
 

A NOVEL TECHNIQUE OF OPTICAL FREQUENCY SWEEP LINEARIZATION OF A DFB LASER FOR HIGH 
RESOLUTION FMCW REFLECTOMETRY 

 

ABSTRACT 

FMCW reflectometry suffers from nonlinearity issue in optical sweep frequency of DFB laser. The first part 
of this paper, we proposed a linearization method by modifying the modulation waveform through external 
sampling technique to overcome the nonlinearity issue. In this technique, the triangle modulation signal is 
externally sampled with the non-equal interval clock pulses generated from the nonlinear interference beat 
signal and was then analyzed using Fast Fourier Transform (FFT). Through the external sampling clock where 
temporal sampling coincides with the interference beat signal caused the shape of triangle waveform to deform 
and distorted slightly. Tiny deterioration at the turning point of triangular modulation waveform was obtained. 
The modified waveform was later relaunched into the system and the processes were repeated until the beat 
signal of sweep frequency approaches linearity. The proposed linearization method has been worked out 
through experimentation, and after the 2nd iteration, the result showed that this method effectively reduced 
the issue of the nonlinear optical frequency sweep. Linear indicator estimation is used to validate the linearity 
improvement throughout the proposed method. Linearity reduction at 60% was accomplished from the first 
experiment. The second part of the paper presented our next investigation in achieving better resolution on 
frequency interval of the beat spectrum. Proper selection of certain parameters during FFT analyzation, can 
sharpen the frequency spectrum which contribute to higher resolution. Thus, second involvement in this work 
is paying close attention to other criteria and parameters during the experiment that are important in improving 
the whole system to a considerable degree of preciseness. Through modulation waveform optimization, it is 
proved that the best combination of repetition frequency and modulation amplitude, together with skip 
function and zero adding technique in FFT analysis can sharpen the frequency spectrums which contribute to 
range measurement system’s accuracy. The spectrum purification is evaluated using FWHM concept where 
66% improvement in frequency interval was achieved. The proposed methods above are a very promising 
method to linearize optical frequency sweep and, as a result, to enhance the spatial resolution of FMCW sensing 
system. 

 

 

1. Introduction 

The use of fiber optics has become very 
common in a long range communication system. 
Among the famous usage of an optic-based 
apparatus is non-contact sensing technique. Optical 
techniques used in measuring target distance have a 
large range of functions and applications. This 
interferometric technique is being employed for its 
fast and automated measurement in both very long 
and short distance. The adeptness of interferometry 
in utilizing the wavelength of light as a basis for 
measurement and later to transform the constituent 
of wavelength into numerical data has made optical 
interferometry an invaluable tool for precision 
measurements. Frequency-modulated continuous-
wave (FMCW) interferometry has become a more 
popular technique in recent years and is being 
widely used in optical ranging measurements. In an 

ideal system, the optical frequency sweep of the 
laser occurs linearly and periodically in time resulting 
in a constant beat frequency in time, of which the 
information regarding the distance can be extracted 
after FFT analysis 

However, practically, linearity in a sweep 
frequency ramp is difficult to obtain, and this leads 
to a nonlinear beat frequency. In most cases, the 
beat frequency is fluctuated in time because of 
nonlinearity optical frequency sweep that caused by 
nonlinear modulation waveform change against 
injection current. Fluctuation and inconsistency in 
the beat frequency will degrade the precision of the 
ranging since it causes the spectrum to broaden, 
makes it hard to determine the distance to the 
target and the spatial resolution. Broadening of the 
beat spectrum is caused by fluctuation of the beat 



frequency. Conversely, if the optical frequency is 
linearly swept, a constant beat frequency is obtained 
and the distance to the target can be accurately 
extracted. To date, scholars around the world are 
still in research to address the longtime issue of 
nonlinear frequency swept of DFB laser in optical 
FMCW. Further, proper selection of certain 
parameters during FFT analyzation can sharpen the 
frequency spectrum which contribute to higher 
resolution. Thus, second involvement in this work is 
paying close attention to other criteria and 
parameters during the experiment that are 
important in improving the whole system to a 
considerable degree of preciseness.  

The basic configuration of optical FMCW 
interferometry has been developed resemble the 
classical parallel beam Michelson interferometer. 
However, it differs from Michelson principle where, 
in optical FMCW frequency modulated laser 
semiconductor is a light source. Typically, the 
transmitter of optical communication system 
consists of a laser diode that is being modulated 
either directly or indirectly. A direct modulation of a 
laser is obtained via the injection current while 
indirect modulation (also called external 
modulation) of a laser is obtained via an optical 
modulator. The modulation signal can select any 
waveform fashion such as sawtooth-wave, sine-
wave, or triangle-wave also can take a form of 
amplitude, phase or frequency modulation. 

 

 
Fig. 1.  Linear Sweep Optical FMCW system  
 
FMCW works on the frequency difference 

between the reflected signal and reference signal 
received at the photo detector; this is known as beat 
frequency.  The beat signal is used to calculate the 
target range distance. FMCW system with linear 
frequency modulation sweep gives the constant 
value of the frequency beat as illustrated in fig. 1. 
Thus, the targeted distance can be measured 
accurately using (1) and (2).  

  

𝑑 =
𝑓𝑏×𝑐×𝑇𝑚

4×∆𝑓
               (eq. 1) 

τ =
2𝑑

𝑐
                               (eq.        2) 

 The equation above can be used to calculate 
the targeted distance d, where fb is the beat 
frequency that refers to the difference between 
transmitted (reference) signal and received 
(reflected) signal, 𝑐 = 3𝑥108𝑚𝑠 is the velocity of 
light, Tm indicates the time for one period of 
modulation frequency, ∆f represents the bandwidth 
of ramp signal and τ denotes the delay between 
reflected and reference signal. 

 

 
Fig. 2.  Linear Sweep Optical FMCW system  
 
In fig. 2, ideal system, the sweep frequency of 

the laser diode modulate linearly and periodically in 
time. Therefore, the beat frequency is constant 
everywhere and the accurate information on the 
distance range can be extracted after demodulation. 
On the other hand, in most cases, nonlinearity in 
sweep frequency ramp is occurred. This leads to a 
nonlinear beat frequency. During the ramp of 
nonlinear sweep frequency, fb: τ is not constant 
everywhere. Consequently, the beat spectrum is 
broadened. In fig. 3, a little delay in frequency sweep 
is obviously seen that at the beginning of each 
turning point of each interval. 

 

 
Fig. 3.  Linear Sweep Optical FMCW system  
 
The performance of FMCW sensing 

interferometry is degraded by the broad spectrum 
shape of beat frequency which is caused by 
fluctuation of the beat frequency. The fluctuation 
(inconstant) beat frequency is then affected by a 
nonlinear sweep of the modulation frequency. 
Linear optical frequency sweep, on the other hand is 
difficult to obtain. This is because the optical change 
of frequency against injection current is nonlinear. 
This caused a linearity in optical frequency sweep 
difficult to realize even if we modulate the injection 
current with a linear modulation triangular signal. 



 
 

Fig. 4.Nonlinear modulation waveform 
produces linear sweep frequency 

 
Modulating the injection current linearly, as 

mentioned above, with the nonlinear relation 
between optical frequency changes with injection 
current, the sweep frequency appear nonlinear. 
Therefore, the feasible method is, for the optical 
frequency to sweep linearly, the waveform 
generation of the modulation current must be 
nonlinear. Therefore, our target was to construct 
nonlinear modulation frequency to nonlinear 
injection current and perhaps linear frequency 
sweep can be achieved. 

In order to correct or, at least, improve the 
nonlinearity of the optical frequency sweep, the 
delay at the beginning of each turning point must be 
reduced. The interval of each cycle of interference 
frequency must be spaced equally. This can be done 
by externally sampling the reference signal with the 
interference signal so that all data assimilated from 
the interferometer have accurately identical 
interval. 

 
2. Linearization of nonlinear beat frequency in FMCW 
interferometry through waveform modifying 
technique 
 

Fig.5 shows the configuration setup of FMCW 
interferometry system in constructing a modified 
waveform of a triangular modulation signal. A 
triangular modulation frequency chirping is 
launched by the laser diode. A time difference 
between transmitted waveform and reference 
waveform and a delay interference signal produce a 
difference in frequency that is known as beat 
frequency. From the eq. 1 & 2 beat frequency is seen 
proportional to the rate of the frequency sweep. 

 
Fig. 5. Optical FMCW interferometry setup 

In brief, we modified the frequency modulation 
(FM) waveform through the external sampling 
technique to reduce the effect of nonlinear beat 
frequency. In this technique, triangle-wave FM 
sweep is generated from a DFB laser source and 
transmitted through the system and re-sampled by 
the Analog Digital Converter at the external sampling 
rate (temporal sampling). 

As temporal sampling changed with time, this 
resulted in a tiny deterioration in the FM waveform 
at the beginning of each ramp. Thus, a pre-distorted 
FM waveform was obtained. One period interval of 
that distorted FM waveform was extracted and used 
to reconstruct a new FM waveform signal. This 
newly constructed signal was later retransmitted to 
the system as a new FM sweep signal. The process 
was repeated until the linearity of the beat 
frequency was noticeably improved. After the first 
time, the shape of the modulation waveform is seen 
to have tiny distortion at each of the turning points 
and is slightly curved compare to the original 
modulating waveform. The proposed linearization 
method has been worked out through 
experimentation, and after the 2nd iteration, the 
result showed that this method effectively reduced 
the issue of nonlinear beat frequency. 

 

 
 

Fig. 6 Linearity indicator of beat frequency 
 
To ensure the optimum result of frequency 

beat is obtained, we introduce a linearity indicator 
to benchmark the effectiveness of the proposed 
technique as in fig. 6. The optimum value of 
frequency beat when the value of ∆fb/max is lowest. 

Fig. 7 & 8 compare the results of beat frequency 
for non-sampling and 2nd -time re-sampling of the 
modulation frequency. The non-sampling waveform 
of frequency modulation gives a larger and nonlinear 
value of the frequency beat. After the 2nd re-
sampling, the linearization of the frequency beat can 
be clearly seen. The reduction on nonlinear 
frequency beat obtained was related to the 
significant change in the frequency modulation 
signal after being sampled up to the 2nd time. Tiny 
deterioration in the frequency modulation 
waveform, especially at the beginning of each rising 
up and falling down edges, slowly occurred as the 
number of sampling times increased. 
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Fig. 7 Beat frequency and modulation waveform at 

no sampling 
 

 
 
Fig. 8 Beat frequency and modulation waveform at 

2nd sampling 
 

Nonlinearities in the frequency sweep can 
cause a nonlinear frequency beat. FFT analysis 
showed that nonlinearity issues affect the 
broadening of the frequency spectrum of the 
interference beat signal.  As indicated in fig. 9, FFT 
analysis onto the resampled frequency modulation 
shows the frequency spectrums are narrowing 
accordingly. The more the signal waveform is 
resampled, the narrower the frequency spectrum 
becomes. Expectedly, accurate data can be 
extracted and the targeted distance precisely 
measured. 
 

 
 

Fig. 9 Beat frequency spectrum at no & 2nd 
sampling 

Computing the ∆fb/max value of each 
frequency beat of different parameters gives an 
overview of how the number of resampling times 
affects the frequency beat linearity as depicted in fig. 
10. It shows the higher the number of sampling 
times, the smaller the value of ∆fb/max we could 
achieve. This indicates that the linearization of 
frequency beat is improving firmly. 

 
∆ 𝑓𝑏 = 𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 (eq. 4)  

 
𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =

∆ 𝑓𝑏

𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒
 (eq. 5) 

 

 
 
Fig. 10 Linearity indicator of beat frequency vs no. 

of sampling times 
 
 
3.  Linearizing optical frequency sweep of a DFB laser 
by modulation waveform optimization for high 
resolution FMCW sensing system 
 

In the previous section, we demonstrated the 
effectiveness of the proposed linearization method 
of optical frequency sweep with randomly pick 
parameters value. Here we measured the beat 
spectrum with different repetition frequency and 
modulation amplitude, and FFT analysis.  

In order to ensure the most appropriate 
selection of parameters value, we conducted 
another experiment that will be explained further in 
this chapter.  The best selection of parameters 
values is important in purifying the beat frequency 
spectrum and enhancing the spatial resolution of the 
FMCW sensing technique for higher system 
accuracy.  

Regardless of other criterion, in this study, we 
were considering only to four parameters that we 
believe can contribute to the development of higher 
system accuracy. These parameters are repetition 
frequency, modulation amplitude, skip data function 
and zero addition in FFT analysis. Optimization of 
these parameters has significantly improved the 
spectrum resolution. 



In this experiment, the linearity is estimated by 
beat spectrum purity utilizing FWHM (full width half 
maximum) concept. We measured the full width at 

half maximum of the beat spectrum, f0.5 and full 

width at 10% maximum, f0.1 in Fig. 11, and the beat 

spectrum purity is estimated as f0.5 / fb and f0.1 / fb, 
where fb is the frequency for peak amplitude. 
 

 
Fig. 11 FWHM definition of spectral width for 

estimation of beat spectrum purity. 
 
 

 

 𝑓0.5 =
full width at 50% max

 𝑓𝑏
𝑥 100% (eq. 5) 

 

  𝑓0.1 =
full width at 10% max

 𝑓𝑏
𝑥 100% (eq. 6) 

 

A. Repetition frequency 

The first parameters value to be tested for its 
optimum result is repetition frequency. In order to 
elect the best value we conducted a series of 
experiment with a variation of repetition frequency 
ranging from 100Hz up to 1000Hz. The modulation 
amplitude, however, is fixed at 20mAp-p for all 
condition.  

Fig. 12 presented the beat spectrum measured 
for different repetition frequency of modulation 
signal after waveform modification for 3m fiber 
length. In overall, the beat frequency is increased as 
the repetition frequency and the beat spectrum is 
seen degraded with the increase of repetition 
frequency.  

While repetition frequency is at 100 Hz, the 
beat spectrum has a pedestal, indicating the beat 
frequency is slightly non-constant and fluctuating in 
time. The reason of this issue might be due to 
electrical noise in the clock generator (voltage 
comparator) that generating a TTL signal from the 
interference signal for modulation waveform 
sampling.  

From the above consideration, as represented 
in the fig. 5-3, the optimum repetition frequency is 
ranged from 200 Hz and 400 Hz, and the optimum 

range will be increased by carefully designing the 
differential amplifier and the clock generator. 

 

 

Fig. 12 Beat frequency spectrum of repetition 
frequency variation from 100Hz to 1000Hz 

 

B. Modulation amplitude 

The next parameter’s value to be selected for 
optimum condition of modulation waveform is 
modulation amplitude. Modulation amplitude has a 
big influence in the linearity of the beat frequency. 
The beat frequency linearity differences between 
rising and falling edge interval of a modulation signal 
is getting worse as the modulation amplitude value 
increase.  Therefore, we performed this experiment 
in order to decide the best value of modulation 
frequency for better accuracy of the system. In this 
experimentation, the injection current of the 
modulating triangle waveform is varied at 10mAp-p, 
20mAp-p, 40mAp-p and 60mAp-p (500mVpp, 1Vpp, 
2Vpp & 3Vpp respectively) at predetermined 
repetition, 400Hz. The 400Hz is chosen for its best 
result in the earlier experiment. 

  

Fig. 13 Beat frequency spectrum of modulation 
amplitude variation from 10mApp to 60mApp 

Fig. 13 shows the shape of beat spectrum for 
variation of modulation amplitude values ranging at 
10mApp, 20mApp, 40mApp and 60mApp. The 
relationship between optical sweep frequency and 
injection current can be represented by the 
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following relationship, ∆I∞ ∆F. In other words, the 
optical sweep frequency ∆F is proportional to the   
injection current of the modulation signal. 
Consequently, the increased in sweep frequency 
directly will increase the beat frequency. 

 

Fig. 14: FWHM at 50% of max 

From the above figure, f0.5 calculated using eq. 
5, give the overall view of beat spectrum 
purification. The best value for repetition frequency 
and modulation amplitude is at 400Hz, 1Vpp 
respectively for 3m fiber length.   

 

Fig. 15 FWHM at 10% of max  

For f0.1, modulation amplitude of 1Vpp shows 
the lowest value at 400Hz repetition frequency. In 
this case, the optimum beat spectrum purification is 
obtained for 400Hz repetition frequency and 
20mApp (1Vpp) modulation amplitude. Resolution 
can be estimated using eq. 6. Since the relative 50% 
width is less than 1% (from the above graph), 
resulting in the spatial resolution of less than 3 cm 
for LR = 3m 

C. Skip data function in FFT analysis 

The optical frequency sweep of a DFB laser 

approached linearity with significant improvement 

in the spatial resolution of the FMCW sensing by the 

proposed method in the previous chapter. However 

perfect linearization cannot be achieved because the 

beat frequency immediately after the turning point 

between ascending modulation interval and 

descending modulation interval of the modulation 

waveform is not constant. Therefore, a small fraction 

of the interference signal at that spot of the 

modulation waveform was skipped for data 

acquisition for high-resolution distance 

measurements.  

The next parameter’s value to be experimented 

is skip function in FFT analysis. Before going into 

further details of skip function, the understanding of 

data number is essential because, in the analysis of 

skip function, it involve of data number usage.  

Data number is the number of data sampled in 

the time domain (N). In Fourier transform, the 

efficient number of sampled data is N/2 

corresponding to the maximum measurement range 

to satisfy the Sampling Theorem. For Fs/N, where Fs 

is input signal sampling rate (sampling frequency) 

and N is a number of FFT points used, to get smaller 

bin FFT, we can either run the FFT longer or we can 

decrease the sampling rate Fs.  

 

 

 
Fig. 16 Skip function in FFT 

The default skips no is 0. Its mean that the 

whole signal is captured including the unwanted 

signal. As illustrated in fig. 16, at the starting of 

turning points of the modulation signal, interference 

beat signal is in constant even after applying the 

modifying waveform technique. A little delay is seen 

before the solid steady signal succeeded.   

Skip data function, generally helps in 

performing the FFT analysis efficiently because we 

can eliminate or skip the unwanted signal without 

jeopardizing the total number of data points. This is 

important because it indicates that the absolute 

information of the interference signal is preserved. 

The experiment of this section began with 

omitting (skipping) data at various percentages. 



After series of trial, the most considered percentage 

of data to be skipped was achieved. The preceding 

parameters, repetition frequency and modulation 

amplitude were   maintained at 400Hz and 20mApp 

respectively. The measured beat spectrum without 

skip function and with 15% acquisition skip just after 

the turning point of the modulation waveform for 

repetition frequency 400 Hz with 20 mA modulation 

amplitude are shown in fig 17 respectively.  

Without skip function, the beat spectrum is 

appeared broadening compared to 15% acquisition 

skip.  Narrower beat spectrum is obtained by 

utilizing acquisition skip because the beat frequency 

fluctuation immediately after the turning point 

between ascending modulation interval and 

descending modulation interval of the modulation 

waveform is eliminated. 

The result in fig. 17 is executed with sampling 

frequency is 4 MHz, number of sampled data is 2048, 

and the acquired time is 0.512 ms, (40% of the 

decreasing section of the modulation waveform) in 

2 kHz frequency interval. Skip function makes the 

beat spectrum more readable.  
 

 
 

(a) without acquisition skip 

 

 
 

(b) with 15% of acquisition skip 

 

Fig. 17 Beat spectrum with and without acquisition 
skip 

D. Zero addition of FFT analysis 

Zero adding or zero padding function in FFT 

analysis indicate the action of inserting (adding) 

zeros “0” to end of a time domain in order to 

increase its length. This is a popular technique for 

taking a bigger FFT to make the beat spectrum more 

readable. In the effort to get longer FFT for higher 

resolution, we can increase the number of data to be 

sampled. However, if the number of the sampled 

data is increased, the sampled data contains the 

interference signal around the turning point of the 

modulation waveform, and this will cause the beat 

spectrum is degraded because of beat frequency 

fluctuation immediately after the turning point of 

the modulation waveform. 

 

 

Fig. 18 Interference signal with zero adding function 

Instead of increasing the number of sampled 
date, after undergoing skip function, we added zero 
values after the sampled data. In our experiment, 
the number of sampled data is 2048 and more 2048 
points of zero data are added. This will double up the 
length of total times. 

In Fig. 17 (b), the FFT-analyzed data shown as 
circles are arranged in 2 kHz frequency interval, and 
the frequency interval is determined by the total 
acquisition time. The frequency interval of the FFT 
analysis also affects the spatial resolution, and 
narrow frequency interval is desired for high-
resolution measurement. However if the number of 
the sampled data is increased, the sampled data 
contains the interference signal around the turning 
point of the modulation waveform, this will lead to 
the degradation of the beat spectrum. 
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Fig. 18 Beat spectrum with and without acquisition 
skip 

Instead of increasing the number of sampled 
data, we add zero values after the sampled data. In 
our experiment, the number of sampled data is 2048 
and more 2048 points of zero data are added. Fig. 18 
shows the measured beat spectrum. Acquisition 
skips after the turning point are 15%. By adding the 
zero function, the frequency interval is about 1 kHz, 
which is half of the frequency interval of Fig. 17(b). 
The beat spectrum is narrower in Fig. 18. The relative 

50% width f0.5 / fb is 0.33%, resulting in the spatial 
resolution of 1 cm. 

 

4.  Conclusion 
 

We have developed linearization method of 

optical frequency sweep of a laser diode for FMCW 

sensing system. The modulation waveform is 

sampled with the interference sampling signal 

produced at the interferometer, and then a laser 

diode is modulated with the sampled waveform. In 

addition, the interference signal just after the 

turning point of the modulation waveform is skipped 

from sampling because the optical frequency sweep 

immediately after the turning point between the 

ascending modulation interval and descending 

modulation interval of the modulation waveform is 

not perfectly linearized and then the beat frequency 

fluctuates. And zeros data are added after the 

sampled data to decrease frequency interval in FFT 

analysis while avoiding acquisition of the 

interference at the spot. As a result, by repeating the 

waveform modification procedure a few times, the 

optical frequency sweep is linearized, and then the 

spatial resolution of FMCW sensing system is 

significantly improved. The degree of linearization of 

optical frequency sweep depends on both the 

repetition frequency of the modulation signal and 

the modulation amplitude. In our experiments, the 

optimum repetition frequency is about 400 Hz from 

the viewpoint of spatial resolution, and the optical 

repetition frequency range can be expanded by 

decreasing electrical noise in the clock generator. 

In conclusion, the nonlinear effect of optical 

frequency sweep is canceled from the modification 

of modulation waveform through the sampled beat 

signal of the beat interference. Proper selection of 

certain parameters value can sharpen the beat 

spectrum and improve the resolution (frequency 

interval) of the spectrum. As a result, the beat 

frequency approaches linearity, the degradation of 

the spatial resolution is considerably improved as 

well as the measurement accuracy greatly increased.  

 
1)   Based on first experiment analysis, linearity 
indicator ∆fb/max, the beat frequency linearity is 
improved from 0.427 to 0.170, approximately 60% 
reduction in nonlinearity. 
2)   From the second experiment, based on FWHM 
estimation,  frequency interval of the beat spectrum 
was reduced from 3cm to 1 cm (based on 3-meter 
fiber length) estimated to 66% resolution intensity 
improved. 

Thus, we conclude the objective of this 
research “Optical frequency sweep linearization of a 
DFB laser for high-resolution FMCW reflectometry” 
is achieved. 
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