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ABSTRACT 

This dissertation presents a potential use of array MOS gas sensors in electronic-nose 

system which driven by temperature modulation-SDP (Specified Detection Point) to 

identify the soils and their status by capturing the gaseous profiles. We built a self-made 

e-nose consists of (a) 6 MOS gas sensors which driven and acquired wirelessly to a 

computer through (b) a PSoC CY8C28445-24PVXI-based interface, and (c) the Principal 

Component Analysis and Neural Network as pattern recognition tools. We tested the e-

nose to identify 2 soils (sandy and loam sand) and the presence of nutrient addition as 

well. The gaseous compounds are accumulated in a static headspace with termostatting 

and stirring under controlled condition to optimize the equilibration. The patterns are 

trained by back-propagation algorithm which employs a log-sigmoid activation function 

and updates the weights using search-then-converge schedule. PCA results indicate the 

distinct soil gaseous profiles can distinguish the soil type clearly and to indicate the 

presence of additional nutrients in soil and their level as well. Moreover, the PCA helps 

improving the NN classification to differ level of compost addition in soil. An optimum 

single hidden layer architecture (3-6-3) NN is determined and employed successfully to 

discriminate among the three categories of compost dose (without, normal, and high). 

Keywords: Soil gases, MOS gas sensor, temperature modulation, specified detection 

point, E-nose application. 

 

1. Introduction. 

The logical reasons for this study is that since the existence and content of smell 

molecules and organic substances in different soil type and the composition of volatile 

substances of nutrient addition would provide a unique soil gaseous profile (also called 

fingerprints). It is might resulted from decomposition of organic matters and chemical 

reactions among others. The smell molecules of soil are known as geosmin and 

methylisoborneol which mostly produced by bacteria belonging to the most genus 

Streptomyces that involves a number of enzymes, one of key enzymes is germacradienol 

synthase (Green, Blincoe ’, & Weeth, 1975; Mei Wang & Cane, 2008; Wang & Cane, 

2008). And, the odorous compounds result from decomposition of matter (Scaglia et al., 

2011; Vass et al., 2008) and some strong evidences which pointed that resulted gases and 

volatile organic compounds in the soil atmosphere in vary types and relative 

concentrations (Peñuelas et al., 2014; Wheatley, Millar, & Griffiths, 1996) might be 

produced due to fertilizer adding and microbial activity (De Cesare et al., 2011) which 

influenced by environment conditions (Milchunas, Parton, Bigelow, & Schimel, 1988; 

Sherlock, Freney, Bacon, Weerden-TJ, & Van der Weerden, 1994; Smith et al., 2003).  

Based on qualitative soil gaseous analysis, this dissertation aims to examine the 

potential of use an array of chosen MOS gas sensors which driven by temperature 

modulation-SPD in an e-nose-based system for early and rapid indication of soil 

status/condition. All MOS gas sensors are driven and acquired wirelessly into a computer 

by a PSoC based interface system through XBee serial communication (IEEE 802.15.4). 

We introduced the new technique namely temperature modulation with specified 

detection point (temperature modulation-SDP) which is able applied to drive the 

single/array of MOS gas sensor (Sudarmaji & Kitagawa, 2015). Basically, it is similar 
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with general temperature modulation, yet it also modulates the sensing (detector) unit that 

associated and in same phase with temperature modulation on the heater unit. The SDP 

means the time of output detection of MOS gas sensor is put at specified point (i.e. at 

middle of sensing unit modulation). The principle of this technique is shown in Fig. 1. In 

our first investigation, the rectangular (square) modulation was successfully designed and 

it led to response more distinct and sloping at lower frequency. It may increase the 

sensitivity and selectivity either on single or array sensors rather than static temperature. 

By applying selected modulations on 6 MOS gas sensor and shown with PCA, it provided 

more than 60% increment of selectivity compared with static temperature in 

discriminating 3 gases (Toluene, Ethanol and Ammonia). 

 

2. Experimental Material and Method. 

2.1. The Self-made E-Nose. 

We built self-made e-nose (Fig. 2) that consists of 3 main unit. (1) Sensing unit: 6 MOS 

gas sensors (TGS2444, TGS2602, TGS825, FISAQ1, FISSB30, and FIS12A) which 

driven by temperature modulation-SDP and expected to response soil gases and VOCs, 

and 2 environment sensors (LM35 and HSM30G) to monitor temperature and humidity 

in sensor chamber. (2) An interface system based on PSoC CY8C28445-24PVXI as 

modulation generator and data acquisition (PSoC diagram is shown in Fig. 3). And (3) 

Principal Component Analysis and Neural Network as preprocessing and pattern 

recognition respectively which are developed under Visual Studio 2011. 
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Fig. 1. Temperature modulation-SDP: (a) the principle, (b) the schematic of temperature 

modulation-SDP for single/array TGS sensor, and the modulation signal. VH is heater 

voltage, VC is sensing circuit voltage, SVH is modulation signal for VH, and SVC is 

modulation signal for VC (Sudarmaji & Kitagawa, 2015). 
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Fig. 2. Measurement diagram of soil vapor fingerprint based on e-nose principle.  
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Fig. 3. Diagram block of system based on PSOC CY8C28445-24PVXI with pins 

configuration (Sudarmaji & Kitagawa, 2015). 

 

2.2. Soil Preparation and Sample Handling. 

The two soil types (sandy loam and sand soil) were derived from the top 15 cm and 

land without prior soil management. Sandy clay loam soil was taken from land around 

Kanazawa University (36°32'46.3380"N, 136°42'11.5452"E), while sand soil was taken 

from around coastal area of Uchinada Beach (36°38'39.19"N, 136°37'37.88"E), a sand 

hill on Sea of Japan, which is located about 17 km from Kanazawa University. The 

collected soil samples were crushed and sieved manually at <2 mm after plant derbies, 

turfs, and gravels were carefully removed. As soil treatments, we added an amount of 

fermentation compost. The compost is given at average and high doses as recommended 

in practical application, i.e. 20 and 30 ton ha-1 DM (Dry Matter) respectively (Haber, 

Deller, Flaig, Schulz, & Reinhold, 2010). Thus, we added it at rate 0, 15, and 22.5 mg/g 

soil sample corresponding nearly to 0, 20, and 30 ton ha-1 DM respectively by considering 

that it is generally assumed that in 1 ha soil area, 15 cm deep, contains 2Mkg despite bulk 

density of soil varies considerably (Conklin, 2014; King, 1911). 

We prepared the samples in static headspace (SH) into solution since soil contains 

many soluble substances in water and it has bigger diffusion coefficient than solid, thus 

leads shorter diffusion and consequently equilibration times. We determined the mass of 

soil sample using Eq. 1 to define the mass of pure water and compost addition, where ms 

expresses mass of soil (g), Vv is volume of headspace vial (ml), s is bulk density of soil 

(sandy loam = 1.44 g/ml and sand = 1.51 g/ml) (Yu et al., 1993), w is density of pure 
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water =0.998 g/ml,  (VG/VS) is phase ratio in SH, and wc is water content (in fractional 

number). Table 1 resumes the properties of parameters used and calculation results. 

ms =
Vv x ρs x ρw

(β + 1) x (ρw + wc x ρs)
 Eq. 1 

Table 1. Properties of samples of soil, fertilizer, water, and static headspace condition.  

Properties of SH Value 

Volume of SH Vial 90 ml 

Bulk density of sandy loam soil 1.44 g/ml 

Bulk density of sand soil 1.52 g/ml 

Phase ratio 1.5 

Water content 1 

Density of pure water 0.998 g/ml 

Mass of sandy loam soil 21.22 g 

- mass of compost adding at 20 ton/ha 0.318 g 

- mass of compost adding at 30 ton/ha 0.477 g 

Mass of sand soil 21.63 g 

- mass of compost adding at 20 ton/ha 0.324 g 

- mass of compost adding at 30 ton/ha 0.287 g 

We optimized the headspace equilibration by both agitating (i.e. stirring) and 

termostatting concurrently for all samples on the same phase ratio. We set 30 minutes, 

60℃, and 200 rpm of equilibration time, temperature, and stirring frequency respectively. 

We utilized The Corning PC-4200D to heat and stir the sample in the SH vial. We used 

90 ml glass container with sealed cap as headspace vial which is put inside the 500 ml 

open beaker filled with 100 ml water (Fig. 4). It aims to maintain the equilibrium relative 

humidity the same as the soil sample. And, the headspacing was conducted inside a room 

with controlled-temperature. By those ways, all soil samples were under the same 

treatments and environmental conditions. 

Alcohol thermometer

Magnetic 

bar
water

 

Fig. 4. Headspace conditioning with heating and stirring using The Corning PC-420D in 

SH sampling, the layout of Corning modified from (Corning Inc., 2007). 

 

2.3. Measurement Procedures. 

The measurement of soil gaseous profiles are performed using close measurement 

method by switching between the reference gas (filtered air with silica gel) as baseline 

and analyte gas (soil gaseous compounds). The flow direction and rate of gas are 

controlled by 3-way valve and The Koflok mass flow controller (MFC) respectively. The 
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MFCs are set at 0.3 lpm. As shown in Fig. 5 the reference gas flows through point a 

(valve-1), point c (valve-2), and point e (valve-3), while the analyte gas flows through 

point b (valve-1), point d (valve-2), and point e (valve-3). The purging of sensor chamber 

was in open measurement mode by disconnecting the hose of inlet pump from valve-2, 

directing the valve-3 to point f, and turning on the purge pump. 

The temperature modulation was set on 0.25 Hz; 75% duty cycle to drive all MOS gas 

sensors, except TGS2444. As initial action at first time turning on, the system turned on 

operating in reference measurement mode for one hour to allow the MOS gas sensors 

reach stabilized. The gas sensors are expressed in resistance and the profiles is defined by 

its Sensitivity (S), where R0 is sensor resistance of air and Rg is sensor resistance of 

analyte gas exposure (Eq. 2) (Arshak, Moore, Lyons, Harris, & Clifford, 2004; Huang, 

Liu, Shao, Pi, & Yu, 2003). Concisely, the overall steps of measurement is shown in Fig. 

6. 

 
Fig. 5. Experimental setup to capture the soil gaseous compounds using static headspace 

extraction in sample flow system (close) measurement. 
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Fig. 6. Measurement steps to indicate the nutrient level based on soil gaseous profiles.  

 

3. Results and Discussion. 

Initially, we observed Rg for 5 minutes after R0 measurement to determine the response 

of each sensor and obtain the best starting measurement time for Rg measurement since 

we assumed the gas distribution is not spread evenly. Significantly, we found that overall 

sensors reached a stable state after 150 s (2.5 minutes) which strongly indicate they 

sensing stably the flow of gas that have been spread evenly in the close measurement 

system. Therefore we took this time be the starting point of Rg measurement.  

Fig. 7 also shows that most sensor has similar response (except TGS2602 and 
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TGS2444) to the flow and distribution of gas produced in the headspace, but reaches a 

different stability time. Particularly on TGS2444, even though it seem most distinguish 

(seem unstable and more ripples) among the others, yet it still showed its typical response. 

When it is expressed in ppm (part per million) using graphical calibration in its datasheet 

(Figaro Engineering Inc., 2011), the values lie around 2 ppm. While the resistance of 

TGS2620 suddenly dropped then toward its stability response. 

  
Fig. 7. The response of TGSs (2444, 2602, 825) and FISs (AQ1, SB30, 12A) to soil 

samples (sandy loam soil and sand soil) without compost addition under 0.25 Hz; 75% 

modulation in 5 minutes. 

Individual soil gaseous profiles on each soil type shown in Fig. 8(a). The chart reveals 

that the highest concentration during the headspace process was hydrogen sulfide (H2S). 

It highly indicated there much acid sulfate materials in soil samples. This gas is produced 

by some bacterial actions upon organic matter with the aid of the sulfates oxygen 

contained as an oxidation in low oxygen level (like flooded soil) which depends on 

ambient conditions such as temperature, humidity, and the concentration of certain metal 

ions (Chou et al., 2014; Elion, 1927). And, soils may absorb amounts of H2S from the air 

through atmospheric deposition, migration of mobilized pore water, or sulfuric material 

from spills and leaks, then retaining most of it in the form of elemental sulfur as sediment 

(Chou et al., 2014). The result also shows that the sandy loam soil provided higher 

concentration than sand soil since it contained higher organic matter.   

However, we also observed that there is an overlapping response in differing level of 

compost addition (Fig. 8 (b)), especially between in dose 20T/ha and 30T/ha, in which 

this phenomena also shown in the other sensors. However, it may be reduced by new 

dimension projecting using PCA as commonly used in E-nose.  

 

3.1. Performance of Discrimination of Nutrient Level in Soil. 

PCA projects variables onto fewer dimensions, original data can be condensed to a few 

variables reflecting the most relevant analytical information (Hines, Boilot, Gardner, & 

Gongora, 2003). This offers an advantage that the classification of unknowns is processed 

much faster, thus reducing detection time. We put three principal components (PCs) to 

distinguish between headspace volatiles released from soil samples and input of neural 

network since they represent more than 90% of divergence samples data (Table 2). 
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Fig. 8. (a) Individual Sensitivity of sensor, average of 5 replicates, to 3 level of compost 

adding in different soil, 1:TGS2444, 2:TGS2602, 3: TGS825, 4: FISAQ1, 5: FISSB30, 

and 6: FIS12A, (b) Experiment result of TGS 825 responses to compost dose (Ton/Ha) 

in sandy loam and sand soil for 5 replicates. 

Table 2. Cumulative proportion of 3 PCs resulted from 6 sensors used.   

PC 
PCs proportion 

SL* S* SL+S* Soil diff* 

PC1 64.27% 75.61% 66.53% 52.69% 

PC2 86.34% 88.96% 80.69% 78.32% 

PC3 93.73% 93.73% 89.18% 90.38% 

* SL=Sandy Loam; S=Sand; Soil diff=differing between sandy loam and sand soil. 

Overall by Fig. 9(a), (b), (c), and (d) shows that the principal components 1 and 2, 

which account about 64% and 83% cumulatively of the variance in the input variables, 

allow to discriminate distinctly type of soil and to differ between soil condition whether 

with or without compost (nutrient) addition, even in discrimination regardless of soil type. 

It was only for sandy loam soil (Fig. 9 (a)) the level of compost were able to be classified 

clearly into three groups as predefined previously while for sand soil (Fig. 9 (b)) there 

were miss-identification between soil with dose 20T/Ha and to 30T/Ha. Moreover, it also 

might there no clear classification when identifying soil with dose 20T/Ha and to 30T/Ha 

in regardless of soil type (Fig. 9(c)). 

Finally, we determined the performance of NN as decision unit of e-nose to classify 

the level of nutrient addition in soil based on indicator the error (MSE) achieved resulted 

from the training process. We designed the architecture of MLPNN that comprises 3 layer 

(single hidden layer). We determined the optimum number of neuron in hidden layer by 

Singular Value Decomposition (SVD) analysis of its output in each training dataset 

(Tamura, 1997). By input from 3 PCs and considering resulted SVD value, we choose 6 

neuron in hidden layer to differ among the pre-described three categorized fertilizer levels 

in soil sample, thus the neuron number architecture of MLPNN is 3-6-3 of respectively 

input, hidden, and output layer. 

In learning, we took the learning parameters of BP as follow: maximum epoch is 104, 

error target is 10-5, initial learning rate is 0.8 and the constant of search time in search-

then-converge annealing learning rate is 700. We also trained the NN by input directly 
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from sensors output (without preprocessing/PCA) with the same hidden layer (6-6-3 NN 

architecture). The achieved MSE of training results (Table 3) show that PCA helps 

improving the NN classification to differ level of compost addition in soil. The all 

application of trained data shows successful recognitions to indicate level of nutrient 

addition in soil as well. 

 

 
Fig. 9. Soil gaseous pattern projection mapped in 2 PCs for each soil sample to differ 

the level of compost addition of (a) sandy loam soil, (b) sand soil, (c) regardless of soil 

type by merging divergence data of both sandy loam and sand soil, while (d) PCA result 

in differing between sandy loam and sand soil both without compost addition. 

Table 3. MSE achieved by 6 neuron of hidden layer to discriminate 3 level of compost 

addition in soil. 

Soil type MSE of with PCA MSE of without PCA 

Sand 4.204e-04 3.490e-03 

Sandy Loam 1.226e-04 5.024e-04 

Regardless of type 2.678e-03 4.080e-03 
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4. Conclusions and Future Work. 

An application of new technique, namely temperature modulation-SDP (Specified 

Detection Point), on MOS gas sensors for soils identification based on volatiles profiles 

using biological system (e-nose) is presented. The 6 commercial MOS gas sensors used 

which driven by this technique are promising used for indicating the presence of 

additional nutrients in soil and their level as well since they could response and provide 

(unique) soil gaseous profiles resulted from a static headspace optimized by termostatting 

and stirring in certain condition. The temperature modulation-SDP in the e-nose system 

could differentiate clearly the soil type and indicate the presence of nutrient addition in 

soil. The optimum architecture of MLPNN with single hidden layer was 3-6-3 by PCA as 

prior data preprocessor which it leads better identification. However, the PCA result also 

shows there is miss-classification when discriminating the soil with normal dose (20 

Ton/Ha) and high dose (30 Ton/Ha). Therefore, it is strongly needed further investigations 

on other/many MOS gas sensors and their correlation or calibration to the parameters of 

soil nutrient. The gas sensors with this particular technique also offers a potential for 

replacing existing techniques in soil environmental fields for a quick and in-situ 

application. Depending on the applications and the type of sample to be analyzed, the 

choice of sensor array can be crucial for the good performance of the system 
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