. It is shown schematically in Fig. 5.3. Each joint is actuated by an 11 watt DC

motor through reduction gear. The reduction ratio is 1:8. Two incremental encoders are

used to obtain the rotating angles of each joint. A mass of the robot manipulator system

is about 2 kg.

Linearized Model

Consider the parallel link robot manipulator shown in Fig. 5.3. Here qi and g2 denote the

angles of the link 1 and link 2, respectively. Let

                                g:[qi q2]T (s.24)
denote a generalized coordinate representing the joint position. The dynamics of this 2-link

manipulator can be expressed as

                             M(g)ij+h(q, a) =it, (s.25)
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 where
  rvi(q) = [,, ,.,(Cq', . q,) C2 COS(,9,,2 ' g')], h(g,a) = [:.C,2 ,Sl."((qq,2 : gqi))li2' ++ ,C,` ,C.O,S gq,i],

                                 u=[Tl, 72]T.

    The values of constants in (5.25) are as follows.

  [ ci c2 c, c, c, ]= [ 6.78 Å~ 10-3 '- 4.23 Å~ 10-4 1.61 Å~ 10-3 7.43 Å~ lo-2 7.12 Å~ lo-3 ]

   According to (5.13) and (5.14), the state space representation of the experimental

manipulator is easily derived. This robot manipulator has 2-links, when we do real-time

cont,rol with this manipulator, however, we treat them independently. Hence the state-

space representation for each link is expressed in the following form.

                            th=Ax+Bv, y=:Ox (s.26)
where

   x= [li,], v= v,, y= q, (i = i, 2), A= [oO oi], B= [?] , o= [i o].

DSP-based Digital Control System

The experimental machine is controlled by a digital controller DSP-CITpro (dSPACE

GmbH) [15]. The configuration of the DSP system is shown in Fig. 5.4. This system

is mainly constructed with DSIO02 which is a processor board, DS2101 which is a 12-bit

D/A converter board and DS3001 which is an incremental encoder board. Processor board

DSIO02 uses a DSP TMS320C30 which can execute one instruction in 60 ns with 32-bit

fioating point arithmetic, and D/A converters have the maximum conversion speed of 3 pas•

All programs are written in C language under the DOS/V environment. We utilizes the C

code generator which convert MATLAB data into C language. The motor driver amplifies

control signals twice to actuate DC motors. This DSP system has enough processing s

peed for the real-time control of this robot manipulator.

D-K iteration

The D - Is'  iteration involves a sequence of minimizations over either K or D while holding

the other        fixed, until a satisfactory controller is constructed. First, for D -
                                                                   I fixed, thecontroller Is'i is synthesized using the well-known H. optimization methodT Let G = G,
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                         Figure 5.4: Digital control system

and P == Pi. Pi involves the linear model G' and all frequency weighting functions Wp,

VVE, l7VH, pp, pE, pH and time delay TD. First of all, we ignore the time delay TD, that is

                                    TD :== I. (5.27)
   After some preliminary design experience, the weighting functions are chosen as follows.

                          1.1 Å~ lo8
               WP = 1+s/1Å~10-4'                                                  pp =1.0Å~10-2 (s.28)

                              -gl + s/1.0 Å~ lo-3
               WE : 3.6Å~10                                               , pE == 2.5Å~103 (5.2g)
                                   1 + s/34.5

               w'H = i.oxio-gi+i/t',O/ioiO-3, pH=i.oxio3 (s.3o)

First, the following H.. control problem yields the central controlier Ki.

                         Il.7 Ti (P,,I•s.',)li.<">t,, ">t, =1.3. (5.31)

There are several algorithms for the calculation of the Riccati equations and we employed

the standard Schur method. After second iterations, this value ty was reduced to 1.0. The

following H.. control problem

                         ll Fi (P2, K2)li.<72, h= 1.0, (s.32)
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yields the controller K2, where P2 denote the second open-loop interconnection structure.

Robust performance condition is now achieved with the pt controller Is'2.

Time Delay and Performance

The sampling rates of controllers mainly depends on the time delay which includes a

hardware specification, controller computation, and so on. In this section, we evaluate

the relation between performance and sampling period. We calculate the maximum sam-

pling period T which achieves the robust performance specification (5.22) by iteration

with above design parameters (5.28), (5.29), (5.30). The current controller K2 has 9 or-

ders, and time delay function TD is approximated to the lst order transfer function by

Pade approximation[35]. A prospective controller K2 will be 10-order one for each joint.

Consequently, we obtain the maximum sampling period T..., where

                               Tmax=`250 paS• (5•33)
If T i's great,er than 250pas, we could not find any controllers to achieve the robust perfor-

mance condition. VVrith the digital control system depicted in Fig. 5.4, the fastest sampling

rate Tmi. which was realized is

                               Tmi.=140 pas. (5.34)
Hence as the sampling period T, the following three constants T., Tb and T, are chosen.

                    o T. == 150pss<250pas, 72=1.00 (5.35)

                    o Tb = 210pas<250pas, 72=1.00 (5.36)

                    e T. = 350pas>250pas, 72=1.03 (5.37)
The resulting lO-order controllers

                            o Is'., o Kb, e Is',

are obtained respectively. The controllers K. and A'b are satisfied robust performance

condition, on the other hand, The controllers K, does not achieve robust performance•

These controllers K., Kb and K, are obtained as results of the second D - K iteration•

5.1.5 ExperimentalResults

The designed controllers A'., A'b and K, are continuous-time systems. In order to iM'

plement these three controllers with the digital control system shown in Figure 5•4, we

discretized them via the well known Tustin transform.
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   The obtained H.. controller K, achieves robust stability condition, and pa controller

K. and Kb achieves not only robust stability but also robust performance specification.

Hence, we will evaluate robust performance as well as robust stability of the closed-loop

system.

   The manipulator succeeded in tracking of the specified path using the controllers Is'.,

Kb and K,. Further in order to evaluate robustness, we changed the dynamics by adding

a load of 30[g] to the edge of the link 5 in Fig. 5.3. This weight is enough heavy for this

simple manipulator to evaluate robust performance. In this circumstance, manipulator

also succeeded in tracking.

   The desired trajectory in the joint space given by

Desired trajectory

               q,d (t) = Si" 4T4ft - 1 [,.d], q,d (t) = COS 2T4ft ' 1 [r ad]. (s.3s)

   The experimental results are shown in Fig. 5.5 through Fig. 5.7, where the dashed

lines indicate desired trajectories, and the solid lines indicate sensor outputs in the joint

space. All of experiments are carried out with a load of 30[g].

   e If frequency f is equal to 1[Hz], all of three controllers show good performance. The

     results shown in Fig. 5.5 indicate these three controllers achieves robust stability.

     But we can not distinguish the performance of these three controllers from these

     data.

   e If frequency f is equal to 2[Hz] which mean that the manipulator's moving speed is

     twice as fast as the former, tracking responses with all of the controllers deteriorate.

     Comparing Fig. 5.6 (c) with Fig. 5.6 (a) and Fig. 5.6 (b), we can see that the

    response with K, deteriorate extremely, but the responses with the controller K. and

     Kb maintain better tracking characteristics against a relatively hard requirement.

   o Next, 9-order controller K2 designed without considering time delay is realized with

    the sampling periods of T., Tb, T,. The obt,ained discrete-time controllers by Tustin

    transform are defined as

                              o Kd., o AJ db, e A' d..

    Controllers K., Kb and K, are different since they are designed. On the other hand,

    controllers Kd., Kdb and Ard. are same one when designed, but they are implemented
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     with different sampling periods. Using these controllers Is'd., Kdb and Kd., some

     experiments were carried out under the condition that f = 2[Hz]. Corresponding

     experimental results are shown in Fig. 5.7. These results are really similar to Fig.

     s.6. We can notice that performance of Kdc is remarkably bad. Controllers Kd. and

     Kdb maintain their performance.

   From all these results, we can see that the controller performance depends on the

sampling period. Further we showed that the H./pa control application needs a high-

speed processor like DSP in order to bring out the full performance which a controller has

by nature. In other words, high-speed processors like DSP can realize the complex control

law as Hoo/pa•

5.1.6 Conclusion

This section has presented that performance of controllers depend on their sampling rates

experimentally. We have indicated that if time delay for implementation get over a thresh-

old value T..., the design specification of the controller is not satisfied. This represents that

high-speed processors are indispensable, and control system design should be considered

time delay for the achievement of performance specification.

   For the control system design, we utilized p-synthesis methodology and carried out

experiments with a robot manipulator using DSP. First, we considered a dynamics of

the robot manipulator, and derived a linear model as well as the uncertainties for the

model. We employed the computed-torque method to obtain a simple linear model for

manipulators,Secondly, we constructed the generalized plant which is considered the above

uncertainties, and set robust performance objectives as a structured singular value test.

We designed control systems by D - K iteration approach. Three controllers: Ta, Tb,

and T, are obtained, which are designed in consideration of time delay. Next, continuous

controller A'2 designed without considering time delay was discretized to Kd., Kdb, and

Kd, with the sampling rate of T., Tb, and T,, respectively.

   After that, we carried out a lot of experiments using a DSP. Experimental results

show that controller K, and Kd, which have long sampling period are not satisfied robust

performance. This showed that high-speed processors can bring out the high performance

in the designed controllers. In other words, robust performance can be realized owing to

the latest high-speed digital signal processors.
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5.2 Robust H,,. Control of Robot Manipulators con-

       sidering structured uncertainties

This section proposes a lineai- robust/ contro1 scheme for robotic trajectory tracking based

on the H. control theory. After the introduction of our experimental manipulator, the dy-

namics and model uncertainties of the whole robot system including actuator are discussed.

Then, setting up the control objectives in H.. synthesis framework, an H.. controller is

designed with the static constant scaling matrix D. Finally, with experimental results,

we show the effectiveness of the proposed linear robust H.. control scheme for a robot

manipulator.

5.2.1 Introduction

Almost all the industrial robots are controlled by independent joint PD (proportional

and derivative) controllers, and they have good control performance to a certain extent.

The reason this approach is useful for the nonlinear coupled robots control is most of

them(except direct drive robot) have reduction systems which possess large gear ratio,

hence they could be treated as linear independent plants approximately. However, PD

controllers can not achieve suMcient performance on tasks which require both quick and

accurate trajectory tracking, because they are designed without consideration of the dy-

namic coupling between joints.

   The model-based control, including the PD control, is an advanced control scheme

which uses the dynamic model of the manipulator. When a precise model is available, this

control scheme completely linearizes and decouples the manipulator dynamics. However,

use of an inaccurate model easily degrade the performance and the obtained tracking

accuracy may be inferior to the independent joint PD control. Since the modeling error

is inevitable in the modeling procedure, robust control is necessary to accomplish high

performance[72][73].

   This section proposes a robust compensation scheme based on the H.. control the'

ory [61] [74]. The controller consists of a model-based linear robust controller, and it is

not employed inverse dynamic computation, hence once the controller is obtained, com'

putational burden for H.. controller is small add on, because the H.. controller is linear

and time-invariant and the computational burden is only matrix vector multiplications•

The sampling period of this approach is shorter than the other nonlinear control schemeS•
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Moreover, the control input is continuous. Therefore, the H.. cont,roller is suitable for

realization of real-time model-based robust control.

   We demonstrate the robustness of the proposed scheme by experiments on a parallel

link miniature robot manipulator, Taking the actuator dynamics into account, the nomi-

nal Iinear dynamic model of the manipulator is derived. Dynamic couplings between joints

and the gravity forces are treated as the structured uncertainties. These uncertainties are

nonlinear, but bounded by known constants, hence we employ the H. control approach

with small gain theory to achieve robust stability. The controller is designed with consid-

eration of the perturbations of link parameters caused by loads putted on the end of the

hand. The experimental results exhibit remarkable robustness of the proposed controller

compared with the conventional computed torque method with PD contro}ler.

5.2.2 Robot ControlSystem

Experimental Robot Manipulator

A simple parallel link(four-bar linkage) robot manipulator with two degrees of freedom is

utilized for experiments. It is shown schematically in Fig. 5.8. Each joint is actuated by an

11 watt DC motor through a reduction gear whose ratio is 1:8. This manipulator has two

incremental encoders and potentiometers, but we use only encoders to obtain the rotating

angles ofjoints. The total mass of this robot manipulator system is about only 2 [kg]. The

link construction of this manipulator is as in Fig. 5.9.

5.2.3 Robot

Generally, the ideal

where

Dynamics

n-link robot dynamics is

M(q) ij + h(g,

M(q) ERnxn
h(q, a) E Rn

V ERnxn
g(q) ERn
q(t) E Rn

7 ERn

shown as follows [10].

4) + Vd +g(q) = 7.

: lnertia matrix

: Coliolis and centrifugal force

: viscous frictional matrix

: gravity force

:joint angle

: control input

(5.39)
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   Correspondent dynamics of this four-bar linkage manipulator is as follows.

                   [Mi2co(Y('q',-q,) M'2COIZi(,g,2-9i)][$]

                    + [Mi2ai sinO(g, - g,) -M'2g2 Sio"(q2 - gi)] [qg';]

                      +[g' B,][1,']+[U:[.Og,ql]-[;,i]. (s.4o)

                 Mii = mi lg, + m31g, + m, l? + I, + I, = 3.7672 Å~ lo-3

                 Mi2 = m3121,3-m41il,4 = -1.6so6Å~lo-5
                 M22 = m2 1.22 + m3122 + m4 1.2, + I2 + I4 = 2.86s9 Å~ io-3

                  Fi == F2 =O (ignored)

                  Vi == (mi lci + m3 1.3 + m4 1i )g = 9.0108 Å~ lo-2

                  V2 = (m21c2+m312-m41,4)g = 1.9183Å~lo-2

5.2.4 ActuatorDynamics
The gear ratio n (> 1) gives the following equation.

                          g.i=nqi, (i=1,2.) (s.41)
where q. = [q.i, q.2]T is the motor angle. Writing a torque ba}ance for this system in

terms of torque at the rotor yields

                    7mi=lmiQ'mi+Dmiq'mi+7ai, (i=1,2•) (5•42)

where J.i and J.2 are the inertia of the motor rotor and D.i, D.2 are viscous friction

coeflicients for the rotor, and T. = [T.i, T.2]T is driving power translated to links. The

torque is stated by means of a single motor torque constant which relates armature current

to the output torque as

                         7mi= Ktii, (i=1, 2•) (5.43)
where i = [ii, i2]T is the armature current, and Kt is the motor torque constant. The back

electromotive force (emf) constant describes the voltage generated for a given rotational

velocity as

                        vbi=Kb a.i, (i=1, 2.) (5.44)
where Kb is the back emf constant and vb = [vbi,vb2]T is the back emf.
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The output voltage of the D/A converter, i.e,, the control signal is usually amplified and

p"`

fi`,os,e;hvs,.m,g`gi',g,:rg,i`8a.M,Pli8,e(.2ain6f.`,"l•:d,2fi,g,i•g,%Sge"Z`Zn,g:1':,:'6,diff.,..ti.i

equation given by
                  LÅí/7ii+Rii+vbi=Is'.vi, (i=1,2.) (s.4s)
where L is the inductance of the armature winding, R is the resistance, and v == [vi, v2]T is

the armature voltage. From the principle of virtual work, the following equation is derived.

                         Ti=ep 77ai, (i=1, 2•) (5.46)

where T = [Ti, 72]T is torque at the load.

If L << R ( in this motor, L = 9.0 Å~ 10-`[Hl and R = 7.9[9], hence its condition is

sufficiently satisfied), then from these above equations, the dynamic model of this robot

manipulator containing actuator is shown as follows.

Robot Dynamics with actuator

                                 AA              [M.".Il Mh.I2,][qqi,]+[dd.)l dali][qq'l]+[g.l]=a[V.i,] (s.47)

where
               inn = n2 J.i + Mn, ini2 = Mi2 cos(q2 ' qi),

               nt2i = Mi2 cos(q2 - qi ), in 22 == n2 J.2 + M22,

               d"n = n2(D.,+!Agi{ghK ), d"i2 = -Mi202sin(g2 -- qi),

               dA2i = Mi2Qisin(q2-qi), d"22 == n2(D.2+!tk{!hK ),

               gi = vacosgi, 92 = V2cosq2,
                    - nyKaKt               a- R•
   N. umerical values of the parameters of the arm and the actuator are shown in Table

 5.1 and Table 5.2, respectively. Those tables give following numerical values of the model

 parameters.
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   Model Parameters

         in11 == 3.91Å~10-3, in22 = 2.39Å~lo-3
         ini2 = 1.68 Å~ 10-5 • cos(g2 - gi)

         in2i = -1.68 Å~ 10-5 • cos(q2 - qi)

          AA         dn = 9.37Å~10'3 d22 = 9.37Å~10-3
         d",, = -1.68 Å~ 10-5•d2•sin(q2 - gi)

         di2i = 1.68 Å~ 10'5 • ai t sin(q2 - qi)

         9i = 9.01 Å~ 10'2•cos gi, 92 == 1.92 Å~ 10-2•cos g2

         a = 6.89 Å~ 10'2

Table 5.1 : Parameters of Arm

i mi[g] li[mm] lci[mm] Ii[kgm2]

1 86.7 128.0 o.o 2.87Å~lo-3

2 74.4 50.0 o.o 2.70Å~lo-3

3 18.0 128.0 64.0 1.33Å~lo-4

4 28.0 178.0 39.0 6.00Å~lo-5

Table 5.2 : Parameters of Actuators

Symbol Value

Jmi,Jm2 2•25Å~10-6[kgm2]

n 8

Dmi,Dm2 0(ignored)

R 7.9[9]

K,,Kb 3.4Å~lo-2

Ka 2

Linear Robot Dynamics

In equation (5.48), inn, M22, d"ii, di22 and a are constant model parameters.

that linn1 and IM221 are far larger than max 1ini2(q)l and max l77z2i(q)l, and

 It is

ld" ,,i,
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(5.48)

obvious
ldi221 are
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larger than max ld"i2(q, a)l and max 1di2i(g, q)1, if a or 1• Hence we treat the nonlinear term

i." ,1-i.2?;i'tee;,id,"iiz2,t,gxt.ns,,?.g,s,z`g":.`uee.1,:",:,eg)a;.n,te,r:s..T.h,g,fO."fite,"1,`82M,tuZ,'

foiiowS•  [h2,,i .o,,][/1;].[d",ii ,.O,,][1'l]-or[Z',] (5•`9)

Linear Robot Dynamics with Uncertainties

Next, consider the ignored nonlinear terms, hzi2, hz2i, dii2, d" 2i, gi, and g2. It is obvious

                                                      Vqi, q2. (5.50)             sin(q2(t) - qi(t)) <- 1, cos(q2(t) -- qi(t)) S 1

And there are same upper bound of the rotating speed.

                          Qi (t), Q2 (t) .<- q' rnax Vt• (5.51)

The positive constant number Q... [rad/s] is the maximum rotating angle speed Q to be

stabilizable the system. In this system, Q... is defined as 30[rad/s]. Therefore, the magni-

tudes of the ignored nonlinear terms are bounded by known constants such that

                  lth,,l S 1.68 Å~ 10-5 := A7t}z,,,

                   17h,,l S 1.68 Å~ 10-5 : : A7t}z,,,

                   ldii21 S 5.04 Å~ 10-4 := Ad",,,

                   id",,1 S 5.04 Å~ lo-4 := Ad",,,

                   19,1 S9.01Å~10-2 := AO,,

                   ig,l ff{1.92Å~10'2 := Ag,. (5.52)

    Furthermore, we would like to design robust controller against change of the load at

 the end of link 4. If a certain load mL would be attached in that place, arm parameter,

                                                                   AA m4, l,4, I4 (Table 5.1) would change. According to them, 73zn, ini2, in2i, in22 di2, d2i, 0i,

 and g2 would vary.

    Hence its perturbations caused by the pay-load of them are defined as,

                     6inii,6rk•i2,6in2i,6M22,6d"i2,6d",i,6g,,6g2. (s.s3)

    From (5.52) and (5.53), we define the following terms.

CHAPTER 5. ROBUST CONTROL OF ROBOT MANiPULATORS

            in11 := 6ni11, in12 := A7h12+6hz12,
            M21 := Ain21+6in21 in22 := 6in22,

             N AA At AA            d12 := Ad12+6d12, d21 := Ad21+6d21,

            g, := AO,+6g,, g, := Ag,+A9,.

   Hence the robot dynamics with the uncertainties is defined as

                     [iniiofh+,,niz,ii6i in,,th+'2k-3,,6,][$]

                       + [did!,i 3, dNif,s] [:;] + [g.;] A .. ,,, [v.;]

where

                      16,(t)lS1 (1S]' h< 6), llAllS1.

   The block diagram of the robot dynamics is shown in Fig. 5.10.
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Figure 5.10

           G

: Block Diagram of the Robot Dynamics
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(5.54)

(5.55)
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5.2.5 Design

                  -eGeneral Design ObJective

We defined the design specification of the performance and the stability of the system

as follows. Our objective is to achieve the robust stability for structured/unstructured

uncertainties caused by nonlinear dynamical coupling of the links and pay-load mL, and to

achieve the asymptotic tracking for the reference signal. To put it concretely, the objective

is expressed as following 3 points. (See Fig. 5.11).

r
e

K
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Za

Aa

u
G

1iVa

  +
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+

+ +

Ws

y

Figure 5.11: Closed-loop Interconnection Structure

Zs

  1. The controller K stabilizes the closed-loop system against 6i, 62, N, A2, which are

    included in G (see Fig. 5.10 and Fig. 5.11).

  2. We define the another unstructured uncertainties W.(s)A.(llA.Il S{ 1) which indi-

    cates the neglected dynamics in the modeling process. W. is a stable, rational transfer

    matrix. The system should maintain stability against this uncertainty.

  3. The closed-loop system should have low sensitive characteristic. The weighting func-

    tion for the performance condition is given by W,. W, is also a stable, rational

    transfer matrix.

  Then the obtained open-loop interconnection structure is shown in Fig. 5.12, where

                  wa=:[W,a' ,8.,]• ws==[`'`6S' ,i9,,] (s's6)

In Fig. 5,12, [vi,v2]T are control inputs, which are motor voltages, and [qi,q2] are the

outputs, which are rotating angles. The velocity of the angle is not used for feedback

control.
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 Robust H. Control

First, let define the uncertainty block structure A as

              A := {diag [6i, 62, 63, 64, 6s, 66, Ag, Aa, As],

                   : Ak(1 -<kff{ 3) EC2Å~2, 6,(1 f{j-< 6)ER}, (5.57)

where, Ag = diag[Ai, A2], and A, is a fictitious uncertainty for performance. Suppose

that P denote the generalized plant, and LFT on P by K is defined as .1'li (P, Is').

A is an nonlinear uncertainty, but its L2 gain is bounded as llAll -< 1. A satisfies input-

output stability. By using small gain theorem, the control problem is to find a controller

K which satisfies

                            U(•7 ;i (P, K) (]'w)) 11.. <1, (5.58)

This is the sufficient condition of the stability. To reduce the conservatism of the stability,

the static constant scaling matrix D is employed [62]. Hence the condition should is

transformed as follows.

                          11D (.JrTt (P, K) (]be)) D-i[1.<1, (5.59)

where

              D :== diag[di,d2,..., d6,d7 Å~ I2Å~2,ds Å~ I2Å~2, dg Å~ I2Å~2, I2Å~2]

Controller Design

Specification and Design Parameters

The specification of the controller K is as follows.

   e The close-loop system is internally stable and maintains the performance toward the

     plant perturbation by the added load mL (=30[g]) at the hand.

The driving DC motor does not have much power (11[W]), and gear ratio n is relatively

small (n = 8), hence the physical maximum load capacity is 100[g]. This 30[g] load bring

107 % increase of m4, 230 % increase of l,4 and 820 % increase of I4.

   The arm parameters in Table 5.1 is changed by an added load mL. Changed parameters

are shown in Table 5.3. This table gives the magnitude of structured uncertainties as below.

These parameters are employed for the controller design.
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      Figure 5.12: Open-Loop Interconnection Structure

        6hzi, =4.92 Å~ 10-4 6ini2 = 8.93 Å~ 10-4

        67iz2i = 8.93 Å~ 10-4 6•M22 = 1.40 Å~ 10-3

          AA        6di2 = 1.78 Å~ 10-3 6d2i = 1.78 Å~ 10-3

         69, =8.40 Å~ 10-2 6g, = 6.3g x lo-2

primitive trial and error experiments, we decided the design

                Wal=Wa2 = 5Å~10-5,

                Wsl=Ws2 == 5Å~10-3.

parameters as

(5.60)

i

t

]

I

1
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         Table 5.3: Changed link parameters

i=4 mi[g] li[mm] lci[mm] Ii[kgm2]

Original 28.0 178.0 39.0 6.00Å~lo-5

Changed 58.0 178.0 128.0 5.52Å~lo-4
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The final controller Is' (s) is obtained, which satisfies the Hoo norm specification (5.59). We

employed a static constant scaling matrix D as follows [62].

                   D : diag[3.74 Å~ 10-7,6.10 x 10-7,3.37 Å~ lo-7,

                            6.72 Å~ lom7,2.o7 Å~ lo-5,2.7g Å~ lo-5,

                            1.13 Å~ 100 • I2.2,6.26 Å~ 10-3 • I`2.2,

                             1.00•I2 .2, I2.2] (5.6 1)

The controller A' is as below.

                          K(s)-[il.llEil ftll],:li]• (s•62)

Frequency response of the controller is shown in Fig. 5.13, and the singular value of the

closed-loop transfer function Fi(P,K) is plotted in Fig. 5.14. In Fig. 5.13, Ki2(s) and

K2i(s) are nearly O, hence they does not appear. It can be seen that, the design objective

has been satisfied from Fig. 5.14.

5.2.6 Experiments

PD Computed-Torque Control

We prepared the computed-torque controller with PD compensator so as to compare with

a H.. controller. The employed PD computed-torque controller is shown below.

                        v = M(q)ii + h(qlg) + Va + g(q),

                        zL =4d+K.(Qd-a)+K,(qd-q), (5.63)

where, K, == 10000, K. = 200, and A'I(q), h(g, a), V, g(q) are defined in (5.39) and (5.40).

The gains: Kp and A'. are selected to be satisfied a critical damping condition [10].
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Experimental Results

The designed H.. controller is a continuous-time system. In order to implement this

controller with the DSP system, it is discretized via the well known Tustin transform,

where sampling period is 50pas. But the computed torque controller is implemented with the

100pss sampling period, because of its calculation of nonlinear compensater. Digital Control

System possesses DSP TMS320C30(TI). The manipulator succeeded in tracking of the

smooth desired trajectories using the H. controller. Then, the results ofthe step responses

are shown in Fig. 5.15 and 5.16, where dashed and solid lines indicate desired trajectories

and sensor outputs in the joint space, respectively, Step width is 0.5[rad](28.65[deg]) in

the all figures.

  1. Result 1: In Fig. 5.15, the hand does not have any load. Both results show good

     responses.

  2. Result 2: When the hand has 30[g] load, both controllers indicated good response

     as Result 1. Specification had been satisfied.

  3. Result 3: In Fig. 5.16, the hand has 60[g] load. The H.. controller shows better

     response in these figures.

1
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  Figure 5.14: Singular Value plot of .Fi(P, Is-)

From the above experimental results, it has been indicated that the proposed H.. controller

holds good robust performance experimentally.

5.2.7 Conclusions

This section proposed a linear robust control scheme for the robotic trajectory tracking

based on the H.. control theory. We demonstrated the robustness of the proposed scheme

by experiments gn a parallel link robot manipulator.

   Taking the actuator dynamics into account, the nominal linear dynamic model of the

manipulator was derived. The coupling between joints and the gravity forces were treated

as the real structured uncertainties. These uncertainties are nonlinear, but bounded by

known constants, hence the constant scaled H.. control scheme was employed to achieve

robust performance specifications. The controller was designed with consideration of the

perturbation of link parameters, which was caused by loads putted on the end of the hand.

The experimental results showed remarkable robustness of the proposed controller.
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5.3 pmSynthesisofRobotManipulatorsUsingLinear
                                                      e        Parameter Varying Representation

In this section, we present a robust control for a fiexible-joint robot manipulator using

linear parameter varying representation. The robot manipulator dynamics can be brought

to a quasi linear parameter varying (LPV) form by a state transformation. An LPV system

is defined as a linear system whose dynamics depend on an exogenous variable which can

be measured upon system operation. In this case, the scheduling variables are the joint

angles q. which are state variables. Using a quasi-LPV form, we design a robust controller

by pa-synthesis t,o achieve robust performance specification.

5.3.1 Introduction

Gain scheduling methodology has proven to be a successful design method in main en-

gineering application. This idea is to construct a global feedback control system for a

time-varying and/or nonlinear plant from a collection of local 'Iinear' 'time-invariant' de-

signs [66][67][3][60] [83].

   The gain scheduled design is novel in that it does not involve linearizations about trim

conditions of the plant dynamics. Rather, the plant dynamics are brought to a linear

parameter varying (LPV) form via a state transformation.

   In this section, we present a LPV approach [66] [67] to a gain scheduled flexib}e-joint

robot manipulator design. The robot manipulator control problem under consideration

is gravity force cancellation. In standard gain scheduling, the design plants consist of a

collection of linearizations about equilibrium conditions indexed by the scheduling variable,

in this case the link angle, q. In the present approach, the design plants also consist of a

family of linear plants indexed by the joint angle. A key difference between the present

approach and standard gain scheduling is that this family is not the result of linearizations•

Rather, it is derived via a state-transformation of the original plant dynamics. Since no

linearization is involved, the approach is not limited by the local nature of standard gain

scheduled designs. Since gain scheduling generally encounters families of linear plants

indexed by a scheduling variable, Shamma [66][67] defined to such a family as a Linear

Parameter Varying (LPV) plants. LPV plants differ from linear time-varying plants in

that the time-variations (i.e., the scheduling variable) is unknown from the first but maY

be measured/estimated upon operation of the feedback system. Such a family is called

:
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LPV in case the scheduling variable is actually endogenous to the state dynamics. In this

case, the scheduling variable is the joint angle. This is actually an endogenous variable.

Once in a LPV form, a robust controller using pa-synthesis is designed to achieve robust

performance condition.

   The remainder of this section is organized as follows. First, we derive the LPV form

of the nonlinear flexible-link robot manipulator. Next, we design a linear robust controller

based on ps-synthesis. Then the simulation results for the fiexible-link robot manipulator

system are presented. Finally, some concluding remarks are given.

5.3.2 RobotDynamics
Flexible Joint Robot

The plant that is a 2-DOF flexible joint robot manipulator is shown in Fig. 5.17.
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                Figure 5.17: 2-DOF FIexible Joint Robot Manipulator

   This system is constructed with two DC motors and a parallel link robot manipulator.

Each joint is actuated by an 11 watt DC motor through a reduction gear whose ratio is 1:8.

This manipulator has four incremental encoders, two of them which measure link angle,

are used for the feedback control, and the other two encoders are employed to measure

only joint angles. The total mass of this robot manipulator system is about only 2.0 [kg].

Link flexibility can be changed according to spring at joints [56].
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Modeling
The dynamic model of the DC motors and joints are described as following equations,

                                 • a.K                    Je,e', + "miXr2 e, + k(0i - nqi) = R vi,

                                 • a.K                    J,,b',+amRK2o2+k(e2-nq2)= R v2, (s.64)

where Je, is inertia of DC motor, a. is amplifier gain, K is back electromotive force (emf),

k is spring constant, ep is gear ratio, 0, is motor angle, and q, is link angle (i = 1, 2).

   Furthermore, the dynamics of the parallel link robot manipulator is written as follows[57].

                [M,,,.k('q', . q,) fuIi2COfii, ,q: - qi)] [/r.;]

                 + [Mi2a, siA'(q, - q,) -rv1'202 S:(92 ' qi)] [g.;]

                 +[Ulg,l:g,']-[Zi,`Z,i:Zq,li] (s.6s)

Model parameter values are listed in Table 5.4. Hence the dynamics of this robot manip-

ulator with actuator and flexible-joint is expressed by eq.(5.64) and (5.65).

                 Table 5.4: Parameter of the experimental system

Parameter Symbols Value

MotorInertia[Nm/sec2] Jei,Je2 2.25Å~lo-6

AmplifierGain am 2.0

EMFconstant[V/rad•s] K 3.4Å~lo-2

Resistance[9] R 7.9

Gearratio n 8.0

springconstant[kgm/rad] k 1.74

Inertiaelement[N•s2/rad2] Ml1 3.77Å~lo-3

Ml2 -2.30Å~lo-5

fuI22 2.86Å~lo-3

Gravityelement[N] Vl 8.99Å~lo-2

V2 2.08Å~lo-2

Frictionelement[N•s/rad] fi,f2 9.37Å~lo-3
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LPV Representation

If we assume a priori bounds on the angular velocities of the links,

                              l<i'il < yi, IQ'21 < v2•

From (5.64), (5.65), and (5.66), the following state-space model is derived.

                       I;/1 [a] = f(Z) + A(z) [8] + B(z)i,.

where

                   z= ,w= '' e

A(z) -

   [gi, q2]T [0i, e2, qi, q2, 0i, 2]T,

              u=[vh v2]Ti

                      o

                      o

                      o

                      o

                      + M12(Z) V2 Sin q2         Mli(Z)Vl Sin qi

         m12(z)Vl sin ql + m22(z)V2 sin q2

                      o

                      o

    O O OOIOO
    0 O O0010
    O O OOOOI
    o o ooooo-mnn2k -mi2n2k miink mi2nk inn ini2 O

-mi2ep2k -m22ep2k mi2nk m22epk 77z2i 77L22 O

   ZIi2I4k O -f' O OO-,",M.
    o zi2sk o -Sl'l- ooo
B(.) ,. [oo oo : g : : atioR" ,.,lflis,..]T,

77zii(z) = -mi2(z)rvIi2ui sin(q2 - qi) - miiFi,

7izi2(.7.) == -mii(z)Ali2v2 sin(q2 - qi) - mi2F2,

fiz21(z) = -m22(z)!VI12yl sin(q2 - gl) - m12Fl,

73z22(N7) = -m12(z)fVI12y2 sin(gb2 - ql) - m22F2,

 0
 o
 o
  1

  0

  o

 o
- am
 J2R

,
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                  mn(z) = M22/{MiiM22 - Ali22 cos2(q2 - qi)},

            mi2(z) = -Mi2cos(q2 -- gi)/{rvlnM22 - Mi22 cos2(q2 -- qi)},

                  m22(z) = Mn/{MiiM22 - M,22 cos2(q2 - qi)}.

   In equation (5.67), z(t) is the controlled output, and the nonlinearities depend only on

z(t). Such systems are sometimes called "output-nonlinear" systems.

   We assume that there exist continuously differentiable functions weq(z) and ?L.q(z) such

that
                      O= f(Z)+A(Z) [.'or"',,]+B(Z)Ueq(Z) (5'68)

In other words, we have a family of equilibrium states parameterized by the controlled

output z(t).

   Further, we can easily find the equilibrium states as

                            nqi - ill/+ sin qi

                            nq2 - ;Vi2k sin q2

                                 o

                                 : , Ueq=[,O].
                   Weq(Z) =

                                 o
                              ifR:IlpT.VKsinqi

                              7SR#iik.VKsing2

Next, we divide A(z), B(z) to conform with [z w]T as

                 A(z)=[211:il llli:il], B(z)-[B.',Eii], (s•6g)

From (5.67), (5.68) and (5.69), it is easy to show that the state dynamics may be written

as
                 Iilt7 [ii,] = [8 AAIi (( Zz ))] [w i.,,] + [BB,i Eil] i` (5'70)

Furthermore it is transformed as

   Slt [wiw,,] = [Oo A,,(z) -A.- 'b(a).,A,,(z)] [wiw.,] + [B,(z) -Bi(Z)),,B,(z)] Z`'

                                                                      (5.71)

where Dw,q :aw.g/az.

   We have obtained the above linear parameter varying representation (LPV) model,

with the variable z(t) as the "exogenous" parameter.
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5.3.3 ControlSystemDesign

Problem Setup

In this section, we design the control system by using the obtained LPV model representa-

tion. Now we consider the block structure shown in Fig.5.18, where the block Pd,, shows

the LPV design plant.

r

Zp

+e

Wp

K

Wm
Zm

Am

+

Wm

u +
Pdes y

                          Figure 5.18: Control Problem

   The design specification for the robustness and the performance is defined as.

   e Robust stability specification

     The block A. shows the input uncertainty of the plant (motor and joint), especially

     the perturbation of the spring constant of the joint. A. is the linear time invariant

     multiplicative uncertainty, at the plant input and the function W. is its weighting.

     Hence the robust stability condition for A. is IITw.z.ll. < 1, where Tvvmz. is the

     transfer function W. -> Zm•

   e Performance specification

     The performance specification is to keep the influence below from the reference r

     to the error e. This requirement should be replaced to the problem which find the

     controller K to achieve 1IWpT.,lI.. < 1, where l!Vp is a weighting function, and T,, is

     the transfer function r - e

The above design specification is fitted in the pa-synthesis framework [74].

   At first, we introduce the fictitious performance uncertainty Ap, and define the linear

time-invariant block structure A with Ap and A. as follows.

      A :=: ([Ao" AO.] :Ap, Am E C2Å~2, IIAplloo S 1, IIAmlloo S 1) (5•72)
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Hence the control problem is to find the controller A'  which satisfy the foilowing structured

singular value test, where Pg.. is the generalized plant which is constructed with Pd,, and

the weighting functions, IiVp and I2V..

                          sup paA(.7 :i (P,,., Ar) (j'w))<1• (5.73)
                         wER

Design

In this section, we do not schedule the controller gain on the parameter z, and we fix the

z as .ty.•.:=[g O ]T, and design the fixed pa controller. Here our approach taken here is

so-called D - A' iteration approach, which is to find the controller A' to satisfy

                      ÅíUK paA (D'1 Ii (Pgen,K) D-' (]'w)) < 1, (5.74)

where D is a scaling matrix.

   For the weighting functions, we selected the below functions according to the several

simulation results.

                        vv. =2.o xio-i Å~ ,S ++ iio [6 ?] (s.7s)

                        wp=3•ox,S.",'.? [6 ?] (s'76)

   A pa-synthesis design procedure [74] was performed with this formulation at the set

point z, := [ g O ]T. That is the z-dependent coefllicient matrices of the LPV plant Pd,,

were evaluated at z, := [g O ]T for the design. The first pass led to a frozen z robust

performance level of 1.09. After two iterations, this value was reduced to O.8. For the

scaling matrix D, we selected the following static matrix

                D= diag[-2.68 Å~ 10-2,2.97 Å~ 100,2.05 Å~ 10M2, I2,2] (5.77)

The obtained final controller K(s) is as below.

                           i<(,)=[iX,lll:ll iS,'liEll] (s.7s)

The frequency response of the controller K is shown in Fig. 5.19, where Is' n(s) and A'22(s)

are indicated by the solid line and the dashed line, respectively. Ki2(s) and K2i(s) are

relatively small because of the reduction gears.

   Now gain scheduled design procedure would typically involve repeating of design at

the fixed-q set points and its interpolation. However, it turns out the obtained controller

delivered robust performance for all {18 Å~ 18} (qi, q2) sets. Thus, no controller gain-

scheduling was employed.
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5.3.4 SimulationResults

With the obtained final controller K(s), we realize the control law on the simulator,

SIMULINK, and evaluate the effect of this proposed approach. For the comparison, we

add the result with the PI controller.

   Simulation is done with the following conditions.

   e Time response with step reference.

   e Response of the first link,

   e The reference angle is 90 degree(O.785[rad]).

   e Solid line: pa controller, dashed line: PI controller.

The result is shown in Fig. 5.20. It can be shown that response indicates overshooted

which is caused by the spring, but it is quickly got under contro1.
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Step Response
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5.3.5 Conclusion

In t,his section, we apply a linear parameter varying approach to a flexible joint robot

control. At first, we introduce the flexible joint robot, and after that derive the LPV form

of the nonlinear flexible-link robot manipulator. Next, we review background material

on LPV systems, gain scheduling control and LL-synthesis. Then we presented the design,

simulation results for the fiexible-link robot manipulator system.
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5.4 Consideration and Investigation for Approaches

All three control methodologies showed the better robustness and performance than con-

ventional PD or computed torque method. Each method has its merits and demerits, and

summary is written as follows.

   e pa-synthesis with exact linearization

       - The evaluation of the uncertainties: E and U are conservative.

       - The controller employs inverse dynamic computation, a sampling period of this

         approach is long. This long sampling period deteriorate the control performance.

       - The generalized plant is relatively simple and control system design is easy.

   e constant scaled H.. control considering structured uncertainties

       - The evaluation of the uncertainties contains less conservativeness because un-

         certainties are described as structured.

       - The controller does not employ inverse dynamic computation, computational

         burden for the controller is only matrix vector multiplications. The sampling

         period of this approach is shorter than the other nonlinear control schemes.

       - The control input is continuous.

       -- The generalized plant is very complex and application of this approach to 6-DOF

         manipulator is not easy.

   e linear parameter varying representation approach

       - Controller implementation contains nonlinear calculation but the total burden

         is not so heavy.

       - Feedback gain is regulated according to the link angle, hence the performance

         against arm position is excellent.
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Conclusions

In this thesis, I discussed robust ff../pa control and uncertainty description of mechatronic

systems including robot manipulators.

   The contribution of this thesis is as follows.

   e We made a set of plant model and quantify the model uncertainties, and clarified the

     limit of allowable class of perturbation for robust stability and performance.

   e We applied this robust H../pa control theory to robot manipulators in order to show

     the effectiveness of H../pa control law for nonlinear robot manipulators. Our ap-

     proaches taken here were as follows.

       - pa-synthesis with exact linearization

       - constant scaled H.. control considering structured uncertainties

       - LL-synthesis using linear parameter varying representation

   e We developed the H../pa control technique and applied it to real mechanical systems,

     then evaluated the performance of the control theme and expressive ability of LFT

     against various forms of uncertainties. And we showed that H../pt control has a good

     framework to treat uncertainties, in order to guarantee robust stability and robust

     performance by using magnetic bearing, a pantograph system with linear DC motor,

     and robot manipulator

Chapter 2

Chapter 2 referred a general robust control problem. In this chapter, at first, framework of

the robust control was described, especially about modeling, uncertainty, and uncertainty
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descriptions. Then H.. control

was introduced.

problem/theory, and pa-analysis and synthesis

     139

approach

Chapter 3

In chapter 3, robust control of magnetic suspension systems was described.

Section 3.1

In this section, we experimentally evaluated a controller designed by pa-synthesis methodol-

ogy with an electromagnetic suspension system. We have obtained a nominal mathematica,1

model as well as a set of piant models in which the real system is assumed to reside. With

this set of the models we designed the control system to achieve robust performance ob-

jective utilizing ps-synthesis method. Firstly, four types of different model structures were

derived based on the several idealizing assumptions for the real system. Secondly, for ev-

ery model, the nominal value as well as the possible maximum and minimum values of

each model parameter was determined by measurements and/or experiments. Thirdly, a

nominal model was naturally chosen. This model has the simplest model structure of all

four models and makes use of nominal parameter values. Then, model perturbations were

defined to account for additive unstructured uncertaiBties from such as neglected nonlin-

earities and model parameter errors. Fourthly, we defined a family of plant models where

the unstructured additive perturbation was employed. The method to model the plant as

belonging to a family or set plays a key role for systematic robust control design. Fifthly,

we setup robust performance objective as a structured singular value test. Next, for the de-

sign, the D-K iteration approach was employed. Finally, the experimental results showed

that the closed-loop system with the pa-controller achieves not only nominal performance

and robust stability, but in addition robust performance.

Section 3.2

In this section, we proposed the gain scheduled H. robust control scheme with the free

parameter for a magnetic bearing in order to eliminate the unbalance vibration. We

treated the changing unbalance vibration caused by varying rotational speed as the known

frequency-varying disturbance, and adjusted the controller gain according to the rotational

speed of the rotor using the free parameter di of the H.. contro11er. The obtained controller

K has high gain at the operating frequency. First, the dynamics of the AMB system was
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considered and a nominal mathematical model for the system was derived. Next, the con.

ditions for the existence of controllers were derived, and, we designed the gain scheduled

H,., robust controllers using LSDP. It rejected the sinusoidal disturbance of the varying

rotor speed. Finally the simulations and experimental results showed the effectiveness of

this proposed method.

Chapter 4
In this chapter, we improved the control performance of active pantograph system which

has very oscillating property, at the resonance frequency by applying pt-synthesis approach.

We considered parametric uncertainty and uncertainty caused by unmodeled dynamics,

and measure their quantities, and for these uncertainties, we setup the robust performance

problem. And then, we solved the above problem, designed a robust controller. Finally,

we showed several experimental results, and indicated the effectiveness of proposed con-

trol system design methodology by comparing conventional H.. controller with time and

frequency responses.

Chapter 5

In chapter 5, robust contro} of robot manipulators was discussed.

Section 5.1

This section has presented that performance of controllers depend on their sampling rates

experiment/ally. We have indicated that if time delay for implementation get over a thresh-

old value T..., the design specification of the controller is not satisfied. This represents that

high-speed processors are indispensable, and control system design should be considered

time delay for the achievement of performance specification. For the control system design,

we utilized pa-synthesis methodology and carried out experiments with a robot manipula-

tor using DSP. Firstly, we considered a dynamics of the robot manipulator, and derived a

linear model as well as the uncertainties for the model. We employed the computed-torque

method to obta,in a simple linear model for manipulators.Secondly, we constructed the

generalized plant which is considered the above uncertainties, and set robust performance

objectives as a structured singular value test. We designed control systems by D - K

iteration approach. Three controllers: T., Tb, and T, are obtained, which are designed in

consideration of time delay. Next, continuous controller K2 designed without considering
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time delay was discretized to A'd., A'db, and Is'd. with the sampling rate of T., Tb, and T,,

respectively. After that, we carried out a lot of experiments using a DSP. Experimental

results show that controller Is', and Kd, which have long sampling period are not satisfied

robust performance. This showed that high-speed processors can bring out the high per-

formance in the designed controllers. In other words, robust performance can be realized

owing to the latest high-speed digital signal processors.

Section 5.2

This section proposed a linear robust control scheme for the robotic trajectory tracking

based on the Hoo control theory. We demonstrated the robustness of the proposed scheme

by experiments on a parallel link robot manipulator. Taking the actuator dynamics into

account, the nominal linear dynamic model of the manipulator was derived. The coupling

between joints and the gravity forces were treated as the real structured uncertainties.

These uncertainties are nonlinear, but bounded by known constants, hence the constant

scaled H.. control scheme was employed to achieve robust performance specifications. The

controller was designed with consideration of the perturbation of link parameters, which

was caused by loads putted on the end of the hand. The experimental results showed

remarkable robustness of the proposed controller.

Section 5.3

In this section, we apply a linear parameter varying approach to a flexible joint robot

control. At first, we introduce the flexible joint robot, and after that derive the LPV form

of the nonlinear flexible-Iink robot manipulator. In section 5.3.3, we review background

material on LPV systems, gain scheduling control and pa-synthesis. Section 5.3.4 presents

the design, simulation results for the fiexible-link robot manipulator system.
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   In this thesis, I discussed the latest advanced robust control theory and uncertainty

description for mechatronic systems.

   H./pa and linear fractional transformation has a good expressive ability of uncertainty.

Guarantee of the robust stability depends on small gain theorem and Nyquist stability

criterion. The small gain theorem is very powerful, and useful in a variety of ways. Con-

servativeness is the only demerit.

   In this paper, I did not treat the uncertainty caused by unmodeled nonlinear dynamics.

This is the most challenging issue in the robust control theory. IfI could, I would like to

contribute to solve this problem theoretically.

   To conclude, I would like to hope t•hat Robust Control Theory and Mechatronics will

develop infinitely(oo)!!
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