
 

 

 

 

 

Epitope and T-cell Reactivity Prediction  

Using Machine Learning Approaches 

(機械学習アプローチを用いたエピトープ予測およびT細胞

反応性予測) 
 

 

 

 

 

 

 

 

 

 

SAETHANG THAMMAKORN 

 

 

 

 

 

 

 

 

 

 

 

 

Graduate School of Natural Science and Technology 

Kanazawa University 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196734955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Abstract 

 

The development of new vaccines is very necessary to protect human populations from deadly infectious 

pathogens. Epitope identification is one of the most important steps in the vaccine development since 

epitopes play an essential role in the activation of the immune response. Epitopes are conventionally 

identified by immunological experiments. However, such approaches are time-consuming and laborious. 

Therefore, computational methods have been applied to speed up the process of the vaccine development 

by searching for novel epitopes. This application is commonly called epitope prediction.  

Currently, most of successful methods for epitope prediction used machine learning techniques. In 

this dissertation, a novel epitope prediction method named EpicCapo
+REF

 was developed. Nonapeptides, 

peptides with nine amino acids, were encoded numerically using our peptide-encoding scheme and then 

input to the support vector machine (SVM). This scheme utilized the information of amino acid pairwise 

contact potentials (referred to as AAPPs throughout this dissertation) and peptide-MHC (pMHC) contact 

sites. The predictive performance of EpicCapo
+REF

 outperformed other state-of-the-art methods in many 

datasets. Furthermore, EpicCapo
+REF

 was applied to identify candidates of promiscuous epitopes from 

influenza viruses. Many predicted candidates were consistent with previous immunological experiments.  

Additionally, we develop a new T-cell reactivity prediction method named PAAQD since recent 

studies shown unreliable results of epitope prediction methods. In PAAQD, nonapeptides were encoded 

numerically, using the combined information of AAPPs and quantum topological molecular similarity 

(QTMS) descriptors and then input to the random forest. We found that PAAQD provided high predictive 

performance and stability.  

We speculate that EpicCapo
+REF

 and PAAQD may be useful in the development of new vaccines. 
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Chapter 1  Introduction 

1.1 Human immune system 

The immune system is mechanisms of biological components that work together to defend an organism 

from “foreign” invaders. All living organisms possess such mechanisms and the human immune system is 

the most sophisticate one. The human immune system is able to detect various pathogens such as bacteria, 

fungi, viruses, and other infectious agents. This system consists of numerous types of cells and proteins, 

each of which has a specific function in the defense system. 

There are two major subdivisions of the immune system: the innate immune system and the adaptive 

immune system. In humans, the immune system is layered lines of defense. The first line of defense is the 

innate immune system which includes physical barriers such as skin, various types of white blood cells, 

and proteins. If pathogens successfully breach the innate immune system, they will engage with the 

second line of defense, the adaptive immune system. Responses of the innate immune system are 

immediate whereas responses of the adaptive immune system are slower. However, responses of the 

adaptive immune system are more specific and superior. This system also provides the immunological 

memory. This memory allows the adaptive immune system to act faster and more effective when the 

memorized pathogen is encountered [1]. Although these two lines of defense function differently, there 

are interactions between these systems. For examples, some components of the innate immune system can 

activate or support the adaptive immune system and vice versa. 

The adaptive immune system comprises of lymphocytes which are a specific type of white blood 

cells. Similar to leukocytes, lymphocytes can freely move around our body via the blood and lymph 

system. The major lymphocytes in the adaptive immune system are T and B cells which are produced by 

stem cells in the bone marrow [2]. There are two subtypes of T cells: cytotoxic T-lymphocyte (CTL) and 

helper T-lymphocyte (Th).  

1.2 Vaccines and immune system 

The adaptive or acquired immune system is the main target for the vaccine development since long-term 

protection can be established. Vaccines are agents that stimulate the protective immunity against 

pathogens and the diseases they cause. This protective immunity is an established immunogenic memory 

ready for the future encounter with the infectious pathogen. The term vaccine derives from Edward Jenner 

in 1796 when cowpox was inoculated into humans resulting in protection against smallpox. The word 

“vacca” means cow in Latin [3]. 

According to T and B cells, only a part of the pathogen is used in the activation of the immune 

response. This part is called antigen and it is a large molecule, usually. An antigen introduces several 

surface and molecular features that are the sites of interactions with CTLs, Th cells, B cells, and 

antibodies. Each feature defines as an epitope. Epitopes can be used to create new vaccines instead of 

using the entire cell of a pathogen. These vaccines can be designed to specifically activate responses of 

CTL, Th, or B cells. In this dissertation, we are focused on CTL epitopes. 

The vaccine development is very essential for mankind. From many past decades until now, 

vaccination saves countless life around the world and prevents suffering from diseases and permanent 

disabilities. Therefore, the vaccine development is necessary and should be concerned by the 

governments as the top priority in the public health plans. 
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1.3 Applications of machine learning in CTL epitope prediction 

When cells are infected by a pathogen, epitopes are transported to the cell membrane and presented to T 

cells via major histocompatibility complex molecules (MHCs). MHCs are classified into three main 

subclasses: class I, II, and III. MHC genes are highly polymorphic and have many variants. MHC class I 

(MHC-I) found on all nucleated cells. MHC-I presents epitopes to CTLs. MHC class II (MHC-II) 

presents epitopes to Th cells and normally found on macrophages, B cells, and dendritic cells. In humans, 

MHC is referred to as human leukocyte antigen (HLA) [4]. 

Generally, epitope is a small peptide consists of 8-12 amino acids for MHC-I and 15-24 amino acids 

for MHC-II. The complexes of peptide-MHC (pMHC) are shown in Figure 1.1. Binding clefts of MHC-I 

and II consist of two -helices and one β-sheet, but both terminals of the MHC-I cleft are closed whereas 

those of the MHC-II are open. Since the groove is closed, the length of epitopes is rather fixed for MHC-

I. In contrast, the length of epitopes bond with MHC-II is varying because of the opened groove [5]. 

To develop CTL vaccines, known epitopes are required. The identification of epitope is a non-trivial 

task since it is possible that a large number of surface and molecular features are presented on an antigen. 

The intensive physicochemical experiments are required to identify epitopes. However, such approach is 

time-consuming and laborious. Therefore, machine learning techniques have been applied to search for 

epitopes [6].  

 

Figure 1.1 Visualization of pMHC complexes.  

(A) MHC-I (PDB entry 1DUZ [7]). (B) MHC-II (PDB entry 1DLH [8]). 

In this study, we focus on MHC-I on humans that is HLA-I. The presentation of epitopes on HLA-I 

mainly targets to stimulate CTLs responses. There are three subdivisions of HLA-I: HLA-A, HLA-B, and 

HLA-C. Most of early epitope binding prediction methods concentrated on the HLA-A*02:01 allele 

because it is the most frequent allele of the A2 supertype in the Northeast Asian and Caucasian 

populations [9]. In addition, peptides composed of 9 amino acids known as nonapeptides have been 

popularly studied. 

Currently, most of successful methods for epitope prediction used machine learning algorithms. 

Examples of these methods are NetMHC [5], NetMHCpan [10], NetCTL [11], NetCTLpan [12], and 

SVRMHC [13]. The use of machine learning techniques usually requires a large number of training data. 

In case of epitope prediction, a large number of training peptides is recommended. Therefore, specific 

databases are needed. The most important database is the Immune Epitope Database (IEDB) [14] which is 
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the largest one. In addition, there are also other available databases such as SYFPEITHI [15], FIMM [16], 

MHCPEP [17], MHCBN [18], and AntiJen [19]. 

Machine learning-based epitope prediction techniques significantly accelerate the process of the 

vaccine development. However, the effectiveness of these techniques depends on the amount of 

experimental data used for training. In some rare HLA alleles, there are only small numbers of 

experimented epitopes available. Therefore, the increase in experimental data will improve the accuracy 

of epitope prediction [20]. 

1.4 Epitope prediction versus T-cell reactivity prediction 

Recent experiments show that predicted epitopes by epitope prediction methods are not always activate T-

cell responses [21]. In addition, other biological factors were more strongly correlated to T-cell responses 

than MHC binding affinities [22]. Therefore, immunogenicity of peptides cannot be accurately inferred 

from the result of epitope prediction. 

T-cell reactivity prediction is more sophisticate than epitope prediction since many biological factors 

are needed to be concerned. This complication is difficult to be learned by machine learning approaches 

[23–25]. The first published method for T-cell reactivity prediction is POPI [26]. POPI used 

physicochemical properties from the AAindex database [27] to encode peptides into numerical vectors. 

These vectors are then input to the support vector machine (SVM). Afterwards, POPISK [25] was 

developed. POPISK simply used the SVM with the string kernels. In this dissertation, besides developed 

new epitope prediction method, we also proposed new T-cell reactivity prediction method. 

1.5 Objectives 

The main objectives of this dissertation are as follows:  

(1) To develop a novel epitope prediction method  

(2) To develop a new T-cell reactivity prediction method 

1.6 Contribution 

According to the above objectives, the main contributions of this thesis are summarized as follows: 

(1) A new epitope prediction method which we called EpicCapo and its variants, EpicCapo
+
 and 

EpicCapo
+REF

 were developed. EpicCapo
+REF

 achieved high performance and outperformed other methods 

in many datasets of HLA alleles. In some datasets, although there are small numbers of training peptides, 

EpicCapo
+REF

 still provided the high performance. Therefore, this method is a promising tool for the 

development of new vaccines. 

(2) A new T-cell reactivity prediction method which we called PAAQD was developed. The performance 

of PAAQD is at least comparable with the previous high performance T-cell reactivity prediction method. 

In addition, our method shows high predictive stability when tested with the blinded dataset. 

 

Chapter 2  Review of machine learning in immunoinformatics 

2.1 The major usages of machine learning algorithms in immunoinformatics 

The immune system is composed of many networks of interacting molecules. To understand complicated 

mechanisms in the immune system, immunologists have been using high throughput experimental 

techniques. By the use of these techniques, large amount of data was generated. The development of new 

computational techniques is required for collecting and analyzing these data. This has given rise to a new 
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field called immunoinformatics. Immunoinformatics is one branch of bioinformatics that focused on in 

silico analysis and modeling of immunological data and problems [28, 29]. 

Most immunoinformatics researches are related to prediction of potential B- and T-cell epitopes. The 

most successful B- and T-cell epitope prediction methods applied machine learning algorithms. Hereby, 

the main streams of these researches are categorized as follows. 

2.1.1 Artificial neural network  

The artificial neural networks (ANNs) are mathematical models inspired by biological neural networks. 

ANNs are capable of finding relationships and describing nonlinear data [30]. The examples of T-cell 

epitope prediction method that used ANN are NetMHC [5], NetMHCpan [10], NetCTL [11], and 

NetCTLpan [12]. 

2.1.2 Support vector machine 

The support vector machine (SVM) is a supervised learning method that has been used for data analysis 

and pattern recognition. The SVM was first developed by Vapnik [31]. The SVM is described as a non-

probabilistic binary classifier and belongs to the group of the kernel-based approaches [32]. The examples 

of epitope prediction method that used ANN are SVRMHC [13], TAPPred [33], Pcleavage [34], and 

COBEpro [35]. 

2.1.3 Hidden Markov models 

The hidden Markov models (HMMs) were described by Baum et al. [36]. The examples of epitope 

prediction method that used HMM are PredTAP [37]. 

2.2 Immunoinformatics databases 

Nowadays, there are many immunoinformatics databases. Most of them are related to T- or B-cell 

epitopes. Each database has specific features and purposes. Some databases include 3D structures of 

MHC molecules or peptides and also provide epitope prediction tools. Table 2-1 describes available 

immunoinformatics databases. 

Table 2-1 The description of the datasets 

Type Name URL Ref. 

T-cell epitopes JenPep http://www.darrenflower.info/jenpep/ [38] 

SYFPEITHI http://www.syfpeithi.de [15] 

FRED http://www-bs.informatik.uni-

tuebingen.de/Software/FRED 

[39] 

MHCBN http://www.imtech.res.in/raghava/mhcbn/ [18] 

B-cell epitopes CED http://immunet.cn/ced/ [40] 

Bcipep http://www.imtech.res.in/raghava/bcipep [41] 

Epitome http://cubic.bioc.columbia.edu/services/epitome/ [42] 

Both T- and B- cell 

epitopes 

IEDB http://www.iedb.org/ [14] 

IMGT http://www.imgt.org/ [43] 

MHCPEP http://wehih.wehi.edu.au/mhcpep/ [17] 

AntiJen http://www.ddg-

pharmfac.net/antijen/AntiJen/antijenhomepage.htm 

[19] 

Allergen Database of IUIS http://www.allergen.org [44] 

Allergen Pro http://www.niab.go.kr/nabic/ [45] 

SDAP http://fermi.utmb.edu/SDAP/ [46] 

Information related to 

molecular evolution of 

immune system 

components  

ImmTree http://bioinf.uta.fi/ImmTree [47] 

Immunome database http://bioinf.uta.fi/Immunome/ [48] 

ImmunomeBase http://bioinf.uta.fi/ImmunomeBase [49] 

Immunome Knowledge 

Base 

http://bioinf.uta.fi/IKB/ [50] 
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Chapter 3  EpicCapo 

3.1 Introduction 

In the last decade, there are outbreaks appeared in the human populations such as SARS in 2003, avian flu 

(H5N1) in 2006, and swine flu (H1N1) in 2009. These outbreaks cause high mortality around the world. 

To prevent human populations from future outbreaks, the novel vaccine development is necessary. From 

the reviews in the chapter 1, epitope prediction methods are used to accelerate the process of the vaccine 

development. In this chapter, we would like to introduce our novel epitope prediction method named 

EpicCapo and its variants, EpicCapo
+
 and EpicCapo

+REF
. 

3.2 Methods 

3.2.1 Peptide data encoding 

We propose a novel peptide-encoding scheme for machine learning algorithms. This scheme utilized the 

information of pMHC contact sites retrieved from the international ImMunoGeneTics information 

system, IMGT [43], the allele-specific positional scoring matrices developed by SMM
PMBEC

 [51], and the 

amino acid pairwise contact potentials (AAPPs) from AAindex [27]. We define a score Sk,i
(n)

 for the i
th
 

amino acid of the nonapeptide n under a k
th
 type of AAPP as follows: 

    
( )    (  

( ))  (∑     (  
( )   )

 

   

∑   

 

   

⁄ )   

Here, we denote the i
th
 amino acid of the nonapeptide n and the j

th
 amino acid of HLA by ui

(n)
 and vj, 

respectively. L is the length of the HLA protein, Ti(a) is the i
th
 position score of the amino acid a for the 

nonapeptides described by SMM
PMBEC

, and δij is an indicator variable that takes the value of 1 if the i
th
 

amino acid of a nonapeptide and the j
th
 amino acid of HLA contact each other, and 0 otherwise. The 

positional scoring matrix Ti(a) is trained based on training data and multiplied by −1 to reverse the order 

of values (a high positive value denotes high preference between an amino acid and the position) and 

scaled into the range of 1 to 10 since we need to avoid loss of information when Ti(a) equals zero. In fact, 

any range that does not include zero can be used; in this study, it is the range of 1 to 10. Intuitively, this 

score represents average pair-potential of contact sites, weighted by the position-specific amino acid score 

for nonapeptides. Let K be the number of AAPPs available, and M be the length of the peptide, set to 9 

throughout this study. Using this scoring scheme, we transform a nonapeptide n into a M × K-dimensional 

numerical vector, whose (M(k–1) + i)
th
 element is Sk,i

(n)
. For example, the encoded nonapeptides consist of 

9 features if one AAPP is used and 360 features if 40 AAPPs are used. Figure 3.1 illustrates an example 

of the data-encoding scheme for the first position of the nonapeptide. 
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Figure 3.1 Our peptide data-encoding scheme, using the first position of a nonapeptide as an 

example.  

3.2.2 Benchmark datasets 

We used the benchmark datasets of 34 MHC-I alleles provided by Peters et al. [52]. After encoding these 

datasets using our scheme, encoded data were then input to the SVM implemented in the R package 

kernlab [53]. The performances were evaluated in classification tasks, using a 5-fold cross validation. The 

predictive performance is evaluated using area under receiver operating characteristic curve (AUC). We 

compared the results of our method with those of ARB, NetMHC, SMM, and SMM
PMBEC

. We named our 

method EpicCapo which is the combination of the encoding scheme with the SVM. 

3.2.3 EpicCapo
+
 and EpicCapo

+REF
 

EpicCapo was further developed as EpicCapo
+
 by selecting important AAPPs. After that, EpicCapo

+
 was 

improved to EpicCapo
+REF

 by employing Relief-F algorithm to remove irrelevant features.  

3.2.4 Identification of candidates of promiscuous epitopes 

EpicCapo
+REF

 was further tested to identify candidates of promiscuous epitopes—i.e., nonapeptides that 

were predicted to be MHC binders for various HLA alleles—from the protein sequences of four influenza 

A viral subtypes: H1N1 (A/PR/8/34), H3N2 (A/Aichi/2/68), H1N1 (A/New York/4290/2009), and H5N1 

(A/Hong Kong/483/97). The identified epitopes were validated by cross-checking with the results of 

immunological experiments. 

3.3 Results and discussion 

3.3.1 Classification results of benchmark datasets 

As seen in Table 3-1, the performance of EpicCapo
+
 was higher than EpicCapo and comparable with 

NetMHC. The overall performance of EpicCapo
+
 is significantly higher than that of other methods 

according to a paired t-test (two-tailed) comparison of average AUCs from all alleles. 
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Table 3-1 Classification results of 34 allele datasets. 

MHC # of peptides AUC 

ARB SMM SMMPMBEC NetMHC EpicCapo EpicCapo+ 

HLA-A*01:01 1157 0.964 0.980 0.977 0.982 0.972 ± 0.004 0.977 ± 0.003 

HLA-A*02:01 3089 0.934 0.952 0.946 0.957 0.950 ± 0.004 0.951 ± 0.004 

HLA-A*02:02 1447 0.875 0.899 0.899 0.900 0.901 ± 0.004 0.909 ± 0.004 

HLA-A*02:03 1443 0.884 0.916 0.916 0.921 0.920 ± 0.003 0.923 ± 0.003 

HLA-A*02:06 1437 0.872 0.914 0.916 0.927 0.925 ± 0.004 0.927 ± 0.004 

HLA-A*03:01 2094 0.908 0.940 0.928 0.937 0.934 ± 0.004 0.938 ± 0.003 

HLA-A*11:01 1985 0.918 0.948 0.939 0.951 0.945 ± 0.004 0.951 ± 0.002 

HLA-A*24:02 197 0.718 0.780 0.801 0.825 0.853 ± 0.012 0.865 ± 0.011 

HLA-A*26:01 672 0.907 0.931 0.924 0.956 0.941 ± 0.005 0.957 ± 0.007 

HLA-A*29:02 160 0.755 0.911 0.916 0.935 0.944 ± 0.008 0.945 ± 0.010 

HLA-A*31:01 1869 0.909 0.930 0.925 0.928 0.930 ± 0.002 0.935 ± 0.003 

HLA-A*33:01 1140 0.892 0.925 0.925 0.915 0.926 ± 0.004 0.934 ± 0.004 

HLA-A*68:01 1141 0.840 0.885 0.885 0.883 0.891 ± 0.003 0.899 ± 0.003 

HLA-A*68:02 1434 0.865 0.898 0.889 0.899 0.901 ± 0.005 0.907 ± 0.003 

HLA-B*07:02 1262 0.952 0.964 0.960 0.965 0.960 ± 0.004 0.964 ± 0.002 

HLA-B*08:01 708 0.936 0.943 0.956 0.955 0.942 ± 0.005 0.951 ± 0.004 

HLA-B*15:01 978 0.900 0.952 0.940 0.941 0.940 ± 0.006 0.950 ± 0.005 

HLA-B*18:01 118 0.573 0.853 0.880 0.838 0.886 ± 0.013 0.911 ± 0.009 

HLA-B*27:05 969 0.915 0.940 0.941 0.938 0.949 ± 0.005 0.958 ± 0.003 

HLA-B*35:01 736 0.851 0.889 0.889 0.875 0.900 ± 0.004 0.907 ± 0.007 

HLA-B*40:02 118 0.541 0.842 0.843 0.754 0.811 ± 0.007 0.912 ± 0.011 

HLA-B*44:02 119 0.533 0.740 0.739 0.778 0.798 ± 0.009 0.861 ± 0.013 

HLA-B*44:03 119 0.461 0.770 0.753 0.763 0.813 ± 0.010 0.871 ± 0.008 

HLA-B*51:01 244 0.822 0.868 0.895 0.886 0.930 ± 0.012 0.948 ± 0.015 

HLA-B*53:01 254 0.871 0.882 0.885 0.899 0.916 ± 0.008 0.940 ± 0.008 

HLA-B*54:01 255 0.847 0.921 0.935 0.903 0.927 ± 0.008 0.938 ± 0.006 

HLA-B*57:01 59 0.428 0.871 0.843 0.826 0.792 ± 0.009 0.854 ± 0.010 

HLA-B*58:01 988 0.889 0.964 0.945 0.961 0.959 ± 0.005 0.964 ± 0.004 

H-2 Db 303 0.865 0.912 0.901 0.933 0.940 ± 0.014 0.968 ± 0.006 

H-2 Dd 85 0.696 0.853 0.837 0.925 0.956 ± 0.016 0.985 ± 0.017 

H-2 Kb 223 0.792 0.810 0.833 0.850 0.844 ± 0.021 0.880 ± 0.017 

H-2 Kd 176 0.798 0.936 0.931 0.939 0.950 ± 0.015 0.966 ± 0.009 

H-2 Kk 164 0.758 0.770 0.793 0.790 0.883 ± 0.009 0.926 ± 0.008 

H-2 Ld 102 0.551 0.924 0.942 0.977 0.984 ± 0.012 0.992 ± 0.013 

Average  0.801 0.895 0.895 0.900 0.912 0.931 

t-test|ARB  NA 4.37E-5 3.69E-5 1.25E-5 5.21E-6 2.64E-6 

t-test|SMM   NA 8.61E-1 2.30E-1 8.28E-3 2.87E-5 

t-test|SMMPMBEC    NA 2.61E-1 3.50E-3 8.49E-6 

t-test|NetMHC     NA 8.57E-3 7.74E-5 

t-test|EpicCapo      NA 1.95E-5 

For each dataset, AUCs were evaluated based on 5-fold cross validation. In the lower part, p-values of average AUCs were calculated using 

paired t-tests (two-tailed). 

Means and standard deviations were calculated by 20 iterations of 5-fold cross validation for EpicCapo and EpicCapo+. 

Underlined values represent the highest performance among ARB, SMM, SMMPMBEC, and NetMHC.  

Values in bold represent significant improvements of EpicCapo or EpicCapo+ AUCs from 20 iterations of 5-fold cross validation over the 

underlined values according to t-tests (one-tailed, significance level = 0.01). 
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3.3.2 Features selected by EpicCapo
+REF

 

The performance and number of features selected by EpicCapo
+REF

 are shown in Table 3-2. The overall 

performance of EpicCapo
+REF

 is higher than other methods. 

Table 3-2 Number of selected features by EpicCapo
+REF

 using 14 HLA-A allele datasets. 

Allele AUC of EpicCapo
+REF

 # of features selected 

A*01:01 0.980 72 

A*02:01 0.958 62 

A*02:02 0.913 18 

A*02:03 0.925 104 

A*02:06 0.926 141 

A*03:01 0.946 58 

A*11:01 0.956 35 

A*24:02 0.877 31 

A*26:01 0.960 18 

A*29:02 0.955 23 

A*31:01 0.940 46 

A*33:01 0.940 17 

A*68:01 0.904 40 

A*68:02 0.913 79 

Average 0.935  

 

3.3.3 Candidates of promiscuous epitopes for the development of influenza A viral vaccines 

The total number of promiscuous epitopes predicted by EpicCapo
+REF

 is 76. 51 peptides (67.1%) were 

immunologically validated as positive, whereas 9 peptides (11.8%) were validated as negative. No 

evidence of immunological validation could be obtained for 16 peptides (21.1%). These results indicate 

that our newly developed method provides a markedly high accuracy in epitope identification, given the 

fact that most of the identified epitopes could be correlated with immunological evidence. However, even 

without such evidence, those epitopes identified by our computational approach might be considered as 

candidates for the new vaccine development. 

3.4 Conclusions 

In this chapter, we have developed a novel method for epitope prediction. Our method achieved high 

performance in testing with the benchmark datasets. In addition, our study identified a number of 

candidates of promiscuous CTL epitopes from four influenza A viral strains, consistent with previously 

reported immunological experiments. This consistency in results strongly supports the accuracy of our 

method. We speculate that our techniques may be useful in the development of new vaccines. 
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Chapter 4  PAAQD 

4.1 Introduction 

Recent studies revealed that predicted peptides with high binding affinity to MHC-I molecules did not 

always result in T-cell responses [21, 54]. In addition, other factors were more strongly correlated to T-

cell responses than MHC binding affinities [22]. Therefore, immunogenicity could not be accurately 

determined by existing epitope prediction methods. 

In this chapter, we would like to introduce our novel T-cell reactivity predictor named PAAQD. 

4.2 Methods 

4.2.1 Datasets 

Two datasets were used in this study. The first dataset is called the IMMA2 dataset, collected by Tung et 

al. (2011) [25]. The second dataset was collected from IEDB database [14] by selecting nonapeptides that 

were specific to the HLA-A2 supertype. All of these nonapeptides are not included in the IMMA2 dataset. 

We called the latter dataset as the validation dataset. The sequence preference of the validation dataset is 

different from the IMMA2 dataset. 

4.2.2 Peptide encoding 

As mentioned in the chapter 3, nonapeptides were encoded numerically using our peptide encoding 

scheme before input to the classifier. However, in this chapter, the allele-specific positional scoring 

matrices were not included in the encoding scheme. Therefore, we define a score     
( )

 for the     amino 

acid of the nonapeptide   under a     type of AAPPs as follows: 

 

    
( )   ∑     (  

( )   )

 

   

∑   

 

   

⁄  

Each encoded peptide was combined with the corresponding feature vector constructed by using 

QTMS descriptors [55]. There are four types of QTMS descriptors used in this study (see Table 4-1). 

Table 4-1 QTMS descriptors used in this study. 

Descriptor Description # of vector 

CBFQ Common bonds  factor analysis of QTMS 6 

CDFQ Common bonds descriptor-based factor analysis of QTMS 3 

CUFQ Common bonds unfolded-data-based factor analysis of QTMS 5 

ADFQ All bonds descriptor-based factor analysis of QTMS descriptors 7 

 

4.2.3 Prediction of peptide immunogenicity using the IMMA 2 dataset 

The proposed peptide-encoding scheme was applied to the IMMA2 dataset and input to the random forest 

implemented in Weka [56]. The number of trees generated and the number of features randomly sampled 

as candidates at each split were set to 200 and 10, respectively. The predictive performance is evaluated 

using three measures; AUC, overall accuracy (ACC), and Matthew’s correlation coefficient (MCC). We 

compared our method with POPI [26] and POPISK [25]. 
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4.2.4 Prediction of peptide immunogenicity using the validation dataset 

The final model for T-cell reactivity prediction was constructed based on the IMMA 2 dataset. This 

model was used to predict immunogenicity of peptides in the validation dataset. The evaluated 

performance indicates the predictive stability when peptides with different sequence preferences from 

training data were input to the model. The PAAQD performance was compared with POPISK. 

4.3 Results and discussion 

4.3.1 The predictive performance of PAAQD on the IMMA 2 dataset 

Figure 4.1 shows the performance of the concerned methods based on the IMMA 2 dataset. This result 

indicates that PAAQD outperformed POPI-modified and provided comparable performance with 

POPISK. 

 

Figure 4.1 Comparison of 20 independent iterations of the 10-fold cross validation performance 

of POPI, POPISK, and PAAQD.  

4.3.2 Result of peptide immunogenicity prediction using the validation dataset 

The result of peptide immunogenicity prediction using validation dataset is shown in Figure 4.2. ACC and 

MCC of PAAQD were 0.72 and 0.37, respectively. ACC and MCC of POPISK were 0.68 and 0.28, 

respectively. PAAQD significantly outperformed POPISK 4% and 9% in ACC and MCC, respectively. 

This result indicated that PAAQD outperformed POPISK. Consequently, PAAQD provided more 

predictive stability than POPISK when using the test data with sequence preferences different from the 

training data. 

We examined the over- and underrepresented amino acids in corresponding positions of the IMMA 2 

dataset and the validation dataset using the two-sample logos [57]. In the two-sample logos, differences 

among amino acids were statistically significant with the level of 0.01 when using the two-sample t-test. 

The two-sample logos of the IMMA 2 and validation datasets are shown in Figures 4.3 and 4.4, 

respectively. 
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Figure 4.2 The result of peptide immunogenicity prediction evaluated on the validation dataset.  

 

Figure 4.3 Two-sample logo that represents over- and underrepresented amino acids in the 

IMMA 2 dataset. 

 

 
 

Figure 4.4 Two-sample logo that represents over- and underrepresented amino acids in the 

validation dataset. 

4.4 Conclusion 

We developed a novel method for T-cell reactivity prediction which we call PAAQD. PAAQD achieved 

the comparable performance with POPISK which is a high-performance T-cell reactivity predictor when 

testing with the IMMA 2 dataset. Additionally, PAAQD outperformed POPISK when testing with the 

validation dataset. This indicated that PAAQD provided more predictive stability when peptides with 

different sequence preferences from training data were input to the model. We speculate that PAAQD 

may be useful in identifying immunogenic peptides for the development of new vaccines. 

 



12 
 

Chapter 5  Conclusion and future research 

5.1 Dissertation summary 

Epitope prediction methods are important tools that speed up the process of the vaccine development. In 

this dissertation, a new epitope prediction method named EpicCapo and its variants, EpicCapo
+
 and 

EpicCapo
+REF

 were developed. The performance of EpicCapo
+REF

 outperformed other state of the art 

methods in many datasets. 

According to recent studies, results of epitope prediction methods are not always reliable. Therefore, 

we developed a new T-cell reactivity prediction method named PAAQD. The performance of PAAQD is 

at least comparable with the previous high performance T-cell reactivity prediction method. However, our 

method shows higher predictive stability when tested with the blinded dataset. 

We hope that EpicCapo
+REF 

and PAAQD may be useful in the development of new vaccines. 

5.2 Future works 

As we have shown before, our methods for epitope and T-cell reactivity prediction are very promising for 

the new vaccine development. However, an input peptide must be a nonapeptide which is a peptide 

composed of 9 amino acids. In the future, we will develop the length independent prediction method by 

using other algorithms such as string kernel in the SVM and hidden Markov model. In addition, since we 

developed the peptide encoding schemes for both epitope and T-cell reactivity prediction. In the 

upcoming works, we will apply these schemes in other studies such as protein-ligand binding, protein-

protein interaction (PPI) prediction, and drug discovery. 
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