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Abstract 

 

Proteins play pivotal roles in most of biological processes at different levels of living organ-

isms. Understanding about the interaction between proteins is helpful in annotating protein 

functions, in elucidating mechanism of biological systems, and especially in drug discovery 

and disease treatment. In this dissertation, we aim to investigate the protein-protein interac-

tions (PPIs) at the domain and residue levels by using machine-learning methods. 

Firstly, we developed a novel method to predict domain-domain interactions (DDIs) by 

applying link prediction approach. Our method employs a learning model utilizing low rank 

matrices as latent features in combination with biological features and topological features of 

the domain network. The experimental results showed that our method achieved a good 

performance and the predicted DDIs had high fraction sharing rate with known DDIs in gold-

standard databases. 

Secondly, we proposed a new method to inference residue contacts of two interactive pro-

tein domains by using interaction profile hidden Markov model and support vector machine 

in combination with information of residue co-evolution and statistical amino acid pairwise 

contact potentials, as well as domain binding sites. The advantage of this method is that it can 

predict the residue contacts of two domains by only using their sequence information. The 

experimental results show that the accuracy of our method is significantly improved com-

pared with previous methods. In addition, this method can be utilized to increase the source 

for template-based protein docking. 
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Chapter 1  Introduction 

1.1 Research context 

Biological macromolecules perform their functions by interacting with each other. Among these 

interactions, protein-protein interactions are most important. The comprehensive knowledge of PPIs is 

essential for understanding the molecular mechanism underlying the biological functions [1], and drug 

design [2].  

The binary PPIs defined by  high throughput techniques and computational methods just answer 

the question which protein pairs will interact [3]. To understand deeply the role of the proteins in the 

interaction network of biological systems, the detailed knowledge of the ways that proteins interact is 

needed. Unfortunately, this task is difficult, expensive, and time consuming if using experimental 

methods. Therefore, a number of computational methods have been developed to characterize PPIs at 

different levels from different perspectives, and each of them is a PPI’s research topic in bioinformat-

ics research community. 

Protein domains are known as functional and structural units of proteins. They are conserved 

through evolution. In multimeric enzymes and large multiprotein complexes, the interfacial regions 

often occur between domains. Therefore, understanding about DDIs not only elucidates PPIs and 

protein’s functions, but also can be used to infer new PPIs [1]. However, current methods are restrict-

ed by incompletion, high false positive and false negative of PPI data [4]. 

In addition, defining residue contacts at interface of two protein chains is needed for structure 

based drug design, protein complex prediction, and synthetic biology. However, this is one of the 

most challenge tasks in characterization of PPIs. The interface prediction methods only predict 

binding sites for a single protein, while docking methods and covariance-based methods have some 

limitations, e.g. high computational process [5], difficult to define the best solution [5], dependent on 

properties of the alignment [6, 7]. The development of new methods to predict residue contacts 

between proteins toward predicting large protein complexes are urgent [8]. 

1.2 Objectives 

This dissertation aims to discover protein-protein interactions at domain and residue levels by using 

machine-learning methods. 

1.3 Contributions 

The main contributions of this thesis are summarized as follows:  

(1) Develop a new method to predict new interactions between domains. Our method is based on a 

link prediction method that can use latent features in combination with known information of do-

mains. 

(2) Propose a new framework to predict residue-residue contacts of two interactive protein domains. 

The framework can combine the information of residue co-evolution, amino acid pairwise contact 

potentials, and interaction interface of domains to create features for residue pairs. The advantage 

of this method is that it can predict residue contacts of two domains by using only their sequence 

information. 
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Chapter 2  Fundamental elements 

2.1 Molecular biology background 

Macromolecules play important roles in biological processes such as regulation, structural support, 

information storage, reaction catalysis, communication, and transport. There are four types of macro-

molecules: nucleic acids; proteins and peptides; carbohydrates; and membranes. 

DNA (Deoxyribonucleic acid) composed of nucleotides, which encodes the genetic material in 

living organisms. It stores the instruction for the cell to perform daily life functions. 

RNA (Ribonucleic acid) composed of nucleic acids and is produced during the transcription pro-

cess. RNA is an intermediate in the flow of genetic information from DNA to protein. Therefore, 

similar to DNA, it can store and transfer information. On the other hand, similar to protein, it can fold 

into 3D structure to perform some functions. 

Protein is macromolecule in living organisms. It plays an important role in most of biological 

processes, e.g. replicating DNA, catalyzing metabolic reaction. To perform their functions, proteins 

often interact with other proteins and molecules to form complexes. 

The central dogma of molecular biology presents the flow of genetic information within living 

organisms, i.e. how protein is synthesized from the gene. More specifically, it is a gene expression 

process, which transfers sequence information between DNA, RNA, and protein. 

2.2 Protein domain 

Protein domains are determined as structural, functional, and evolutional units of proteins. Domains 

have their own three-dimensional structure and are formed by some motifs packing together. One 

protein can consist of a single domain or several domains. In contrast, one domain can exist in 

multiple proteins and converge through species. 

2.3 Multiple sequence alignment 

Multiple sequence alignment (MSA) is a sequence alignment of three or more protein sequences (or 

DNA sequences, or RNA sequences). These protein sequences are assumed to have evolutional or 

structural relationship. The MSA visualizes high conserved residue regions where may present the 

evolutionary, functional, or structural relationship of protein sequences. 

2.4 Protein classification 

Proteins derived from a common ancestor are homologous. If two proteins have similar amino acid 

sequence, they are considered homologous and may have similar structures and functions. Proteins 

can be clustered into groups basing on their sequence or structural similarity. The categorization of 

proteins can be based on protein families, or protein domains, or protein sequence features. 

2.5 Methods for identifying protein - protein interactions 

Traditionally, PPIs have been detected by genetic, biochemical and biophysical experimental meth-

ods. These methods are often time-consuming, expensive, and called low-throughput methods. In 

recent years, the high-throughput biological protein interaction experiments have been presented and 

can identify hundreds or thousands of PPIs at a time. Some these high-throughput methods are yeast 

two-hybrid (Y2H) screening [9,10], affinity purification mass spectrometry (AP-MS) [11]. 
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Besides, to accelerate the recovery of protein-protein interaction networks in living organisms, 

there are numerous computational methods have been developed to predict whether two proteins 

interact. These methods may be classified into main categories: genomic-based methods and classifi-

cation methods. 

2.6 Methods for determining domain-domain interactions 

There exist two main approaches to determine DDIs from two different PPI data sources. The first 

approach identifies DDIs based on the structure of protein complexes organized in the Protein Data 

Bank. The domain interaction data generated from the methods [12, 13] of this approach is not only 

providing what domain pairs of protein chains can interact, but also provide how two domains 

interact, i.e. they clearly indicate what residue pairs of two domains bind together. Databases are 

created from these methods such as 3did, InterPare, PIBASE, SCOPPI, SCOWLP are called DDI 

interface databases. However, because the structures of protein complexes in the PDB database are 

only a part of ones existing in living organisms, the DDI interfaces are consequently limited.  

The second approach is predicting DDIs based on binary PPIs. There is a series of methods have 

been developed to predict DDIs based on PPIs and protein attributes [4, 14–20]. Some of them use the 

co-occurrence of domain pairs in known PPIs to infer new PPIs [14, 16, 17] and some others aim to 

define DDIs (i.e., what domain pair mediates PPIs) [15, 18–21]. However, PPIs networks are incom-

plete, high false positive and high false negative, and these methods therefore are limited on small 

valid datasets [1, 4, 22]. It is obvious that developing new methods for predicting DDIs, which can 

overcome drawbacks of PPI data source, is motivated. In addition, there are some methods have been 

developed to evaluate predicted DDIs [23–25] and make up DDIs sources for further researches.  

2.7 Methods for predicting protein-protein binding sites  

Predicting PPI binding sites is to identify which residue on the surface of a protein can interact, i.e. 

classifying interface residue versus non-interface residue. This approach is mostly based on protein 

sequence and three-dimensional structure data. The advances in this field are driven by the develop-

ment of algorithms to interpret, process, and combine data [26]. 

One of the most important things to improve the performance of interface prediction methods is 

defining the properties of interfaces, which is able to discriminate binding regions from non-binding 

regions. These properties can be divided into three groups. The first group contains the properties of 

amino acid sequence such as hydrophobicity, desolvation, and interface propensity. The second group 

is the structural information such as surface accessibility, the shape of protein interface, tertiary and 

secondary structure. The last group is evolutionary conservations that can be obtained by aligning the 

query sequence with its protein families (i.e., homologous proteins). This property is extensively 

applied in various studies [26]. 

2.8 Machine learning methods 

Support Vector Machines (SVMs) are among the best supervised learning models to deal binary 

classification problems [27]. The two key idea concepts of SVMs are large margin separation and 

kernel functions. Large margin separation is to find the boundary that can separate two groups of 

objects as far as possible. The kernel functions compute the relative position or similarity of points to 

each other to determine large margin separation. 
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Hidden Markov model (HMM) is a statistical Markov model for the system that their patterns 

(process states) cannot be observed directly, however they can be inferred from another set of pat-

terns. The HMM includes two types of states: observable states and hidden states. Hidden states are 

the true states of systems represented by a Markov process. In bioinformatics, the HMM is often used 

as a tool for searching homologous sequences and classifying proteins.  

The matrix completion is the field of predicting the missing values in a partially observed data 

matrix by a learning low rank model. This learning approach premises on the mathematical discipline 

of linear algebra that a matrix can be factored into a product of low rank matrices. Therefore, one can 

recover a data matrix that contains some missing values by finding its low rank matrices based on 

known values.  

 Link prediction is the problem of predicting the presence or absence of edges between nodes of a 

graph. It could be treated as a special case of matrix completion. 

 

 

 

Chapter 3  Inference of domain-domain interactions by matrix 

factorization and domain-level features 

 

3.1 Introduction 

In this chapter, we focused on developing a new method to predict domain-domain interactions 

employing a link prediction approach. We applied an advanced learning model proposed by Menon 

and Elkan [28] to classify DDIs and non-DDIs. This link prediction method uses low rank matrices as 

latent features and known information of nodes or pairs of nodes as explicit features to predict new 

links of a given graph. This novel approach has not been attempted to predict DDIs and is different 

from all of previous methods that often solely use the PPI networks and features at protein level. 

However, we faced some challenges such as the sparseness of DDIs networks, the missing values of 

domain’s features, and the limitation of non-DDI data. Hence, we defined and formulated several 

features for domain pairs from some related methods. In addition, we proposed a technique to sample 

negative examples (non-DDI) from unlabeled data for training. 

3.2 Methods 

3.2.1 Link prediction by matrix factorization 

The objective function of the supervised learning problem used for DDI prediction is: 

      
       

 

   
   

       

        
                                                   

where  ,   and   are link function, loss function, and regularization function, respectively.     is a 

class value of a node pair      ,    is the latent vector for the node  ,    and    are node-specific 

biases,   and     are weight and feature vectors for a node pair      .  

3.2.2 Co-occurrence frequency feature 

In the previous works, the co-occurring frequency of two domains in PPIs was often used as the 

evidence to define the probability of interaction between them. We also devised a formula to calculate 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Markov_model
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the co-occurrence frequency of domains in multiple species to incorporate it into the DDIFACT 

model as a vertex feature aggregation. In the formula, we are not only concerning the co-occurrence 

of domain on one species but also on multiple species. Table 3-1 shows PPIs of six species used to 

calculate frequency score for pairs of domains in this study. 

Table 3-1 Summary of proteins and PPIs in six species. 

Species Database # of proteins # of PPIs 

S. cerevisiae (Baker's Yeast) DIP 1,925      7,921         

E. coli DIP 1,332         7,164         

Homo sapiens (Human) HPRD 6,374         33,408         

Arabidopsis thaliana BioGrid 1,022         2,326         

D. melanogaster (Fruit fly) BioGrid 904         3,117         

Mus musculus (Mouse) BioGrid 1,212         2,197         

 

3.2.3 Functional similarity feature 

A protein domain is annotated by a set of GO terms that is organized in GO database. Using this, the 

functional similarity between two domains can be calculated by measuring the semantic similarity of 

two sets of GO terms annotating the domains. We applied the method  proposed by Wang et al. [29] 

to evaluate the functional similarity for protein domains. 

3.2.4 Graph-topological feature 

The topological similarity between domain pairs can contribute to overcoming the problem of noise in 

biological data, especially by random walk-based measures. We used the algorithm RWS (random 

walk with resistance) proposed by Lei and Ruan [30] to measure the topological similarity between 

domain pairs. 

3.2.5 Sampling unbiased negative DDIs 

The sampled non-DDIs must satisfy two conditions: one is their functional similarity score must be 

smaller than the average functional similarity score of mammalian non-DDIs in Negatome database, 

and another is their frequency score must be equal to zero. 

3.3 Datasets 

- We extracted mapping information between GO terms and protein domains from the online 

source PFAM2GO [31]. 

- We obtained DDI data from a database of 3D Interacting Domains (3did).  

- We obtained DDIs from DOMINE database [24]. DOMINE is a collection of DDIs predicted by 

various computational methods. We use these DDIs for comparing our prediction results with 

other methods. 

- We obtained mammalian non-DDIs from Negatome database [32] for sampling non-DDIs 

training set. 

After combining and processing the data above, we obtained 3,607 DDIs of 3did database among 

2,598 domains, and 505 mammal non-DDIs of Negatome database as the standard dataset to generate 

a negative training set to estimate the performance of our DDIFACT model. 
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3.4 Results 

3.4.1 Effect of conditional and unconditional random sampling 

We conducted the performance evaluation using conditional and unconditional random sampling with 

the parameter   representing the ratio of non-DDIs to DDIs with different values. For each value of  , 

we did three-times of seven-fold cross-validation procedure, and calculated average area under the 

ROC curve (AUC). Figure 3.1 shows that the larger   leads to the better AUC, but saturates at   = 9 

or 11. In addition, unconditional sampling worked well for only small values of  , then the condition-

al sampling method achieved the best performance in a relatively larger  =9. 

We adopted F1-measure for choosing the best value of   realizing the best balance of positive 

and negative data. Table 3-2 shows that the conditional sampling with  =5 achieved the best F1-

measure (87.89%).  

 

 

Figure 3.1 Comparison of AUCs by conditional sampling and unconditional sampling for the non-DDIs 

training sets with different values of p. 

3.4.2 Comparison of prediction results for unlabeled domain pairs 

We generated the training data composed of 3,607 DDIs and non-DDIs by our conditional sampling 

approach at  =5 to train our DDIFACT model. Then we used the learned model to predict new DDIs 

from unlabeled domain pairs. Finally, 27,127 DDIs were newly predicted at the cut-off value 0.385. 

Table 3-5 presents the percentages of the sharing portions between DDIFACT and other methods. Our 

predicted DDIs have the highest percentage of the sharing portion with the iPfam (55.40%), a gold-

standard dataset like 3did often used in training or comparison with previous methods. This result is 

promising because more than half of DDIs in iPfam remained after we eliminated duplicate DDIs 

included in our training set. It shows that our DDIFACT model is comparable to the structure-based 

methods. More interestingly, DDIFACT shares 37.72% of the predicted PPIs with the ME method, 

only after K-GIDDI and domainGA methods (38.46% and 38.52%, respectively). The ME method is 

the best method among nine methods in [23] using structure-based gold-standard databases iPfam and 

3did to evaluate. Note that both methods K-GIDDI and domainGA were not evaluated in [23]. These 

results affirm that our proposed method has high reliability. 
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Table 3-2 Precision, Recall, and F1-measure by conditional sampling and unconditional sampling for the 

non-DDIs training sets with different values of p. 

  
unconditional sampling 

 
conditional sampling 

Precision Recall F1-measure 
 

Precision Recall F1-measure 

1    83.21     86.23     84.69      
 

79.41     87.58    83.28      

2    85.24     83.97     84.56      
 

83.86     84.70    84.28      

3    85.46     86.26     85.85      
 

86.06     87.31    86.65      

5    85.16     85.98     85.56      
 

89.04     86.78    87.89      

7    85.00     86.66     85.82      
 

86.55     89.16    87.82      

9    83.58     87.96     85.70      
 

83.40     88.72    85.96      

11   82.45     86.93     84.63      
 

77.44     89.27    82.93      

 

Table 3-3 Comparison of prediction results for unlabeled domain pairs by DDIFACT and various 

methods listed in DOMINE database.  

methods 
# of  predicted 

DDIs 

# of predicted and 

shared DDIs 

percentage of fraction 

sharing 

Domine 8,671         1,490               17.18                   

HC&MC 2,262         660               29.18                   

iPFam 287         159               55.40                   

ME 806         304               37.72                   

RCDP 464         118               25.43                   

Pvalue 343         63               18.37                   

Fusion 1,065         265               24.88                   

DPEA 475         61               12.84                   

PE 836         178               21.29                   

GPE 633         200               31.60                   

DIPD 685         117               17.08                   

RDFF 1,473         486               32.99                   

K-GIDDI 247         95               38.46                   

INSITE 694         124               17.87                   

DomainGA 257         99               38.52                   

PP 2,937         34               1.16                   
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3.5 Conclusions 

In this chapter, we introduce a new computational method to predict domain-domain interactions by 

an advanced link prediction model that adapts with the state-of-the-art of observed DDIs networks. 

Based on the experimental result, our method has higher reliability compared with previous methods. 

This approach is also a solution for an open question in [30] which is how to get the best reconstruct-

ed network for biological networks. 

 

 

Chapter 4  Predicting residue-residue contacts for protein domains by 

binding sites and residue co-evolution 

 

4.1 Introduction 

Interfaces are formed by complementary surface between two protein chains. To understand deeply 

how two proteins interact with each other and what the latent function under the interaction is, we 

have to find the interacting residues between them. However, this is the most difficult task and the 

current methods are constrained by some factors. In this chapter, we present a new method to predict 

residue-residue contacts of two protein domains by integrating information about residue co-evolution 

and pairwise amino acid contact potentials, and as well as  interaction interface of  domains, and by 

using interaction profile hidden Markov models (ipHMM) in combination with support vector 

machines (SVM). One of the main advantages of the method is that it uses the interaction information 

of known DDIs and incorporates with other information to infer residue contacts for a pair of query 

domain sequences whose interaction information is unobserved. 

4.2 Method 

Figure 4.1 illustrates the general framework of our method. Given a pair of interacting domain 

sequences, which belong to two families, we firstly filtered out a subset DDIs which the number of 

substitutions corresponding to the query domain sequences is smaller than a given threshold. Next, 

these extracted DDIs are used to estimate two corresponding ipHMMs. Then, interacting probability 

of residues, which belong to testing and training sequences, is obtained from estimated ipHMMs. In 

addition, we evaluated the residue co-evolution scores and normalized statistical residue contact 

potentials to form feature vectors for samples (i.e., residue pairs). Finally, we used SVM to train a 

learning model and then used it to classify classes for residue pairs (i.e., contact residue pair or non-

contact residue pair) of the query domain sequences. 

4.2.1 ipHMM 

Friedrich et al. [34] proposed the ipHMM to predict binding sites for single protein domain. The 

ipHMM embeds interaction information of protein domain sequences by dividing each match state of 

pHMM into two states, one is interacting match state, and the other is non-interacting match state. 

Then, ipHMM is estimated by the maximum likelihood estimation method and training examples (the 

sequences and their structure information), each interaction match state indicates interacting probabil-

ity of residues aligned at that position. Because it does not require the structure information of the 

query domain sequences so it can become a scalable method.  
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4.2.2 DCA 

Covariance–based methods have been used for defining residue contacts in intra-proteins and inter-

proteins in protein structures and protein-protein interactions analysis. The basic idea of covariant is 

defining a relationship between a correlated substitution pattern and residue-residue contacts. Recent-

ly, Weigt and colleagues have developed an algorithm named direct coupling analysis (DCA) to 

distinguish direct correlations from indirect correlations between residues of PPIs [36, 37]. In this 

study, we applied their method to capture the coevolution information for residues to integrate into 

our predictor. 

4.3 Datasets 

We obtained interaction information of DDIs for each Pfam family pair from a database of 3D 

Interacting Domains (3did) [12]. Then, to retrieve domain sequences for each DDIs, we mapped Pfam 

domain information organized in 3did to PDB database. Besides, we employed Hidden Markov 

Model profiles (pHMM) of domain families from Pfam database [33] which were used  to train 

ipHMM proposed in [34]. Finally, we got statistical protein contact potentials of amino acid pairs 

derived from interfacial regions of protein-protein complexes, organized in AAindex database [35].  

4.4 Results 

4.4.1  The effect of sequence distance  

We conducted the experiment based on the sequence distance between the query domain sequences 

and DDIs. For each threshold value, we conducted the experiment five times and calculated the 

average of measurements. Figure 4.2 and Figure 4.3 show the average of the predicted results by 

sensitivity, specificity, AUC, and MCC on two pairs of domain families C1-set/C1-set and C1-

set/MHC with various threshold values. It can be seen that our proposed method predicts RRCs and 

non-RRCs in high accuracy. The trends of predicted results of the pair C1-set/C1-set and the pair C1-

set/MHC-I are different. The sequence distance does not influence the accuracy of the homo pair C1-

set/C1-set, while it impacts on the hetero pair C1-set/MHC-I. In addition, the sensitivities of the C1-

set/MHC-I are much better than the ones in the C1-set/C1-set. It may suggest that the sequences in the 

C1-set/C1-set more converge than the sequences in the C1-set/MHC-I, and in contrast the binding 

sites in the C1-set/MHC-I more converge than the ones in the C1-set/C1-set. 

4.4.2 Comparison of performance with the DCA based method 

We compared the performance of ipRRC with that of DCA based methods of Weigt et al. [36], named 

mpDCA. The Figure 4.4 shows the average AUCs of the both methods with various threshold values. 

It shows that average AUCs of the ipRRC are higher than the ones of the mpDCA in the both datasets. 

In addition, the average AUCs of mpDCA on the pair C1-set/C1-set is higher than the ones of C1-

set/MHC-I. 
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Figure 4.2     The average of predicting results of the domain pair C1-set/C1-set. 

 

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 mean 

Sensitivity 0.601 0.665 0.960 0.715 0.622 0.649 0.658 0.656 0.691 

Specificity 0.996 0.997 0.994 0.995 0.996 0.997 0.995 0.992 0.995 

AUC 0.981 0.876 0.984 0.955 0.921 0.926 0.927 0.883 0.932 

MCC 0.395 0.610 0.631 0.556 0.450 0.598 0.578 0.458 0.535 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

C1-set/C1-set 

 
 

 

 

 

 

 

DDI interfaces 

 

Characterized query DDI 

Query DDI  

mfDCA 

 

Filter DDIs 

ipHMM 

 

AAPCPs 

Residue pairwise  

coevolution scores 

 

 
 

Residue pairwise 

ipHMM scores 

 

 

 

Residue pairwise 

contact potential scores 

 

 
Feature vectors 

 

Residue-residue contact classifier 

 

Filtered DDIs and their interfaces; Query DDI 

 

Figure 4.1     The framework of proposed prediction method. 
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Figure 4.3     The average of predicting results of the domain pair C1-set/MHC-I. 

 

  

Figure 4.4 The comparison of average AUCs between ipRRC and mpDCA with various threshold values.  

  

 

4.4.3 Apply ipRRC to predict residue-residue contacts of hetero DDIs in KBDOCK 

KBDOCK is a database that integrates 3did, PDB, and PFAM into one, then using spatial clustering 

technique to classify binding sites for proteins at domain levels. To verify the predictor ipRRC, we get 

hetero DDIs from KBDOCK database as the query DDIs. The average results reported in Table 4-1 

and Table 4-2 show that the ipRRC has ability to predict residue contacts between hetero domain 

pairs with high accuracy and prove that our proposed method can be applied for supporting the source 

of template-based protein docking. 

 

 

 

 

 

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 mean 

Sensitivity 0.994 0.945 0.969 0.917 0.858 0.850 0.668 0.807 0.876 

Specificity 0.997 0.997 0.996 0.996 0.996 0.996 0.997 0.996 0.996 

AUC 0.995 0.991 0.998 0.983 0.922 0.950 0.861 0.972 0.959 

MCC 0.641 0.632 0.544 0.565 0.512 0.582 0.466 0.503 0.556 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

C1-set/MHC-I 

(a) is the average AUCs of C1-set/C1-set; (b) is the average AUCs of C1-set/MHC-I 

 

(a) (b) 
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Table 4-1 The average of predicting results of query DDIs in KBDOCK for the domain pair C1-set/C1-

set. 

Thres. Sen. Spec AUC MCC 

0.1 0.845 0.998 0.968 0.651 

0.2 0.961 0.998 0.978 0.709 

0.3 0.903 0.998 0.973 0.680 

mean 0.903 0.998 0.973 0.680 

The notations Thres., Pre., Spec, MCC, and AUC are Threshold and measurements Sensitivity, Specificity, 

MCC, and AUC,  respectively. 

 

Table 4-2 The average predicting results of query DDIs in KBDOCK for the domain pair C1-set/MHC-I. 

Thres. Sen. Spec AUC MCC 

0.1 0.736 0.996 0.927 0.515 

0.2 0.666 0.998 0.874 0.550 

0.3 0.520 0.997 0.801 0.346 

mean 0.640 0.997 0.867 0.471 

The notations Thres., Pre., Spec, MCC, and AUC are Threshold and measurements Sensitivity, Specificity, 

MCC, and AUC,  respectively. 

4.5 Conclusion 

In this chapter, a new method to predict residue-residue contacts was presented. The experiment 

results showed that our proposed method outperform the previous method with the same data set. 

Moreover, the method  promises for improving the source for template-based protein docking. 

 

 

 

 

Chapter 5  Conclusion and Future Research 

5.1 Dissertation summary 

Comprehensive knowledge of structure and energy of protein-protein interactions is demanded and is 

necessary to understand the metabolic interaction networks and protein complexes to design drugs 

that can modify or block interactions of disease treatments. Therefore, the target of this research is to 

develop of the machine learning approaches for characterizing protein-protein interactions at different 

levels. Our introduced methods aim to answer two questions: (1) “which protein domain pairs can 

interact?” and (2) “How do two protein domains interact?” 

5.2 Future works 

PPIs have been received the attention of many researchers in different fields. However, it is so far 

until we can completely understand how PPIs interact. Although this thesis addressed two questions to 

fulfill the knowledge of PPIs, but there are two remaining open problems to be considered further.  
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Firstly, expanding DDI network is still one of the begin steps in mining PPI networks. In the next 

step, how we use predicted DDIs to extend the current PPI networks, annotate protein’s functions, and 

predict protein complexes (especially transient and large protein complexes) are first open questions.  

Secondly, protein-protein interactions can be presented in heterogeneous graphs where the nodes 

present proteins, domains, functions, and the edges present the relationship between nodes. If we can 

develop new methods to answer the question what the relationship between two indirectly connected 

nodes is, it will be very helpful for understanding the mechanism of metabolic interaction networks. 

Finally, the bottleneck of protein docking is the shape of proteins (monomers) changes during 

forming protein complexes. This leads to the fail of protein docking methods such as ab-initio 

docking. How can we apply our second method for solving this problem is also an interesting ques-

tion. 
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