
Abstract for Dissertation

Dynamic Linear Hybrid Automata and Their

Applications to Formal Verification of Dynamic

Reconfigurable Embedded Systems

動的線形ハイブリッドオートマタと動的再構成可能組込みシ
ステムの形式検証への応用

Ryo YANASE

(Student Number: 1323112012)

Graduate School of Natural Science and Technology

Division of Electrical Engineering and Computer Science

Kanazawa University

Chief supervisor: Prof. Satoshi YAMANE

January 2017

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196734771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Networking systems and embedded systems are
able to change their configuration, components and
modules at run-time. Such a system is called dy-
namically reconfigurable system. For guaranteeing
safety of the system, model checking is one of the
effective methods. This paper presents a dynamic
linear hybrid automaton (DLHA) as a specifica-
tion language for designing dynamically reconfig-
urable systems. As a practical experiment, we de-
scribe an embedded cooperative system consisting
of CPU and DRP by DLHAs and verify several
properties for the system with a model checker that
performs the reachability analysis by using moni-
tor automata.

1 Introduction

Dynamically reconfigurable systems are being used
in a number of areas [1, 2, 3]. The major methods
of checking system safety include simulation and
testing; however, it is often difficult for them to
ensure safety precisely, since these methods don’t
check all states. In such cases, model checking is a
more effective method. In this paper, we propose
the Dynamic Linear Hybrid Automaton (DLHA)
specification language for describing dynamically
reconfigurable systems and provide a reachability
analysis algorithm for verifying system safety.

1.1 Features of dynamically recon-
figurable systems consisting of
CPU and DRP

The target of our research is an embedded system
in which a CPU and dynamically reconfigurable
hardware, e.g., DRP or D-FPGA [4] operate co-
operatively. The dynamically reconfigurable pro-
cessor (DRP) is a coarse-grained programmable
processor developed by NEC [3] and it manages
both the power conservation and miniaturization.
The DRP is used to accelerate the computations of
a general purpose CPU with through cooperating
operations, and it has the following features:

• Dynamically creation/destruction of the func-
tion: when a process occurs, the DRP consti-
tutes a private circuit for processing it. The

circuit configuration is released after the pro-
cess finishes.

• Hybrid property: the operation frequency
changes whenever a context switch occurs.

• Parallel execution: the DRP executes several
processes on the same board at the same time.

• Queue for communication: the DRP asyn-
chronously receives processing requests from
the CPU.

For the experiments, we specified a dynamically
reconfigurable embedded system consisting of a
CPU and DRP, and verified the some of its im-
portant features. This is the first time that spec-
ification and verification of dynamic changes have
been tried in a practical case.

1.2 Related Work

1.2.1 Specification

We developed a new specification language
(DLHA) based on a linear hybrid automaton [5]
with both creation/destruction events and un-
bounded FIFO queues. DLHA is different from
existing research in the following points:

• V. Varshavsky and others proposed the GALA
(Globally Asynchronous - Locally Arbitrary)
modeling approach including timed guards [6].
This approach cannot describe hybrid systems
since it is the specification language based on
discrete systems. Thus, GALA cannot repre-
sent changes in operating frequency.

• S. Minami and others have specified a dynam-
ically reconfigurable system using linear hy-
brid automata and have verified it by using a
model checker, HYTECH[7]. Since linear hy-
brid automata cannot describe changes to the
configuration and asynchronous communica-
tions by using unbounded FIFO queues, the
system has been specified as a static system.

• P. C. Attie and N. A. Lynch specified sys-
tems whose components are dynamically cre-
ated/destroyed by using I/O automata [8].
I/O automata cannot describe changes in vari-
ables, for example, changes in clock and oper-
ating frequency.

2

• H. Yamada and others proposed hierarchical
linear hybrid automata for specifying dynam-
ically reconfigurable systems [9]. They intro-
duced concepts such as class, object, etc., to
the specification language. However, as the
scale of a system to be specified increases, the
representation and method of analysis in the
verification stage tend to be complex.

• B. Boigelot and P. Godefroid specified a
communication protocol in terms of finite-
state machines and unbounded FIFO buffers
(queues), and they verified it [10]. Since
the finite-state machine also cannot describe
changes in variables, it is unsuitable in our
case.

• A. Bouajjani and others proposed a reachabil-
ity analysis for pushdown automata and sym-
bolic reachability analysis for FIFO-channel
systems [11, 12]. However, since their anal-
ysis don’t provide for continuous changes in
variables, in languages cannot be used for de-
signing hybrid systems.

1.2.2 Verification Method

The originality of our work on the verification
method twofold:

• Our method targets systems that dynamically
change their configurations, which is some-
thing the existing work, such as HYTECH, has
studied. We extend the syntax and seman-
tics of linear hybrid automata with special ac-
tions called creation actions and destruction
actions. We define a state in which an au-
tomaton does not exist and transitions for cre-
ation and destruction.

• Our method is a comprehensive symbolic ver-
ification for hybrid properties, FIFO queues
and creation/destruction of tasks.

2 Dynamic Linear Hybrid
Automaton

2.1 Syntax

A dynamic linear hybrid automaton (DLHA) is an
extended linear hybrid automaton and represented

as a 8-tuple (L, V, Inv,Flow,Act, T, t0, Td), where

• L is a finite set of nodes called locations.

• V is a finite set of variables.

• Inv : L → Φ(V) is a function that assigns an
invariant to each location, where Φ(V) is a set
of all constraints over V .

• Flow : L → F (V) is a function that assigns a
flow condition to each location, where F (V) is
a set of all flow conditions over V .

• Act = Actin ∪ Actout ∪ Actτ is a finite set of
actions.

– Actin is a finite set of input actions, and
each input action has the form a?. An in-
put action m? denotes receiving the mes-
sage m.

– Actout is a finite set of output actions,
and each output action has the form a!.
An output action m! denotes broadcast-
ing the message m to each DLHA.

– Actτ is a finite set of internal actions that
denote other events.

Moreover, we formalize the following special
actions:

– A creation action that has the form
Crt A′? or Crt A′! denotes a message for
creation of the DLHA A′. Crt A′? is an
input action, and it represents that A′

has been created. Crt A′! ∈ Actout is an
output action, and represents a request
for creating A′.

– A destruction action that has the form
Dst A′? or Crt A′! denotes a message for
a destruction of DLHA A′. Dst A′? ∈
Actin is an input action that indicates A′

has been destroyed.

– An enqueue action that has the form q!m
denotes enqueueing of message m into a
queue q. This action is an internal one,
that is, q!m ∈ Actτ .

– A dequeue action that has the form q?m
denotes dequeueing of message m from
the top of queue q.

3

• T ⊆ L×Φ(V)×Act×2UPD(V)×L is a finite set
of edges called transitions. Here, a constraint
ϕ ∈ Φ(V) is called a guard condition, and λ ∈
2UPD(V) are called update expressions. Each
update expression has the form x := c or x :=
x+ c, where x ∈ V and c ∈ Q.

• t0 ∈ L× (Actin ∪Actτ)× 2UPD(V) is an initial
transition.

• Td ⊆ L × Φ(V) × Actout is a finite set of
destruction-transitions.

2.2 Operational Semantics

A state σ of a DLHA (L, V, Inv,Flow, A, T, t0, Td)
is defined as ⊥ | (l, ν), where l ∈ L is a location,
ν : V → R is an assignment called evaluation of
variables, and ⊥ denotes an undefined value.

The semantics M of the DLHA is defined as
(Σ,⇒, σ0), where Σ is a set of states, ⇒ is a set of
time transitions and discrete transitions and σ0 is
the initial state.

2.2.1 Time transition

For arbitrary δ ∈ R≥0,

• ⊥⇒δ⊥,

• (l, ν)⇒δ (l, ν′) if ν′ = ν + δ ·Flow(l) ∈ Inv(l),

where ν′ = ν+δ·Flow(l) denotes an evaluation such
that ∀x ∈ V.ν′(x) = ν(x)+δ·ẋ·Flow(l)(x), and ν′ ∈
Inv(l) denotes that ν′(x) satisfies the constraint
Inv(l) for any x ∈ V .

2.2.2 Discrete transition

For an evaluation ν and update expressions λ ∈
2UPD(V), ν[λ] denotes an evaluation updated by λ.

• For any transition (l, ϕ, a, λ, l′) ∈ T , (l, ν)⇒a

(l, ν[λ]) if ν ∈ ϕ and ν[λ] ∈ Inv(l′).

• (Creation of a DLHA) For the initial transi-
tion t0 = (l0, a0, λ0), ⊥⇒a0 (l0, 0⃗[λ0]) where 0⃗
is an evaluation such that ∀x ∈ V.[⃗0(x) = 0].

• (Destruction of a DLHA) For any destruction-
transition
(l, ϕ, a) ∈ Td, (l, ν)⇒a⊥ if ν ∈ ϕ

For the initial transition (l0, a0, λ0), the initial
state σ0 is defined as

σ0 =

{
⊥ (a0 ∈ Actin)

(l0, 0⃗[λ0]) (otherwise).

3 Dynamically Reconfig-
urable Systems

To describe an asynchronous communication
among DLHAs in a dynamically reconfigurable sys-
tem, we use a queue (unbounded FIFO buffer) as a
model of the communication channel. We assume
that the system performs lossless transmission, so
we can let the queue be unbounded.

A dynamically reconfigurable system S = (A,Q)
consists of a finite set A = {A1, . . . ,A|A|} of DL-
HAs and a finite set Q = {q1, . . . , q|Q|} of queues.
A state s of the dynamically reconfigurable sys-

tem is a tuple ⟨σ⃗, w⃗Q⟩ where σ⃗ is a vector of states
of DLHAs and w⃗Q is a vector of contents of queues.

3.0.1 Time Transition

For an arbitrary δ ∈ R≥0, the time transition is
defined as

⟨σ⃗, w⃗Q⟩ →δ ⟨σ⃗′, w⃗Q⟩ ⇐⇒ ∀i.σi ⇒δ σi.

3.0.2 Discrete Transition

Let σ⃗, σ⃗′, w⃗Q and w⃗′
Q be σ⃗ = (σ1, . . . , σ|A|), σ⃗

′ =
(σ′

1, . . . , σ
′
|A|), w⃗Q = (w1, . . . , w|Q|) and w⃗′

Q =

(w′
1, . . . , w

′
|Q|).

• For any output action a!, ⟨σ⃗, w⃗Q⟩ →a ⟨σ⃗′, w⃗Q⟩

iff ∃i.σi ⇒a! σ
′
i ∧ ∀j ̸= i.σj ⇒a? σj

∨ ((¬∃σ′
j .σj ⇒a? σ

′
j) ∧ σj = σ′

j).

An output action is broadcasted to all DL-
HAs, and a DLHA receiving the action moves
by synchronization if the the guard condition
holds in the state.

• For an internal action aτ ,

– in the case of aτ = qk!w, ⟨σ⃗, w⃗Q⟩ →qk!w

⟨σ⃗′, w⃗′
Q⟩,

iff ∃i.σi ⇒qk!w σ′
i ∧ ∀j ̸= i.σj = σ′

j

∧ w′
k = wkw ∧ ∀l ̸= k.wk = w′

k,

4

– while in the case of aτ = qk?w,
⟨σ⃗, w⃗Q⟩ →qk?w ⟨σ⃗′, w⃗′

Q⟩,

iff ∃i.σi ⇒qk?w σ′
i ∧ ∀j ̸= i.σj = σ′

j

∧ wk = ww′
k ∧ ∀l ̸= k.wl = w′

l,

– otherwise, ⟨σ⃗, w⃗Q⟩ →aτ ⟨σ⃗′, w⃗Q⟩,
iff ∃i.σi ⇒aτ

σ′
i ∧ ∀j ̸= i.σj = σ′

j .

A run (or path) ρ of the system S is the following
finite (or infinite) sequence of states.

ρ : s0 →δ0
a0

s1 →δ1
a1
· · · →δi−1

ai−1 si →δi
ai
· · ·

where →δi
ai

between si and si+1 is defined as fol-
lows:

si →δi
ai

si+1 ⇐⇒ ∃s′i.si →δi s
′
i ∧ s′i →ai si+1.

The initial state s0 is a tuple
⟨(σ01 . . . , σ0|A|), (w01, . . . , w0|Q|)⟩, where each
σ0i is the initial state of DLHA Ai and each w0j

is empty; that is, ∀j.w0j = ε.

4 Reachability Analysis

4.1 Reachability Problem

We define reachability and the reachability prob-
lem for a dynamically reconfigurable system as fol-
lows:

Definition 1 (Reachability) For a dynamically
reconfigurable system S = (A,Q) and a location lt,

S reaches lt if there exists a path s0 →δ0
a0
· · · →δt−1

at−1

st such that st has a DLHA-state which contains
the location lt.

Definition 2 (Reachability Problem) Given
a dynamically reconfigurable system S = (A,Q)
and a location lt, we output “yes” if S can reach
lt, and “no” otherwise.

4.2 Algorithm of Reachability Anal-
ysis

Fig. 1 show the algorithm of the reachability anal-
ysis. Our method introduces convex polyhedra for
the reachability analysis in accordance with [17].
In this algorithm, we define a state s in the reach-
ability analysis as (L, ζ, w⃗Q), where L is a finite set

of locations, ζ is a convex polyhedron, and w⃗Q is a
vector of contents of queues. Fig.1 is an overview
of the reachability analysis, and this algorithm is
performed by using the extended method of [13]
with a set Q of queues. The analysis is performed
as follows:

1. Compute the initial state s0 of the system S
(ll.1–3).

2. Initialize a traversed set Visit and a untra-
versed set Wait of states by ∅ and {s0} (line
4).

3. While Wait is not empty, repeat the following
process (ll.5–16).

(a) Take a state (L, ζ, w⃗Q) from Wait and
remove the state from Wait (ll.6–7).

(b) If the set L of locations contains the tar-
get location, return “yes” and terminate
(ll.8–10).

(c) If the state has not been traversed yet
((L, ζ, w⃗Q) ̸∈ Visit) (line 11),

i. add the state to Visit (line 12),

ii. compute the set Spost of successors
by using the subroutine Succ (line
13), and

iii. add all components of Spost to Wait
(line 14).

The subroutine Succ computes successors of a
state. Successors for a state s together with a tran-
sition that has an output action are computed by
the following procedures:

1. Initialize Spost by ∅.

2. Compute a convex polyhedron ζδ for time
transition.

3. For each Ai in the system S, compute the set
Tsi of transitions that are outgoing from the
state by using the input action al?.

4. Compute a set ∆ of combinations of Tsi.

5. For each combination T = (t1, . . . , tn) ∈ ∆,
the successor s′ = (L′

T , ζ
′
T , w⃗Q) is computed

and Spost := Spost ∪ {s′}.

The correctness of this algorithm is implied by
Lemma 1 and Lemma 2.

5

Lemma 1 If this algorithm terminates and re-
turns “lt is not reachable”, the system S holds the
safety property.

Lemma 2 If this algorithm terminates and re-
turns “lt is reachable”, the system S does not hold
the safety property.

By definition, all linear hybrid automata are DL-
HAs. Our system dynamically changes its struc-
ture by sending and receiving messages. However,
the messages statically determine the structure,
and the system is a linear hybrid automaton with
a set of queues. It is basically equivalent to the
reachability analysis of a linear hybrid automaton.
Therefore, the reachability problem of dynamically
reconfigurable systems is undecidable, and this al-
gorithm might not terminate [13].

Moreover, in some cases, a system will run into
an abnormal state in which the length of a queue
becomes infinitely long, and the verification proce-
dure does not terminate.

Input: a system S and a target location lt
Output: “yes” or “no”
1: L0 ← {l0i | t0i = (l0i, a0i, λ0i), a0i ̸= Crt Ai?}
2: λ0 ←

∪
{λ0i | t0i = (l0i, a0i, λ0i), a0i ̸=

Crt Ai?}
3: s0 ← (L0, 0⃗[λ0], (ε, . . . , ε)) /* Compute the ini-

tial state */
4: Visit← ∅,Wait← {s0} /* Initialize */
5: while Wait ̸= ∅ do
6: (L, ζ, w⃗Q)← s ∈Wait
7: Wait←Wait \ {(L, ζ, w⃗Q)}
8: if lt ∈ L then
9: return “yes”

10: end if
11: if (L, ζ, w⃗Q) ̸∈ Visit then
12: Visit← Visit ∪ {(L, ζ, w⃗Q)}
13: Spost ← Succ((L, ζ, w⃗Q),S) /* Compute

the set of post-states */
14: Wait←Wait ∪ Spost

15: end if
16: end while
17: return “no”

Figure 1: Reachability Analysis

5 Practical Experiment

5.1 Model Checker

We implemented a model checker of dynamically
reconfigurable systems consisting of DLHAs in
Java (about 1,600 lines of code) by using the LAS,
PPL, and QDD external libraries [10, 14, 15, 16].
For the verification, we input the DLHAs of the
system, a monitor automaton, and the error lo-
cation to the model checker, and it output “yes
(reachable)” or “no (unreachable)”. The monitor
automaton had a special location (we call it the
error location), and checked the system without
changing the system’s behavior [17]. The monitor
automata had to be specified to reach the error
location if the system didn’t satisfy the properties.

For the specification of the input model, we ex-
tended the syntax and semantics of DLHA as fol-
lows:

• A transition between locations can have a la-
bel asap (that means ‘as soon as possible’).
For a transition labeled asap, a time transi-
tion does not occur just before the discrete
transition.

• Each DLHA can have constraints and update
expressions for the variables of another DLHA
in the same system. That is, for each DLHA,
invariants, guard conditions, update expres-
sions and flow conditions can be used by all
DLHAs.

5.2 Specification of Dynamically
Reconfigurable Embedded Sys-
tem

5.2.1 A cooperative system including CPU
and DRP

We have specified a dynamically reconfigurable em-
bedded system consisting of a CPU and DRP for
the model described in our previous research [7].
A DRP has computation resources called tiles (or
processing elements), and it dynamically sets the
context of a process if there are enough free tiles.
In addition, a DRP can change the operating fre-
quency in accordance with running processes. In
this paper, we assume that the number of tiles and
the operating frequency for each process have been

6

set in advance and that the operating frequency of
the DRP is always the minimum frequency of the
running co-tasks.
Fig. 2 shows an overview of the system. This

system processes jobs submitted from the external
environment through the cooperative operation of
the CPU and DRP. The CPU Dispatcher creates
a task when it receives a call message of the task
from the external environment. When a task on
the CPU uses the DRP, The CPU Dispatcher sends
a message to the DRP Dispatcher. The DRP Dis-
patcher receives the message asynchronously and
creates a co-task (it means ‘cooperative task’) in a
first-come, first-served manner if there are enough
free tiles. Here, we will assume that this system
has two tasks and two co-tasks that have the pa-
rameters shown in Table 1-2.

Task A

CPU Dispatcher

Task B

Co-task a

DRP Dispatcher

Co-task a

External Environment

CPU DRP

Cooperation

Tile

Co-task b

Figure 2: Overview of the CPU-DRP embedded
system

EnvA EnvB

Scheduler

TaskA

DRP_Dispatcher

cotask_a0 cotask_a1

Frequency_

 Manager

cotask_b0

TaskB

Environment

CPU DRP

Queue qSender

Message

Creation

Figure 3: Components of the system

The system, whose components are illustrated
in Fig.3, consists of 11 DLHAs and 1 queue. The

Table 1: Parameters of tasks

Task Period Deadline Priority Process

A 70 ms 70 ms high 20 ms, co-task a0,
10 ms, co-task b0

B 200 ms 200 ms low co-task a1, 97 ms

Table 2: Parameters of co-tasks

co-task Processing time Deadline Tiles Rate of
Frequency

a0, a1 10 ms 15 ms 2 1

b0 5 ms 10 ms 6 1/2

external environment consists of EnvA and EnvB
that periodically create TaskA and TaskB. That
is, EnvA creates TaskA every 70 milliseconds, and
EnvB creates TaskB with every 200 milliseconds.
The Scheduler performs scheduling in accordance
with the priority and actions for creation and de-
struction of DLHAs.

TaskA and TaskB send a message to The Sender
if they need a co-task. The Sender enqueues the
message to create a co-task to q when it receives a
message from tasks.

The DRP Dispatcher dequeues a message and
creates cotask a0, cotask a1, and cotask b0 if there
are enough free tiles. The Frequency Manager is
a module that manages the operating frequency
of the DRP. When a DLHA of a co-task is cre-
ated, The Frequency Manager moves to the loca-
tion that sets the frequency to the minimum value.

5.2.2 Other cases

We have the parameters of the model in subsection
5.2.1 and conducted experiments with it.

• Modified Tasks: We modified the parameters
of the tasks on the CPU as shown in Table 3.
Here, the parameters of the co-tasks are the
same as those in Table 2.

• Modified co-tasks: We modified the parame-
ters of the co-tasks on the DRP, as shown in
Table 4. Parameters of the tasks are the same
as those in Table 1.

7

Table 3: Modified parameters of tasks

Task Period Deadline Priority Process

A 90 ms 80 ms high 20 ms, co-task b0,
20 ms, co-task a0

B 200 ms 150 ms low co-task a1, 70 ms

Table 4: Modified parameters of co-tasks

co-task Processing time Deadline Tiles Rate of
Frequency

a0, a1 5 ms 10 ms 4 1

b0 10 ms 20 ms 5 1/3

5.3 Verification Experiment

We verified that the embedded systems described
in subsection 5.2 provide the following properties
by using monitor automata. The verification ex-
periment was performed on a machine with an Intel
(R) Core (TM) i7-3770 (3.40GHz) CPU and 16GB
RAM running Gentoo Linux (3.10.25-gentoo).

Verification properties are below:

• Schedulability: Here, schedulability is a prop-
erty in which each task of the system finishes
before its deadline. Let EA be the total pro-
cessing time andDA be the deadline in task A;
the remaining processing time is represented
as EA − eA, and the remaining time till the
deadline is represented as DA − rA. There-
fore, the monitor automaton moves the error
location if the task A is created and it satisfies
the condition EA − eA > DA − rA (Fig. 4).

• Creation of co-tasks: In the embedded sys-
tem, each co-task must be created before the
remaining time in the task calling it reaches
its deadline. When the message create a0 is
received from task A, the monitor automaton
starts counting time for co-task a0. If the
waiting time exceeds the deadline of task A
before it receives the message Crt cotask a0,
the monitor moves to error location.

• Destruction of co-tasks: Each co-task must
be destroyed before the waiting time reaches
its deadline. For the co-task a0, when the
message Crt cotask a0 is received from the

dispatcher DRP Dispatcher, the monitor au-
tomaton checks the message Dst cotask a0.

• Frequency management: Creating or destroy-
ing a co-task, the DRP changes the operating
frequency corresponding to the co-tasks being
processed. Since this system requires that the
frequency is always at the minimum value, the
monitor checks whether the frequency man-
ager (Frequency Manager) moves to the cor-
rect location when it receives a message for
creating a co-task. For example, when co-
task a0 and co-task b0 are running on the
DRP, Frequency Manager must be at location
L Freq b.

• Tile Management: When the DRP receives a
message for creating of a co-task and the num-
ber of free tiles is enough to process it, the dis-
patcher creates the co-task. The dispatcher
then updates the number of used tiles. The
monitor automaton checks whether the num-
ber tiles in DRP Dispatcher is always between
0 and the maximum number, 8 in this case.

Figure 4: Monitor automaton checking schedula-
bility

The experimental results shown in Table 5 indi-
cate that the modified tasks cases and the modified

8

co-tasks cases were verified with less computation
resources (memory and time) than were used by
the original model. This reduction is likely due to
the following reasons:

• Regarding the schedulability of the modified
tasks model, the processing time is shorter
than that of the original model since the
verification terminates if a counterexample is
found.

• In the cases of the modified co-tasks, the most
obvious explanation is that the state-space is
smaller than that of the original model since
the number of branches in the search tree (i.e.
nondeterministic transitions in this system) is
reduced by changing the start timings of the
tasks and co-tasks with the parameters.

• In cases other than those of the modified tasks,
it is considered that the state-space is smaller
than that of the original model because this
system is designed to stop processing when a
task exceeds its deadline.

6 Conclusion and future work

In this paper, we proposed a dynamic linear hy-
brid automaton (DLHA) as a specification lan-
guage for dynamically reconfigurable systems. We
also devised an algorithm for reachability analy-
sis and developed a model checker for verifying
the system. Our future research will focus on a
more effective method of verification, for example,
model checking with CEGAR (Counterexample-
guided abstraction refinement) and bounded model
checking based on SMT (Satisfiability modulo the-
ories) [18, 19].

References

[1] P. Garcia, K. Compton, M. Schulte, E. Blem
and W. Fu. An Overview of Reconfigurable
Hardware in Embedded Systems. EURASIP
J. Embedded Syst., 2006(1):1–19, 2002.

[2] J. W. Lockwood, J. Moscola, M. Kulig,
D. Reddick and T. Brooks. Internet
Worm and Virus Protection in Dynami-
cally Reconfigurable Hardware. In Military

and Aerospace Programmable Logic Device
(MAPLD), E10, 2003.

[3] M. Motomura, T. Fujii, K. Furuta, K. Anjo,
Y. Yabe, K. Togawa, J. Yamada, Y. Izawa
and R. Sasaki. New Generation Micropro-
cessor Architecture (2):Dynamically Recon-
figurable Processor (DRP). IPSJ Magazine,
46(11):1259–1265, 2005.

[4] H. Amano, Y. Adachi, S. Tsutsumi and
K. Ishikawa. A context dependent clock
control mechanism for dynamically reconfig-
urable processors. Technical Report of IEICE,
104(589):13–16, 2005.

[5] R. Alur, C. Courcoubetis, T. A. Henzinger
and P. Ho. Hybrid automata: An algorithmic
approach to the specification and verification
of hybrid systems. Lecture Notes in Computer
Science, 736:209–229, 1993.

[6] V. Varshavsky and V. Marakhovsky. GALA
(Globally Asynchronous – Locally Arbitrary)
Design. Lecture Notes in Computer Science,
2549:61–107, 2002.

[7] S. Minami, S. Takinai, S. Sekoguchi, Y. Nakai
and S. Yamane. Modeling, Specification and
Model checking of dynamically reconfigurable
processors. Computer Software, 28(1):190–
216, 2011.

[8] P. C. Attie and N. A. Lynch. Dynamic in-
put/output automata, a formal model for dy-
namic systems. Proceedings of the twenti-
eth annual ACM symposium on Principles of
distributed computing (PODC ’01), 2154:314–
316, 2001.

[9] H. Yamada, Y. Nakai and S. Yamane. Pro-
posal of Specification Language and Verifi-
cation Experiment for Dynamically Recon-
figurable System. Journal of Information
Processing Society of Japan, Programming,
6(3):1–19, 2013.

[10] B. Boigelot and P. Godefroid. Symbolic Verifi-
cation of Communication Protocols with Infi-
nite StateSpaces using QDDs. Form. Methods
Syst. Des., 14(3):237–255, 1999.

9

Table 5: Experimental results
Model Property Satisfiability Memory [MB] Time [sec] States

Original: Schedulability yes 168 180 1220
Creation of co-tasks yes 92 315 1220
Destruction of co-tasks yes 154 233 1220
Frequency Management yes 173 265 1220
Tile Management yes 167 234 1220

Modified tasks: Schedulability no 105 10.2 91
Creation of co-tasks yes 117 145 771
Destruction of co-tasks yes 82 151 771
Frequency Management yes 197 115 771
Tile Management yes 135 107 771

Modified co-tasks: Schedulability yes 83 141 768
Creation of co-tasks yes 85 183 768
Destruction of co-tasks yes 86 191 768
Frequency Management yes 104 141 768
Tile Management yes 119 134 768

[11] A. Bouajjani, J. Esparza and O. Maler.
Reachability Analysis of Pushdown Au-
tomata: Application to Model Checking. Lec-
ture Notes in Computer Science, 1243:135–
150, 1997.

[12] A. Bouajjani and P. Habermehl. Symbolic
reachability analysis of FIFO-channel systems
with nonregular sets of configurations. Lec-
ture Notes in Computer Science,1256:560–
570, 1997.

[13] R. Alur, C. Courcoubetis, N. Halbwachs,
T. A. Henzinger, P. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Com-
puter Science, 138:3–34, 1995.

[14] Y. Ono and S. Yamane. Computation of quan-
tifier elimination of linear inequlities of first
order predicate logic. IEICE Technical Re-
port. COMP, Computation, 111(20): 55–59,
2011.

[15] R. Bagnara, P. M. Hill and E. Zaffanella. The
Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis
and verification of hardware and software sys-
tems. Sci. Comput. Program., 72(1–2): 3–21,
2008.

[16] B. Boigelot, P. Godefroid, B. Willems and
P. Wolper. The Power of QDDs (Extended
Abstract). SAS, 172-186, 1997.

[17] T. A. Henzinger, P. Ho and H. Wong-toi.
HyTech : A Model Checker for Hybrid Sys-
tems. Software Tools for Technology Transfer,
1: 460–463, 1997.

[18] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu
and H. Veith. Counterexample-Guided Ab-
straction Refinement. Proceedings of the 12th
International Conference on Computer Aided
Verification, 1855:154–169, 2000.

[19] R. Nieuwenhuis, A. Oliveras and C. Tinelli.
Abstract DPLL and abstract DPLL modulo
theories. In LPAR ’04, LNAI 3452, 36–50,
2005.

10

