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Abstract 

Proteins play pivotal roles in most of biological processes at different levels of living 

organisms. Therefore, they are major objects of many different fields such as molecu-

lar biology, cellular biology, structural biology, biochemistry, biophysics, and 

bioinformatics. Decades of studies about proteins in these fields have generated a vast 

amount of knowledge of structure, function, and molecular properties of single 

proteins. However, the proteins rarely perform their functions alone. They function 

through interactions with other proteins, or with other biomolecules. Understanding 

about the interaction between proteins is helpful in annotating protein’s functions, in 

elucidating mechanism of biological systems, and especially in drug discovery and 

disease treatment. 

A protein may consist of one or several domains, and each of them has its own 

three dimensional structure and functions. The structural observations of existing 

protein complexes showed that the interfacial regions of many protein-protein interac-

tions (PPIs) occur at their domain regions rather than between their entire parts. 

Therefore, the detecting interactive domain pairs is very helpful in determining which 

proteins can interact and which domains mediate PPIs that then are useful in finding 

protein functions. In addition, domain-domain interactions (DDIs) are also helpful in 

predicting protein complexes. 

Furthermore, structure-based drug design approaches do not only require the in-

formation where the interfacial regions of the PPIs occur, but also need the detailed 

knowledge of artificial structure and energy of these regions. This information is 

essential to specify which chemical molecules can inhibit or repair unexpected PPIs 

that cause diseases. Unfortunately, except binary PPIs, all above information of PPIs 

is difficult to obtain by biological experiments. Then, it is the motivation for devel-

opment of computational based methods to characterize PPIs in different levels and 

with different targets. 

In this thesis, we aim to investigate the protein-protein interactions at the domain 

and residue levels by using machine-learning methods. Firstly, we developed a novel 

method to predict domain-domain interactions by applying link prediction approach. 

Our method employs a learning model utilizing low rank matrices as latent features in 

combination with biological features and topological features of the domain network. 
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The experimental results showed that our method achieved a good performance and 

the predicted DDIs had high fraction sharing rate with known DDIs in gold-standard 

databases. Secondly, we proposed a new method to inference residue contacts of two 

interactive protein domains by using interaction profile hidden Markov model 

(ipHMM) and support vector machine (SVM) in combination with information of 

residue co-evolution, and statistical amino acid pairwise contact potentials, as well as 

domain binding sites. The advantage of this method is that it can predict the residue 

contacts of two interactive domains by only using their sequence information. The 

experimental results show that the accuracy of our method is significantly improved 

compared with previous methods. In addition, this method can be utilized to increase 

the source for template-based protein docking. 
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Chapter 1   

Introduction 

 

This chapter first introduces the research context of characterizing protein-protein 

interactions at domain and residue levels. Then, we state the research objectives, 

which this thesis aims to solve. In the end, the main contributions of the thesis are 

described to each stated problem and the structure of the thesis is presented. 

1.1 Research context 

1.1.1 Protein-protein interactions 

Biological macromolecules perform their functions by interacting with each other. 

Among these interactions, protein-protein interactions are most important. The 

comprehensive knowledge of PPIs is essential for understanding the molecular 

mechanism underlying the biological functions[1], and drug design[2]. 

Proteins can combine with each other to form large homo-oligomers (contain 

only one type of proteins) or hetero-oligomers (contain several types of proteins). 

These protein complexes can exist for a long time (permanent protein complexes), 

or for a short time (transient protein complexes) [3]. Most of the transient com-

plexes are heterodimers and can be classified into smaller groups: antibody-antigen 

complexes, enzyme-inhibitor complexes, and other transient complexes. Mapping 

protein-protein physical interactions is a crucial step to understand the complex 

relationship of molecules in living systems [4]. The complete map of protein-

protein interactions in a living organism is called interactome.  

Recently, the developments of the high throughput experimental technologies 

such as yeast-two-hybrid based methods, expression analysis, mass spectrometry, 

and protein chips have reported a large number of direct protein-protein interac-
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tions. However these methods suffer from high false positive and false negative 

rates [1, 5, 6]. In addition to the experimental methods, a number of computational 

methods have been developed to accelerate the gaining of the comprehensive 

knowledge of interactomes and correct the missing interactions generated from 

high throughput methods [7–18].  

However, the binary PPIs which are defined by methods concerned above (i.e. 

high throughput techniques and computational methods) just answer the question 

which protein pairs will interact [19]. To understand deeply the role of the proteins 

in the interaction network of biological systems, the detailed knowledge of the 

ways that proteins interact is needed. Unfortunately, this task is difficult, expen-

sive, and time consuming if using experimental methods. Therefore, a number of 

computational methods have been developed to address this task at different levels 

from different perspectives, and each of them is a PPI’s research topic in bioinfor-

matics research community.  

1.1.2 Domain-domain interactions 

When a protein involves an interaction, it may use one or some parts to bind to the 

partner and then enforce a specific function. These interacting regions may be 

domains, sort linear motifs, or coiled-coil regions. Therefore, defining the interact-

ing regions of the proteins is very helpful for studying protein function, structure, 

evolution, analyzing protein networks and signaling pathways [20].  

Protein domains are known as functional and structural units of proteins. They 

are conserved through evolution. In multimeric enzymes and large multiprotein 

complexes, the interfacial regions often occur between domains. The DDIs can 

occur in the same or different proteins (i.e., intra or inter molecular). In brief, 

understanding about DDIs is very important because they not only elucidate PPIs 

and protein’s functions, but also can be used to deduce new PPIs. 

There exist two main approaches to determine DDIs from two different PPI 

data sources. The first approach is identifying DDIs based on the structure of 

protein complexes organized in databases Protein Data Bank (PDB). The domain 

interaction data generated from the methods [21–26] of this approach  is not only 

providing what domain pairs of protein chains can interact, but also provide how 
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two domains interact, i.e. they clearly indicate what residue pairs of two domains 

bind together. Databases created from these methods such as 3did [21], InterPare 

[23], PIBASE [25], SCOPPI [26], SCOWLP [24] are called DDI interface data-

bases. However, because the structures of protein complexes in the PDB database 

are only a part of the ones existing in living organisms, the DDI interfaces are 

consequently limited.  

The second approach is predicting DDIs based on binary PPIs. There is a series 

of methods have been developed to predict DDIs based on PPIs and protein 

attributes [27–34]. Some of them use the co-occurrence of domain pairs in known 

PPIs to infer new PPIs [27, 29, 30], and some others aim to define DDIs (e.g., what  

domain pair mediates PPIs) rather  than predicting new PPIs [28, 31–33, 35]. 

However, PPIs networks are incomplete, high false positive and high false nega-

tive, and these methods therefore are limited on small valid datasets[1, 34, 36]. It is 

obvious that developing new methods for predicting DDIs, which can overcome 

drawbacks of PPI data source, is motivated. In addition, there are some methods 

have been developed to evaluate predicted DDIs [37–39] and make up DDIs 

sources for further researches.  

1.1.3 Protein-protein interaction interfaces 

When proteins interact with each other, the touched regions between them are 

interface. This is biophysical phenomena and is controlled by the chemical com-

plementarily, the environmental, the shape, and the flexibility of molecules 

involved [2]. The databases mentioned above (i.e., 3did, InterPare, PIBASE, 

SCOPPI, and SCOWLP) also represent interacting interfaces of PPIs at residue 

level. They are the libraries of interface data for further researches.  

Predicting PPI binding sites is to identify which residue on the surface of a pro-

tein can interact, i.e. classifying interface residue versus non-interface residue. This 

approach is mostly based on protein sequence and three dimensional structure data. 

The advances in this field are driven by the development of algorithms to interpret, 

process, and combine data [40].   

There are several interface characteristics of different types of protein com-

plexes. The interfaces of permanent protein complexes are flatter, larger, and more 
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conserved than the interfaces of transient complexes. Therefore, predicting perma-

nent protein complexes is easier than predicting transient protein complexes. In 

addition, permanent protein complexes exist in bound structures and therefore their 

interfaces can be extracted from the known structure complexes. On the other 

hand, predicting interfaces for transient protein complexes can be made from 

bound or unbound structures, or homology models.  

Although there is a blooming of interface prediction methods has been devel-

oped and reported, but most of them just work with a single protein interface. 

Defining residue contacts at interface of two protein chains is needed for structure 

based drug design, protein complex prediction, and synthetic biology. Docking 

methods is widely applied in this task to detect protein complexes. However, 

current docking methods require a high computational process. Besides, it is 

difficult to define the best solution from the positives or decoys based on docking 

methods’ score functions [41]. In addition, the conformation changes of monomers 

during the formation of protein-protein complexes is also one of challenges for 

docking methods [6]. Recently, to overcome these limitations and improve the 

performance, some docking methods begin including interface prediction to the 

docking process [42, 43]. However this inclusion may decrease the performance of 

the dockings because of inaccurate interface predictions [6]. For these reasons, it is 

difficult to predict protein complexes that consist of many structure units (e.g., 

domains, and monomers) by docking methods. The development of new methods 

to predict such large protein complexes is urgent [6].  

Covariance-based methods of sequences analysis are another approach to iden-

tify interacting residues between interaction proteins (or interaction protein 

domains) [44–47]. This approach relies on the premise that amino acid substitution 

patterns between interacting residues are constrained and correlated. These cou-

plings can be detected through mutual constrain of the amino acid substitutions in 

the two columns of a multiple sequence alignment. Since solely depending on 

sequence information, this approach promises application to large scale and 

especially to predicting transient protein complexes. Nevertheless, it requires a 

large set of binary PPIs (or DDIs) between protein members of two protein fami-
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lies (or two domain families). In addition, the accuracy of covariant-based methods 

strongly depends on the specific protein family and certain properties of the 

corresponding alignment [48, 49]. 

In summary, PPIs are very important and fully understanding about them is 

very meaningful and large applicable. Protein domains are functional unit of 

proteins, understanding their functions and what domain partners they can interact 

are very useful in detecting protein’s functions and PPIs. Moreover, understanding 

how DDIs interact is also important for protein complex prediction and drug 

design. The existing methods in different topics of characterizing PPIs have been 

obtained many successes. How to connect them together is ideal to go the ultimate 

goal of understanding how proteins interact. 

1.2 Objectives 

Even though many of experimental and computational approaches are used to 

decipher the protein-protein interactions in different levels and different perspec-

tives, the answer of the question “how do the proteins interact?” is still so far. We 

are motivated by two problems: (1) DDIs can help determining protein’s functions 

and extending PPIs network, therefore how to expand DDI network without 

affected by the noise and incompletion of PPI networks is an important problem. 

(2) Identifying residue contacts between interactive protein domains have many 

applications but it is an outstanding challenge. How to develop new computational 

methods to combine and inherit advantages of the availability of protein structure 

data, the large amount of binary PPIs generated from experimental methods, and in 

addition, the successes of protein binding site predictions and co-variance based 

methods are substantial. From these motivations, the thesis aims to discover 

protein-protein interactions at domain and residue levels by using machine-

learning methods.  

Firstly, we proposed a new method to identify new DDIs by using link predic-

tion algorithm that applies matrix completion approach to predict new links of 

DDIs or non-DDIs in the DDI network.  This novel approach has not been attempt-

ed to predict DDIs, and is different from all of previous methods that often solely 
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use the PPIs networks and features at protein level. However, we faced some 

challenges such as the sparseness of DDIs networks, the missing values of do-

main’s features, and scarceness of negative DDI data. To overcome those 

challenges, we proposed the use of an advanced link prediction method that uses 

low rank matrices as latent features in combination with explicit features of 

domains. We defined and formulated several explicit features for domain pairs. In 

addition, we proposed a technique to sample negative examples (non-DDI) from 

unlabeled data for training learning model. 

The other main goal of our dissertation is that we proposed a new framework to 

predict residue-residue contacts of two interactive domains. The framework can 

combine the information of residue co-evolution, pairwise amino acid contact 

potentials, and interaction interface of domains to create features for residue pairs. 

We then proposed the use of interaction profile hidden Markov models (ipHMMs) 

and support vector machines (SVMs) in tandem. The ipHMM was introduced by 

Freidrich et al. [50] to predict binding sites for a single protein domain based on its 

homologous protein domains that are known binding sites. In this study, the 

ipHMM is applied to transfer the biding sites among domain members in a domain 

family. Hence, the ipHMMs of two concerned domain families will be firstly 

trained and then they will be used to pre-predicting binding sites for unobserved 

interactive domain pairs. This pre-predicting binding sites is independent on each 

domain family. The result of this step is then incorporated with other information 

to form a feature vector for each residue pairs. Finally, the SVM will be used to 

classify residue-residue contacts (RRCs) and non-RRCs. The advantage of this 

method is that it can predict residue contacts of two domains by using only their 

sequence information.  

1.3 Contributions 

The purpose of this thesis is to develop computational methods that can expand the 

DDI networks and identify residue contacts of DDIs. The main contributions of 

this thesis are summarized in each following situation: 
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Prediction of domain-domain interactions. We presented a link prediction 

approach to predict new interactions between domains. Our method is based on a 

link prediction method that can use latent features in combination with known 

information of domains. We determined and formulated three explicit features for 

domains: functional similarity, co-occurrence frequency of domains in PPIs, and 

random walk topological features of the DDIs networks. The experimental results 

showed that our method achieved a good performance and the predicted DDIs have 

high fraction sharing rate with known DDIs in iPfam and the result of ME method, 

one of the best-evaluated methods that uses PPI data and biological properties of 

proteins to infer DDIs.  

Identification of residue-residue contacts of DDIs. We introduced a novel 

method for predicting residue-residue contacts. Our method inherited an approach 

that have ability to aggregate the interaction profile hidden Markov models 

(ipHMM), a method for predicting binding sites of single protein,  and support 

vector machine (SVM) for inferring residue-residue contacts between domains. 

The ipHMM was used to transfer the information of binding sites among the 

members in a domain family, while SVM was used to classify residue-residue 

contacts and non-RRCs. Our method did not only use predicted binding site 

information, but also integrate the other information (i.e., residue co-evolution, and 

statistical pairwise amino acid contact potentials) of pairwise residues to enrich and 

power the classification of contact residues and non-contact residue. The experi-

mental results on two datasets C1-set/C1-set, and C1-set/MHC-I showed that our 

method archived high average of sensitivities (C1-set/C1-set: ≈ 69.1%, and C1-

set/MHC-I: ≈ 87.6%), specificities (C1-set/C1-set: ≈ 99.5%, and C1-set/MHC-I: ≈ 

99.6%), and AUCs  (C1-set/C1-set: ≈ 93.2%, and C1-set/MHC-I: ≈ 95.9%). In 

addition, the comparing results also showed that the proposed method outper-

formed previous methods on the same data set. Moreover, the method promises to 

improve the source for template-based protein docking. 
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1.4 Thesis organizations 

The thesis is divided into five chapters, including the current one.  

Chapter 1 introduces the research problem and objectives. This chapter also 

states our major contributions of the works in this dissertation.  

Chapter 2 presents the background of the dissertation. We present the basic 

concepts of molecular biology, protein domains, protein classification, and meth-

ods for protein-protein interactions detection and characterization. Then, the 

overview of machine learning methods used in this thesis is also presented.   

Chapter 3 describes a method to predict new domain-domain interactions. 

Firstly, we present the link prediction method based on matrix factorization for 

predicting DDIs. Secondly, we show how we defined and designed explicit fea-

tures for protein domains. A technique for sampling non domain-domain 

interactions is then introduced. Finally, experimental results and comparison with 

other state-of-the-art methods are analyze and discussed. 

Chapter 4 describes the method to build a new framework for defining resi-

due-residue contacts at interfaces between two protein domain chains. First, we 

present framework of the method. Then, we show how to apply the method to 

predict residue contacts on two DDI datasets C1-set/C1-set and C1-set/MHC-I.  

The predicted results are analyzed and compared with other method. Finally, we 

show the application of the method to predict residue contacts for hetero DDIs in 

KBDOCK database.  

Chapter 5 summarizes the main tasks of the thesis, achievements, and the con-

tributions to define the interaction networks in biological systems. Some 

shortcomings are also presented. Moreover, some interesting related problems are 

opened, and discussed as new directions for our future researches. 
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Chapter 2   

Fundamental elements  

 

In this chapter, we introduce some basic and fundamental concepts in molecular 

biology. Next, we give an overview of methods for protein-protein interactions 

detection and characterization. In addition, the last one presents a brief machine 

learning methods used in the dissertation. 

2.1 Molecular biology background 

The living world has several hierarchical levels: from the smallest molecules, a 

mix of inorganic and organic compounds, and macromolecules to sub-cellular 

structures, cells, tissues, organs, organism, populations, communities and the 

biosphere [51]. Among them, macromolecules play important roles in biological 

processes such as regulation, structural support, information storage, reaction 

catalysis, communication, and transport. There are four types of macromolecules: 

nucleic acids, which are polymers of nucleotides; proteins and peptides, which are 

polymers of amino acid residues; carbohydrates, which are polymers of sugar; and 

membranes, which are the combinations of lipids. 

DNA (Deoxyribonucleic acid) 

DNA is a macromolecule, which encodes the genetic material in living organ-

isms. It stores the instruction for the cell to perform daily life functions [52]. DNA 

includes two strands which coil together to form a double helix. Each strand is a 

polymer made of four types of nucleotides, i.e. adenine, guanine, cytosine, and 

thymine (Figure 2.1). Each nucleotide consists of a 5-carbon sugar (deoxyribose), a 
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nitrogen including base attached to the sugar, and a phosphate group. The base can 

be arranged in any order along the strand of DNA. The chain of DNA has orienta-

tion: one strand from 5’ to 3’ (upstream), and one complementary strand from 3’ to 

5’ (downstream). The opposite polarity of the complementary strand is important 

in analyzing the mechanism of replication of DNA. The regions where DNA 

encodes proteins are called genes. Chromosomes are organized structures of 

DNAs, proteins, and RNA. They include genes, regulatory elements (i.e., segments 

of nucleic acid molecules) and other nucleotide sequences. The genome of an 

organism includes the entire of chromosomes in an organism’s cell. 

RNA (Ribonucleic acid) 

RNA composed of nucleic acids and is produced during the transcription pro-

cess. RNA is an intermediate in the flow of genetic information from DNA (the 

hereditary material) to protein. Therefore, similar to DNA, it can store and transfer 

information. On the other hand, similar to protein, it can fold into 3D structure to 

perform some functions. There are four types of RNA: messenger RNA (mRNA), 

transfer RNA (tRNA), ribosomal RNA (rRNA), and non-coding RNA (ncRNA). 

Messenger RNAs carry the encoding information required to synthesize proteins. 

Transfer RNAs translate the nucleic acid code into the amino acid sequence of 

proteins. Ribosomal RNAs make up components of ribosomes, which support 

translating mRNAs into proteins. Non-coding RNAs control genes that are use to 

synthesize proteins. The structure of RNA resembles to DNA, i.e. a linear polymer 

of nucleic acids. The sugar in RNA is ribose, and the base thymine in DNA is 

replaced by the base uracil. Unlike DNA, RNA exists in a single stranded form. 

 

Figure 2.1   The structure of DNA.  

(http://ehrig-privat.de/ueg/images/dna-structure.jpg) 

http://en.wikipedia.org/wiki/Nucleic_acid
http://ehrig-privat.de/ueg/images/dna-structure.jpg
http://ehrig-privat.de/ueg/images/dna-structure.jpg
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Protein 

Proteins are macromolecules in living organisms. They play an important role in 

most of biological processes, e.g. replicating DNA, catalyzing metabolic reaction. 

Understanding the protein can help us to gain knowledge of its functions and other 

biological processes.  

Proteins are polypeptide chains, which are made of twenty amino acid types. 

Different amino acid components in polypeptide chains have different functional 

groups. The polypeptide chains have orientation: one end of the chain contains an 

amino group, while the opposite end contains a carboxyl group.  

The structure of protein can be divided into four levels (Figure 2.2). The prima-

ry structure is a sequence of amino acid of polypeptide chains. The secondary 

structure refers to regular repeating structures (e.g., alpha helix and beta sheet). 

Parts of proteins without any regular structures are called loop or coil regions. The 

tertiary structure refers the overall three-dimensional structure arrangement of 

secondary structure elements of a polypeptide chain. At this level, the alpha helices 

and beta sheets are folded into a compact globule named motifs. Those motifs can 

be divided into some different types based on the connectivity of secondary 

structure elements. The quaternary structure is the arrangement and interaction of 

subunit polypeptide chains to form a protein molecule. The function of the proteins 

is defined by the amino acid component and the way they fold. The diversity and 

complexity of the structure of proteins allow them to perform a variety of diverse 

functions. To perform their functions, proteins often interact with other proteins 

and molecules to form complexes. 

The central dogma of molecular biology 

The central dogma of molecular biology presents the flow of genetic information 

within living organisms, i.e. how protein is synthesized from the gene. More 

specifically, it is a gene expression process, which transfers sequence information 

between DNA, RNA, and protein (Figure 2.3). The gene expression process 

involves two phases: transcription and translation. In the transcription phase, the 

genetic material DNA is transcribed to mRNA, and then mRNA is translated to an 
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amino acid sequence to form protein in the translation phase. Hence, the flow of 

genetic information is the processes to synthesize protein from DNA through 

RNA. 

 

Figure 2.2   Four levels of protein structure.  

 

 

Figure 2.3   The central dogma of molecular biology.                                                                                               The DNA is transcribed to mRNA, which 

then is translated to protein (http://www.bioinformatics.nl/webportal/background/translationinfo.html) 

(http://academic.brooklyn.cuny.edu/biology/bio4fv/page/3d_prot.htm ) 

http://www.bioinformatics.nl/webportal/background/translationinfo.html
http://academic.brooklyn.cuny.edu/biology/bio4fv/page/3d_prot.htm


13 
 

2.2 Protein domain 

Protein domains are determined as structural, functional, and evolutional units of 

proteins. Domains have their own three-dimensional structure and are formed by 

some motifs packing together.  The sizes of domains vary from 25 up to 500 

residues.  

Domain arrangement in proteins is formed during the gene duplication and fu-

sion [3]. One domain can be repeated once or several times. One protein can 

consist of a single domain or several domains. In contrast, one domain can exist in 

multiple proteins and converge through species (Figure 2.4).  

Monomeric proteins may include several domains and is combined in a non-

native fashion through domain swap arrangements. A domain can interact with 

other domains within the same or in another polypeptide chain. 

Some special proteins (i.e., mosaic proteins) are formed by re-aggregation of 

genetic elements during evolution and by different splicing events. One exon in the 

DNA may correspond to a domain. Hence, the new proteins may be formed by the 

combination of these domains or exons in the processes of gene duplication and 

differing splicing. 

2.3 Multiple sequence alignment 

Multiple sequence alignment (MSA) is a sequence alignment of three or more 

protein sequences (or DNA sequences, or RNA sequences). These protein se-

quences are assumed to have evolutional or structural relationship. The MSA 

arranges the residues of sequences as a row in a matrix. Gaps (“-”) are inserted into 

sequences such that residues in a column are identical or similar as much as 

possible. The changing of residues in a column presents point mutations, and gaps 

present insertion or deletion mutations. The MSA visualizes high conserved 

residue regions where may present the evolutionary, functional, or structural 

relationship of protein sequences. Figure 2.5 shows an example of a MSA of 60S 

acidic ribosomal protein P0 from different organisms. MSA is used commonly to 

access sequence conservation of protein domains and structures. 
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Figure 2.4   Examples of single-domain and multi-domain proteins.  

 

 

 

 

 

Scoring matrix based on MSA 

Scoring matrix based on a MSA is a matrix of score values that are built by 

converting the MSA into Position-specific scoring system (PSSM). Residues at 

each aligned position are assigned a score based on the frequency with which they 

occur. These scores can be added evolutionary distance from substitution matrices 

(e.g. BLOSUM matrices). Figure 2.6 presents a scoring matrix based on a MSA. 

2.4 Protein classification 

Proteins derived from a common ancestor are homologous. If two proteins have 

similar amino acid sequence, they are considered homologous and may have 

similar structures and functions. Proteins can be clustered into groups basing on 

their sequence or structural similarity. The protein members in a protein group are 

well defined function. Therefore, when a protein is classified to a protein group, it 

is assigned function that is determined for the group.  

(a) 

 

(b) 

 

Globin domain (PF0042) 

                                                                                              .  (a) Single domain 

protein myoglobin (P02210) in Aplysia limacina organisms (PDB:1MBA). The name of this 

domain in the Pfam database is Globin (PF00224). (b) Multi-domain protein: the protein tissue 

plasminogen activator (top) has five domains Fnl, EGF, two Kringle, and Serine protease. The 

protein of receptor trosine kinase (bottom) has six domain three lg, Fz, Kringle, and protein 

kinase. Two proteins share the Kringle domain[51]. 
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               The red arrows indicate two columns that are converge in all sequences 

(http://www.ebi.ac.uk ). 

 

 

 

Figure 2.5   Multiple sequence alignment for 60S acidic ribosomal protein P0 from different 

organisms.    

 

 

Figure 2.6   A scoring matrix based on a multiple sequence alignment.  

 

The categorization of proteins can be based on protein families, or protein do-

mains, or protein sequence features. A protein family includes proteins that a 

common evolutionary origin (i.e. they have related functions and similarities in 

sequence or structure). Protein families are organized in levels, from protein 

(http://www.ebi.ac.uk ) 

http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
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supper-families (large distance related proteins) to sub-families (small close related 

proteins). As mentioned in the section 2.2, one protein domain has its own func-

tions and can be contained in many proteins. Therefore, proteins that share one or 

more similar protein domains can be classified into a group. However, the classifi-

cations of proteins based on protein families or domains are intricate. For example, 

in Figure 2.7, the RGS (Regulator of G protein signaling) domains are contained in 

some sequences of regulator of G-protein signaling family, beta-adrenergic recep-

tor kinases family, and sorting nexin family. On the other hand, in the regulator of 

G-protein signaling family, the sequence RGS1 contains only one RGS domain, 

but the sequences RGS3 and RGS6 consist of some additional domains having 

other functions. The sequence features are active sites, binding sites, post-

translational modification sites, or repeats. They are sort segment sequences (few 

amino acids) in proteins and often nested within domains. 

A set of computational tools that classify proteins into groups and then predict 

the existence of domains and sequence features are named protein signatures. The 

signature types include patterns, profiles, fingerprints, and hidden Markov models 

(HMMs). They often base on a multiple sequence alignment of a set of proteins 

sharing some characteristics such as domain, or family to build initial models by 

using the level of amino acid conservation at aligned positions. The level of amino 

acid conservation can be a single conversed sequence region (i.e. motif), multiple 

conversed motifs, or entire alignment of a domain or whole protein. After built, the 

initial models are trained by using them to search related proteins from a protein 

database. When the models are mature, they are used to analysis protein sequences. 

Figure 2.8 shows the process of building a protein signature. 

HMMs are signatures that convert multiple sequence alignments into position-

specific scoring system (PSSMs). They are powerful statistical models and appro-

priate for searching homologous sequences from databases. There are many 

databases that use HMMs to classify proteins such that Pfam[53], 

Supperfamily[54], TIGRFAM[55], PIRSF[56], PANTHER[57], SMART[58], and 

Gene3D[59]. In details about structure of HMMs and profile HMMs will be 

presented in the section 2.8.2.  
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Figure 2.7 Example of the complication between family-based protein classification and 

domain-based protein classification 

 

Figure 2.8   The process of building a protein signature  

2.5 Methods for identifying protein-protein interactions 

2.5.1 Experimental methods 

Traditionally, PPIs have been detected by genetic, biochemical and biophysical 

experimental methods. These methods are often time-consuming, expensive, and 

called low-throughput methods. In recent years, the high-throughput biological 

protein interaction experiments have been presented and can identify hundreds or 

thousands of PPIs at a time.  

The most commonly used method for determining binary PPIs is yeast two-

hybrid (Y2H) screening [60, 61]. The method relies on the fact that many eukary-

(http://www.ebi.ac.uk). 

(http://www.ebi.ac.uk). 

http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
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otic transcription activators such as GAL4 include at least two domains, one is 

DNA-binding domain (BD), and another is activating domain (AD). It was con-

firmed that if the BD and AD are separated, the transcription deactivates. However, 

it can reactivate if the BD is combined with any other activating domain. To detect 

the interaction between two proteins X and Y, the protein X is fused to the BD 

(bait protein), and the protein Y is fused to the AD (prey protein). Then the fusion 

proteins are expressed in a yeast cell. If the bait and prey proteins interact with 

each other, the transcriptions activate and the reporter gene is turned on (Figure 

2.9). 

Y2H is able to detect transient interactions since the reporter gene expression 

significantly amplifies the signal [62]. The disadvantages of Y2H are (1) false 

positives can arise because of using yeast protein as a bridge; (2) detected interac-

tions would not normally be occurred in the same cellular compartment, in the 

same cell type, or at the same time; (3) The protein bait and prey might not be 

expressed or toxic the yeast cell. 

Another method frequently used is affinity purification mass spectrometry 

(AP-MS). It is an affinity-based assay and is an approach to characterize multi-

protein complexes[4]. In AP-MS, a bait protein is immobilized in a matrix and a 

protein mixture (a lysate of cell or tissue of interest) is then passed through the 

matrix to acquire the interacting partners (prey). In the following step, retained 

proteins are recognized by a mass spectrometry technique (MALDI, LC-MS/MS, 

etc...) (Figure 2.10). 

 

 

 

 

 

 

 

 

Figure 2.9   Y2H detects interaction between proteins X and Y  

(modified from the Figure 1 in [61]). 

 

DB 

X 

Y 
AD 

RNA polymerase 

Reporter gene transcription 

Promoter 

http://en.wikipedia.org/wiki/Mass_spectrometry
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Figure 2.10   Affinity purification and mass spectometry (AP-MS). 

  

 

 

The specificity and sensitivity of AP-MS depends greatly on the strength and 

stability of the interaction between the proteins involved [63].  Although AP-MS 

can decrease the number of non-specific binding partners but biologically relevant 

transient interactions and weak interactions may be removed[8]. Moreover, mixing 

of compartments during cell purification is a potential source of false positives.  

Some other experimental methods are low-throughput such as X-ray crystal-

lography but they provide more details about PPIs. X-ray crystallography is a 

method of determining the arrangement of atoms gives three-dimensional picture 

of the density of electrons (Figure 2.11). Based on the electron density, the mean 

positions of the atoms and their chemical bonds in the crystal can be evaluated. 

Hence, X-ray crystallography can provide high quality data about binding surfaces 

with detailed mapping of binding sites. However, it is time-consuming method and 

requires large quantities of pure protein. In addition, some proteins are not cooper-

ative to co-crystallization, and some proteins that co-crystallize in vitro but do not 

interact in a physiological context. 

                                                                                                 . (a) The bait protein (yel-

low) is immobilized on a matrix. (b) A protein mixture is passed through and the interacting 

partners are obtained. (c) The remained proteins are digested with a protease and the resulting 

peptides are analyzed by MS [7]. 

(a) 

(b) 
(c) 
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Figure 2.11   X-ray crystallography determines structure of the cullin complex 

2.5.2 Computational methods 

To accelerate the recovery of protein-protein interaction networks in living organ-

isms, there are numerous computational methods have been developed to predict 

whether two proteins interact. These methods may be classified into main catego-

ries: genomic-based methods and classification methods. 

 Genomic based methods 

The genomic-based methods use genomic or protein context to predict the 

functional associations between potential binding proteins instead of inferring 

physical interactions.  

Gene neighborhood and gene cluster methods: these methods rely on a prem-

ise that if genes that are closely relative functions are transcribed into an operon (a 

single unit) in bacteria, or co-regulated in eukaryotes. In addition, protein products 

of these genes are likely associate with one another. There are some intergenic 

distance based methods have been applied to detect operons [9–11, 64, 65], while 

some other methods that base on the co-regulated genes have been developed  to 

build functional linkages between their constituent genes[12, 66–68] (Figure 2.12). 

The gene neighborhood and gene cluster approaches provide strong signals for 

functional association between gene products within and across species [69], but 

they are not suited for detecting physical interactions.  

Gene fusion: The gene fusion methods deduce protein interactions from pro-

tein sequences in different genomes[70–73]. Some observations showed that a 

certain interacting proteins (or domains) have horologes in other genomes and they 

are fused into one protein chain (Figure 2.13). Based on this fusion event, one can 

induce that two unit proteins may interact with each other.  

 

  [7]. 
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Figure 2.12   Gene neighborhood and gene cluster methods for predicting PPIs. 

 

 

 

 

 

 

Figure 2.13   PPI prediction by gene fusion  

 

Phylogenetic profile: The phylogenetic profile methods [13] are based on the 

assumption that interacting proteins need to be present concurrently to implement 

their functions. Hence, if two proteins frequently co-occur in different organisms 

they are potentially interact. As shown in Figure 2.14, a phylogenetic profile is 

constructed for four proteins. Each of them is presented in a vector with number of 

components is the number of genomes of interest. The values 1 and 0 in the vector 

present the presence or absence of a given protein in a given genome. Four phylo-

genetic profiles of proteins are then be linked using a bit-distance measure, with 

linkage indicating physically interaction or functional association [13, 36]. This 

approach can also apply for protein domains, where a profile is constructed for 

each domain. 

Genome 1: 

Genome 2: 

Genome 3: 

D1 

 D2 

D1  D2 

Gene neighborhood 

Genome 1: P1 

 

Genome 2: P1 

 
Genome 3: P1 

 

P2 

P2 

P2 

P3 

 

P3 

 
P3 

 

P4 

P4 

P4 

Gene cluster 

Promoter 

Co-regulation 

P1 

 

P2 P3 

 

P4 

Each box presents a gene  (modified from the Figure 1 in [36]). 

 

(modified from the Figure 1 in [36]). 

 



22 
 

Proteins Genome 1 Genome 2 Genome 3 Genome 4 

P1 0 0 1 1 

P2 0 1 0 1 

P3 1 1 1 0 

P4 1 1 1 0 

 

 

Figure 2.14   PPI prediction by phylogenetic profile strategy  

 

Classification methods 

There are a number of classification methods have been explored and multiple 

ways of using biological evidences have been studied in statistical learning frame-

work, which train a classifier to distinguish between positive examples of truly 

interacting protein pairs from the negative examples of non-interacting pairs [14–

18, 74]. The proposed methods consist of decision trees [75], naive Bayes classifi-

ers [76], kernel-based methods [15, 16, 77], random forests [78]. Kernel-based 

methods are commonly used because they encode data in the feature space through 

the set of pairwise comparisons. Each protein or protein pair can be represented by 

feature vector where features are particular information of protein interactions, 

domain compositions, or evidence coming from various experimental methods. It 

has been shown that Random forests and support vector machines (SVMs) were 

found to achieve the best performance among classification methods [79].  

Beside the methods for predicting PPIs concerned above, there exist methods 

that based on domain composite of proteins and observed PPI data to extend PPIs 

networks. These methods are presented more detail in the next section of predict-

ing domain-domain interactions.  

Proteins P3 and P4 functionally linked 

                                                                                                      (modified from the Figure 1 in 

[36]). 
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2.6 Methods for determining domain-domain interactions 

2.6.1 Structural protein complex-based methods 

The structure protein complex-based methods determine interaction of domains 

based on protein complexes generated from experimental methods such as X-ray 

crystallography mentioned in the section 2.5.1. They define interaction of domains 

at atom level based on their X-ray physical relationships. 

3did is the database of interacting domains of known 3D structure. It exploits 

structural information to provide atomic details for thousands of direct physical 

interactions between proteins at domain level. 3did obtains the high-resolution 

structures of individual proteins and complexes from the PDB, then annotates 

domains for protein chains based on the Pfam [53] database. The physical interac-

tions between domains require at least five contacts: hydrogen bonds, electrostatic 

or van de Waals interactions. 

iPfam is also a resource that describes physical interactions between 

Pfam domains that have a representative structure in the PDB. When two or more 

domains occur within a single structure, the domains are analyzed to see if they 

form an interaction. If the domains are close enough to form an interaction, the 

bonds that play a role in that interaction are determined. As same as 3did, iPfam 

uses Pfam and Uniprot databases to annotate domains for protein chains in the 

PDB. The iPfam calculate all bonds such as van-der-Waals, side chain and main 

chain H-bonds, salt bridge and disulphide to identify the interactions between 

residues. 

2.6.2 Predicting domain-domain interaction methods 

Association methods are primary works [80, 81] that aim distinguish interacting 

proteins from non-interacting based on the co-occurrence of domain pairs in PPIs. 

Two domains are correlative if their co-occurrence frequency in known PPI pairs is 

more often than expected by chance. Sprinzak et al. [80] use the following score 

computed from protein interaction data to find correlated domains: 

         
   
   

                           

http://pfam.sanger.ac.uk/
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where     is the number of interacting pairs that contain domain pair         , and 

    is the total number of protein pairs that contain        . Because some 

domain pairs frequently occur in interacting protein pairs, this simple association 

method may be successful in identifying novel PPIs. However, the equation 2.1 

may assign high association scores to domain pairs with low frequency so Kim et 

al. [81]  added the number of domains in each protein, but this correction may 

preferentially identify promiscuous domain interactions because they screen for 

pairs that occur with the highest frequency. In conclusion, the association methods 

contain some drawbacks. The first is they ignore other domain-domain interaction 

information between the protein pairs and thus they do not make full use of all of 

the available information. The second is they do not explicitly consider the errors 

in interaction PPI datasets. This noise may lead to the impossibility of having a 

pattern of domain interactions that is compatible with the protein-protein interac-

tion map [27]. 

Taking above limitations of the association methods into account, maximum 

likelihood estimation (MLE) methods [27, 30, 82] are proposed. The MLE meth-

ods combine proteins, domains, and experimental errors together. They estimated 

the probabilities of interactions between every pair of domains annotated in 

proteins. Considering protein-protein interactions and domain-domain interactions 

as random variables, the two basic assumptions of the MLE methods are (1) that 

two proteins interact if at least one pair of domains of the two proteins interacts 

and (2) interactions between different domain pairs are independent. Hence, the 

probability of a potential interaction between a protein pair (i, j) is evaluated by 

following expression: 

                                  
             (2.2) 

where     denotes the probability that domains    and    interact. The expecta-

tion maximization (EM) algorithm is used to find maximum likelihood estimates of 

unknown parameters by finding the expectation of the complete data consisting of 

observed and unobserved data in two iterative steps. The data used in the EM 

process is: protein-protein interactions and annotated domains of the proteins are 
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observed data, and all putative domain-domain interactions are the unobserved 

data. 

Nye et al. [29, 83] developed the p-value method which tests the null hypothe-

sis that the presence of a domain pair in a protein pair do not affect whether the 

two proteins interact or not. The hypothesis is tested based on fractions of false 

positives and false negatives that are used to evaluate p-value statistics. The 

domain pair are considered interact if it has the lowest p-value. The authors point 

out that, for the majority of test cases, random domain prediction outperforms all 

methods tested, indicating the low accuracy of all prediction methods of domain 

interactions. 

The domain pair exclusion analysis (DPEA) method [28] proposed a new 

measure E-score for each potentially interacting domain pair. It is an extension of 

MLE method by introducing a likelihood ratio test to estimate the contribution of 

each potential domain interaction to the likelihood of a set of observed protein 

interactions from the incomplete interactomes of multiple organisms. This obtained 

by measuringthe     score, the logarithm of two probabilities. The first is the 

numerator probability embodying the probability of two proteins interacting given 

that domains a and b interact. The later is the denominator probability representing 

the probability of two proteins interacting given that the domains do not interact. 

The numerator probability is evaluated by the EM procedure. A pair of domains 

has higher E-scores implying a higher potentially interact. Therefore, the E-score 

values are used to decide what domain pairs can interact. This is an advantage of 

the DPEA method.    

On the other hand, Guimaraes et al. proposed the parsimonious explanation 

(PE) to explain protein interactions as evolving in parsimonious ways[32, 35].  The 

Parsimonious Explanation (PE) approach hypothesized that interactions between 

proteins evolve in parsimonious way and the set of true domain-domain interacting 

pairs should be well approximated by the minimal set of domain pairs necessary to 

explain a given protein interaction data. The PE method used LP-score computed 

from a linear programming to assign to a domain pair. This method also concerned 

to tackle the noise problem of PPI networks.  
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To overcome the incomplete of PPI networks, Liu et al. [34] introduced a nov-

el method called K-GIDDI (knowledge-guided inference of DDIs) to infer DDIs 

from multiple species. K-GIDDI firstly builds an initial DDI network from cross-

species PPI networks based on the frequency of co-occurrence of domain pairs in 

PPI groups whose members have relative function. Then, it expands the initial DDI 

network by inferring additional DDIs using a divide-and-conquer biclustering 

algorithm guided by Gene Ontology (GO) information, which identifies partial-

complete bipartite sub-networks in the DDI network and makes them complete 

bipartite sub-networks by adding edges. 

2.7 Methods for predicting protein-protein interaction binding 

sites  

One of the most important things to improve the interfaces prediction is defining 

the properties of interfaces, which is able to discriminate binding regions from 

non-binding regions. These properties can be divided into three groups. The first 

group contains the properties of amino acid sequence such as hydrophobicity, 

desolvation, and interface propensity. The second group is the structural infor-

mation such as surface accessibility, the shape of protein interface, tertiary and 

secondary structure. The last group is evolutionary conservations that can be 

obtained by aligning the query sequence with its protein families (i.e., homologous 

proteins). This property is extensively applied in various studies [40]. 

Friedrich et al. [50] proposed the ipHMM to predict binding sites for protein 

protein–ligand based on structural and sequence data. The ipHMM depend on a 

homology search via a posterior decoding algorithm that yields probabilities for 

interacting sequence positions and inherits the efficiency and the power of the 

profile hidden Markov model (pHMM) methodology. The ipHMM divides each 

match state of pHMM into two states, one is interacting match state, and the 

another is non-interacting match state (Figure 2.15). Then, it parameters are 

estimated by the maximum likelihood estimation method and sequences and their 

structure information. The interaction match state indicates interacting probability 
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of residues aligned at that position. The authors stated that the algorithm enhances 

the quality of interaction site predictions and can be applied to large-scale studies. 

 

 

 

 

 

 

 

 

Figure 2.15   Topology of ipHMM 

2.8 Machine learning methods 

2.8.1 Support Vector Machine 

Support Vector Machines are among the best supervised learning models to deal 

binary classification problems [84]. The binary classification is a prediction of 

class label positive (+1) or negative (-1) for a new examples based on a set of 

objects that their class label are known. The two key idea concepts of SVMs are 

large margin separation and kernel functions. Large margin separation is to find the 

boundary that can separate two groups of objects as far as possible. The kernel 

functions compute the relative position or similarity of points to each other to 

determine large margin separation. 

A linear two-class classifier is the simplest example of SVMs. Let denote a 

training data for a two-class classifier is                         where a pair 

            presents a training example, and      is its feature vector with n compo-

nents, and      is its class label (i.e., +1 or -1). The goal of the linear two-class 

classifier is to determine the large margin separation of the training examples 

based on a dot product between two vectors             
 
    and a kernel 

function              where the   is weight vector, and the scalar b is bias. 

The example x is assigned a value based on the function     . If the       ,   is 
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Margin 

Decision boundary 

assigned to positive class, otherwise   is assigned to negative class. The points that 

make         are called a hyperplane. In particular, the hyperplane is a line in 

two dimensions, and a plane in three dimensions. The margin of the linear classifi-

er is the distance the closest examples of a class to the decision boundary (i.e., the 

hyperplane). Figure 2.16 is an example of a linear classifier separating two classes 

of points (red triangles and blue squares) in two dimensions.  

 

 

 

 

 

 

 

 

Figure 2.16   An example of a linear classifier separating two classes of points (red triangles 

and blue squares) in two dimensions 

 

 

 

The other kind of kernel functions is nonlinear kernels such as the polynomial 

kernel, Gaussian kernel. They provide better accuracy in many applications 

compare with linear kernel. In computational biology, SVMs are used commonly 

because they are high accurate, able to handle high dimensional and large datasets, 

and flexible in modeling diverse sources of data [85]. A comprehensive review 

about SVM and kernel functions can be found on the website http://www.kernel-

machines.org. 

2.8.2 Hidden Markov Model 

Markov process 

Markov process is a process of shifts between states, where the choice of the 

next state depends on the previous n states. The simplest Markov process is the 

first order process which the choice of the next state depends only on the current 

                                                               . The decision boundary divides the space into two sets 

depending on the sign of the function              . The area between the two dot lines is the 

margin region. The data points lie on the dot lines are support vectors. They define the margin by 

which the two classes are separated. 

 

http://www.kernel-machines.org/
http://www.kernel-machines.org/
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state. If the Markov process has S states, there are S
2
 transitions between states in a 

first order process, and each of transitions is called the state transition probability. 

The matrix formed by the state transitive probabilities is called state transition 

matrix and it does not vary in time. In addition, a based-Markov process system 

needs to initialize states at time 0. This initiation is a π vector with M components. 

Figure 2.17 shows an example of a Markov process. 

 

 

 

 

Figure 2.17   An example of a Markov process.  

 

Hidden Markov model  

There are some systems that their patterns (process states) cannot be observed 

directly, however they can be inferred from another set of patterns. For such 

systems, hidden Markov models are used instead. Generally, a hidden Markov 

model (HMM) consists of below components: 

(1) The sequence of hidden states: the true states of systems that may be represent-

ed by a Markov process 

(2) The sequence of observable states of the system 

(3) The π vector: including the initial probabilities of hidden states of the model at 

time t=1 

(4) The state transition matrix: including the transition probabilities between 

hidden states of a Markov processes 

(5) The confusion matrix:  containing the probabilities of observable states given a 

particular hidden sate, these probabilities are time independent and present the 

relative between observable states and hidden states 

Figure 2.18 shows an example of a HMM including three hidden states and four 

observable states. The HMMs are commonly used to solve three following prob-

lems: 

(1) Evaluation: matching of an observed sequence given a HMM. 

S1 S2 S3 

                                                                                 It has three states (circles) and nine possible first 

order transitions between states (arrows). 
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(2) Decoding: is determination the hidden sequence that most probably generated 

an observed sequence. 

(3) Learning: generating a HMM given a sequence of observations. 

 

 

 

 

 

 

 

 

 

Figure 2.18   An example of a hidden Markov model. 

 

 

 

HMMs have applied in many research areas such as natural language pro-

cessing especially speech recognition [86], and bioinformatics. In the following, 

we present an application of HMMs in classifying protein families. 

Profile hidden Markov model 

The profile hidden Markov model (pHMM) is a HMM representing profiles of 

MSAs [87]. The pHMM, introduced by Krogh et al. [88], used  three types of 

states (match, insert, and delete) for each consensus column of a MSA. The match 

state models the distribution of residues allowed in the column. The insert and 

delete state allow for insertion of one or more residue between that column and the 

next, or for deleting the consensus residues, respectively. Figure 2.19 shows a 

pHMM of a short MSA. The probability parameters in a pHMM are converted to 

additive log-odds scores before aligning and scoring a query sequences. If a 

residue   is aligned at a match state, its score at the state is      , where    is the 

probability that the match state emits the residue  , and    is the expected back-

                                                                                            The HMM includes four observable 

states and three hidden states. A simple first order Markov process models the hidden states. The 

arrows between hidden states present transition probabilities of a first order Markov process. The 

arrows link between observable states and hidden states present probability of relationships of 

them. 

H1 H2 H3 

O1 O2 O3 O4 Observable 

states 

Hidden 

states 
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ground frequency of residue   in the sequence database. For other scores (of 

insertion or deletion residues), the pHMM treatment branches off standard se-

quence alignment score. 

 

                           Figure 2.19   Profile HMM of a short MSA                                                                                                                                                         

2.8.3 Matrix completion 

In the real world, there are many application problems that information is orga-

nized in the matrix form. For example, a document-term matrix represents 

relationship of given documents and terms. In the matrix, each row presents a 

document, each column presents a term, and each entry presents the number of 

times a term occurs in a particular document. When the size of a data matrix is so 

large, it brings out many problems such as how to store, and how to process it 

efficiently.  

In the mathematical discipline of linear algebra, a matrix can be factored into a 

product of low rank matrices. This mathematical theory is applied successful in the 

analysis of tabulated or high-dimensional data. The most popular low-rank model 

is principle component analysis (PCA), which is known as the heart of machine 

learning and data mining [89], with many new formulation and models suggested 

in recent years, e.g. Latent Semantic Indexing, Aspect Models, Probabilistic PCA, 

Exponential PCA, Non-Negative Matrix Factorization [90]. 

However, in many practical problems of interest, the data matrix is not full, i.e. 

only some entries have value while some others are missing. It may emerge a 

question how to recover the matrix based on its known entries. The matrix comple-

tion is the field of predicting the missing values in a partially observed data matrix 

[87]. 
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by a learning low rank model. Recently, there are a numerous of learning models 

in this area have been reported [91–98].  

The general setting for matrix completion can concretely define by the follow-

ing: Supposing a given matrix X has rank r and a fixed set of the known entries. 

The singular value decomposition of the matrix X denotes as        
 
     

   

where   ’s are singular values and    and    are left and right singular vectors. The 

task of matrix completion is to seek a low rank approximation   

     
 
     

  that minimizes the sum squares of residual errors among all matrices 

of the same predefined rank. In the other words, Y is an optimal solution to the 

problem: 

minimize            
 

                 (2.3) 

subject to          . 

One of the famous instance of recovering matrix problem is the Netflix prob-

lem in the area of recommender systems [93]. Users are given the opportunity to 

rate how much they like movies. However, users often rate very few movies so that 

there are very few observed entries of this data matrix. Solving matrix completion 

in this case provides predictions on the unobserved ratings, which in turn can be 

used to make customized recommendations, e.g. what titles that a particular user is 

likely to be willing to order. The data matrix of all user-ratings may be approxi-

mately low rank because it is commonly believed that only a few factors contribute 

to an individual’s tastes or preferences. 

2.8.4 Link prediction 

Link prediction is the problem of predicting the presence or absence of edges 

between nodes of a graph. It is closely related to the problem of recommendation 

systems concerned in the section 2.8.3. A recommendation system can be seen as a 

bipartite weighted link prediction problem, for instance the Netflix problem, users 

and movies are represented by nodes, and edges between nodes are weighted 

according to the preference score.  

Link prediction models are classified into two categories: unsupervised and 

supervised. Unsupervised models uses topological properties of the graph (such as 

the shortest path or the number of common neighbors between two nodes) to 
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evaluate the distance of similarity for pairs of nodes. Because the distances of 

nodes are invariant to the specific structure of the input graph, these models 

therefore do not involve any learning. In contrast, supervised models are learning 

models that use the observed links to train a classifier and then use it to predict 

new links. A general supervise learning for prediction links is a solution of an 

optimal problem:  

      
 

 

   
   

       

                           

where  ,  , and   are loss function, link function, and regularization function, 

respectively. The   is a symmetric data matrix. If node i is known connecting or 

not connecting with node j, the entry     has value 1 or 0, respectively. Otherwise 

(i.e., the connecting of node i and node j is unknown), the entry     is miss. The   

is a set of observed links, and    is vector of parameters that are learned.  

In the case link prediction is treated as a matrix completion problem, if  

         , where              , the link function    is defined as 

           
     .  

2.8.5 Performance metrics  

For binary classification, the two class labels are positive and negative. To evaluate the 

performance of a classifier, some metrics are introduced and most of their formulas are 

based on four numbers that form a so-called confusion matrix (Table 2-1). In the 

confusion matrix, TP and TN denote the number of positive and negative samples 

classified correctly, while FN and FP denote the number of misclassified positive and 

negative samples. A list of common measures is represented in the Table 2-2 and most 

of them return value in range 0 to 1 except the Matthews correlation coefficient 

(MCC) measure, which has value from -1 to 1. 

The F-measure is the weighted harmonic mean of precision and recall when the β 

is equal 1. The F-measure score reaches its best value at 1 and worst score is at 0. It 

will be high when both recall and precision are high. The value β, which is relative 

between recall and precision, can be used to adjust the importance of precision and 

recall. When the value of β is greater than 1, recall is weighted higher than precision. 
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In contrast, when the value of β is smaller than 1, precision is weighted higher than 

recall. 

The MCC is regarded as a balanced measure, which can be used even if the clas-

ses are of very different sizes. A coefficient of +1 represents a perfect prediction, 0 no 

better than random prediction and −1 indicates total disagreement between prediction 

and observation.  

 

Table 2-1   The confusion matrix for binary class classification. 

 Predicted Positive Predicted Negative 

Observed Positive  TP FN 

Observed Negative  FP TN 

 

 

Table 2-2   The list of common measures based on the fusion matrix. 
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Depending on practical application, one or more measures are used to evaluate the 

performance of the classifier. For example, if the data is balance, any measure can be 

used. Otherwise, i.e. imbalance data, the F-measure and/or MCC are more suitable.  
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Chapter 3   

Inference of domain-domain interactions 

by matrix factorization and domain-level 

features 

 

In this chapter, we will present a new method to predict domain-domain interac-

tions by employing a link prediction approach. Experimental results and 

comparison with other state-of-the-art methods are discussed later on.  

3.1 Introduction 

Biological processes in a living cell are supported by various interactions among 

proteins. Due to the advances in high-throughput biological assays, a number of 

PPIs have been identified, reported, collected in research articles and in PPI 

databases. However, PPI is just a first step to understand the molecular network in 

a cell. We must know the interacting region, where the interaction of two proteins 

is actually occurring. A protein domain is a structural and/or functional unit and 

often well-conserved across multiple species. Since the identification of interacting 

regions is essential in providing deep insight about the interaction and intervening 

in pathway with it, it is helpful for developing effective drugs and appropriative 

disease treatments.  

Unfortunately, it is still so difficult to identify interacting regions between pro-

teins through biological experiments. Therefore, a number of computational 

methods have been developed for predicting domain-domain interactions from 

known protein-protein interactions or three-dimensional structures of protein 
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complexes [21, 22, 27, 28, 30, 31, 33–35, 99]. Except structure-based methods 

using known protein complexes, most of DDI prediction methods often based on 

frequency of co-occurring domains in PPIs. However, PPI networks suffer from 

the problems of incomplete data and a large number of false positives [37]. There-

fore, if we solely depend on PPIs to infer DDIs, the prediction results will be 

highly biased.  

To overcome the problem of such noises in PPI data, Lei and Ruan [100] re-

cently proved that the topological information is helpful to reconstruct highly 

reliable PPIs networks. Naturally, we can apply this advantage to other biological 

networks, i.e. that of DDIs. Furthermore, Pandey et al. [101] found that topological 

proximity and functional similarity of biological networks are highly correlated 

and  have higher correlations in DDI networks than in PPI networks. 

Hence, we considered an approach to identify new DDIs by applying link pre-

diction algorithm. We built a graph of nodes are protein domains and edges are 

known DDIs and non-DDIs. We then applied graph-based machine learning 

algorithms to predict new links of DDIs or non-DDIs by using features of domains. 

This approach has not been attempted to predict DDIs: all of the previous methods 

that often solely used the PPIs networks and features at protein level.  

The main problem in DDI network is its sparseness, and the understanding 

about protein domains is still incomplete. To solve this problem, link prediction by 

a latent model in combination with known information is promising for DDI 

prediction. Recently, Menon and Elkan [98] proposed a new model of link predic-

tion that uses low rank matrices as latent features. It allows us to combine easily 

different kinds of information of the networks’ nodes and edges into the learning 

model to enrich the networks and improve the prediction performance.  

In this work,  we applied the learning model proposed by Menon and Elkan 

[98] to a high quality data of DDIs. Beside the latent features, we used three 

explicit features for domains: functional similarity, co-occurrence frequency, and 

random walk topological feature of domain pairs in the DDI network. The experi-

mental results showed that our method achieved a good performance and the 

predicted DDIs have high fraction sharing rate with known DDIs in iPfam and the 
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result of ME method, one of the best evaluated methods that uses PPI data and 

biological properties of proteins to infer DDIs. 

3.2 Methods 

3.2.1 Link prediction by matrix factorization 

Link prediction of a network is a process of completing missing values in the 

presenting data matrix. The network of DDIs is represented as a symmetric 

trix  .The rows and columns correspond to domains. The element     of the matrix 

consist of three values “0”, “1”, and “?”. The value “1” indicates the domain   

interacts with the domain  . The value “0” indicates the domains   and   do not 

interact with each other. The missing value “?” indicates that we still do not know 

whether the domain   interact with domain   or not. Our objective is to replace 

missing values “?” in the matrix   by “0” or “1”. The low rank factorization of a 

matrix   is defined as          , where        and        are low rank 

matrices and             is a link function. Each domain   in matrix   is 

represented by a latent vector     
  of size  . However, it is well-known that the 

low rank matrix does not work well if the input networks are severely sparse, and 

unfortunately, a DDI network is quite sparse. To overcome this problem, Menon 

and Elkan [98] developed a new link prediction algorithm that applies low rank 

matrices as latent features in combine with different kind of information about 

nodes and edges to enrich the network and hence improve the performance of the 

predictor. In our study, since we only concern three features: functional similarity, 

topological similarity, and co-occurrence frequency of domain pairs, the objective 

function of this supervised learning problem is:  

      
       

 

   
   

       

        
                                         

where  ,   and   are link function, loss function, and regularization function, 

respectively.     is a class value of a node pair      ,    is the latent vector for the 

node  ,    and    are node-specific biases,   and     is weight and feature vectors 
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for a node pair      . In our method named DDIFACT, the size of the feature 

vector     is three. 

3.2.2 Co-occurrence frequency feature 

In the previous works [27, 30, 32, 34], the frequency score of a pair of co-

occurring domains in PPIs over total of protein pairs was used as the main evi-

dence to define the probability of interaction between them. Therefore, we also 

devised a formula to calculate the co-occurrence frequency of domains in multiple 

species to incorporate it into the DDIFACT as a vertex feature aggregation. 

Firstly, the co-occurrence frequency of a domain pair       in a species s is cal-

culated as follows. 

        
  
         

  
        

                                  

In (3.2),    
         and   

         are the numbers of PPIs and protein pairs in 

the species s containing the domain pair      . The domains   and   must be 

contained in two different proteins that form a PPI or a protein pair. The fraction 

  
           

          represents the importance of the domain pair (i,j) in the species 

s. In addition, we multiply this fraction by   
         in order to emphasize that even 

if two pairs of domains         and         have the same value of the fraction, the 

pair occurs more often in PPIs might be more important than the other one.  

After the frequency score of domain pairs is calculated by (3.2) for each spe-

cies, the following expression integrates the scores into one value for evaluating 

the co-occurrence frequency on multiple species: 

                 

 

   

                             

where         is the co-occurrence frequency score of domain pair       in a 

species  , and   is the number of species. In the research community of PPI, PPIs 

in some species like human, yeast, etc. have been paid more attention. In [30], they 

accommodated this bias into their model. In this work, we adjust it by explicitly 

using a penalty term in co-occurrence frequency score formula. The coefficient    

for each species is defined by the sigmoid function               where 
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 is the total number of PPIs observed in the species  ,   
     

       is 

the total number of expected PPIs in the PPI network of the species   with the 

average number   of expected neighbors for each protein, and   is the number of 

proteins. The value of the coefficient will be          if   
     

 is equal or 

greater than   
     

, otherwise,         . The value of   can be different for 

each species. Following the experimental results in [30], we chose the value  =5 

for all species. 

3.2.3 Functional similarity feature 

A protein domain is annotated by a set of GO terms that is organized in GO 

database. Using this, the functional similarity between two domains can be calcu-

lated by measuring the semantic similarity of two sets of GO terms annotating the 

domains. To date, a number of methods have been developed to measure the 

semantic similarity for genes and gene products [101, 102]. Wang et al. [102] 

designed an approach for encoding biological meanings of GO terms into numeri-

cal values by aggregating the semantic contribution of their ancestor terms in GO 

graph, then these values were used to measure functional similarity of genes. In 

this study, we apply their encoding to the calculation of the functional similarity 

for protein domains.  

In [102], a GO term   is represented by a graph              ) where 

   is the set of GO terms containing   and its ancestor terms, and    is the set of 

edges in the graph     . The contribution of a GO term   to the semantics of   

can be calculated as: 

 
                                                                                              

                                             
                 

where        is the weight value of edge   between term   and its child 

term   . Note that there are two relations of edges in a graph DAG. One is “is-a”, a 

simple class-subclass relation, and another one is “part-of”, a partial ownership 
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relation. Each relation of edge has a specific weight value. In [102], the weight 

values corresponding to the former and latter are 0.8 and 0.6, respectively.  

Using   , the semantic value of term   is defined as:  

              

    

                                               

Then, the semantic similarity of two terms   and   is defined as: 

           
                     

             
          

This formula is built based on semantic relation with ancestor terms and the 

location in the graph of GO terms   and  . 

Finally, let two protein domains   and   are annotated by two sets of GO terms 

                       and                      , respectively. The 

functional similarity of domain pair       can be estimated by an expression as: 

 

           
                                   

   
               

 

where                                               is the semantic 

similarity of the GO term      with the set of GO terms    . This functional 

similarity of domain pairs is the second feature used in the DDIFACT. 

3.2.4 Graph-topological feature 

The third feature incorporated into our model is topological similarity between 

domain pairs. This feature can contribute to overcoming the problem of noise in 

biological data [103], especially by random walk-based measures [101]. Moreover, 

it is highly correlated to functional similarity feature [101]. In this subsection, we 

briefly describe the algorithm RWS (random walk with resistance) proposed by Lei 

and Ruan[100]. 

 A DDI network is represented by an undirected graph        where the set of 

nodes   consists of domains and the set of edges   represents the interaction 



42 
 

between domains. Let                     be the set of neighbors of node 

   , and              is the degree of node  .  

Let     
  be the probability for a random walker starting from node   and sitting at 

node   at a discrete time point  . Taking a path from node   to node  , the probabil-

ity for the random walker at time point     is evaluated by: 

     
     

          
               

                                                  

          
               

                 
        

                                                                                              

                       

where            if the edge        , and 0 otherwise, is the probability of a 

random walker moves from current node   to its neighbor node   in the next step. 

In [100],            and         since the parameter   is used to bias the 

random walker to stay close to the starting node, and the parameter   discourages 

the random walker from visiting the new node.  

The probability for the random walker to reach node   at time point   can be 

calculated as follows:  

    
    

      
   

 

      
   

  

                                                      

Started from a node, the random walker is assumed that it reach to its stationary 

distribution if the change of its probability by moving to any nodes is less than a 

cut-off value. 

The above random walk algorithm is put into the network of DDIs to get a 

probability matrix                , then     is replaced by         where 

                            is the j-th element of the median vector   to 

enlarge the probability differences between different nodes. After that, a distance 

metric such as Pearson correlation coefficient is used to calculate the topological 

similarity of protein domain pairs. 

3.2.5 Sampling unbiased negative DDIs 

The negative DDI data (i.e. non-interacting domain pairs) is equally important as 

positive DDI data in learning and validation processes [104]. Previous methods for 

DDI prediction [27, 30, 33, 37, 105] often randomly sampled a subset of unlabeled 
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protein domain pairs as negative data for training. However, it might lead the 

prediction results containing high bias because this unlabeled set includes unob-

served positive interactions. Therefore, a sampling technique for unbiased negative 

DDI data is necessary. By using statistical techniques on Negatome database [106], 

we extracted DDIs among 2,598 domains from the 3did database with the average 

functional similarity score greater than that of non-DDIs with P-value is equal to or 

less than 5.7716E-119. It gives a clue that protein domains with high value of 

functional similarity are also high probability to interact with each other. Another 

hint, which was often used in the previous methods [27, 30, 34], is that protein 

domains co-occur in PPIs more often might have higher probability of interacting 

with each other. Hence, to sample unbiased non-DDIs for training, we randomly 

chose   partners for each domain to form   non-DDIs for that node. In other words, 

for a given positive data of DDIs,   times larger number of non-DDIs for negative 

data are sampled. These non-DDIs must satisfy two conditions: one is their func-

tional similarity score must be smaller than the average functional similarity score 

of mammalian non-DDIs in Negatome database, and another is their frequency 

score must be equal to zero. The experimental results showed that our conditional 

sampling method for non-DDIs training data achieved better result than uncondi-

tional sampling method. 

3.3 Datasets 

3.3.1 Mapping protein domains to GO terms 

To calculate functional similarity feature described in subsection 3.2.4, we extract-

ed mapping information between GO terms and protein domains from the online 

source PFAM2GO [107]. PFAM2GO is derived from InterPro2GO, which maps 

InterPro entries to GO terms. In PFAM2GO, 4,641 protein domains from Pfam 

database are annotated by GO terms. 

3.3.2 Domain-domain interaction data 

We obtained high quality data of DDIs from a database of 3D Interacting Domains 

(3did) [21] that includes 6,020 DDIs among 4,302 domains  (as of December 
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2011). DDIs in 3did are extracted from known 3D structure protein complexes in 

Protein Data Bank that satisfy at least five contacts of hydrogen bonds, electrostat-

ic, or van-der-Waals interactions exist between each domain pair. We used these 

DDIs as standard positive examples in our training set.  

In addition, we obtained DDIs from DOMINE database [38]. DOMINE is a 

collection of DDIs predicted by various computational methods [21, 22, 27, 28, 30, 

32–34, 99] besides DDIs directly inferred from PDB. We use these DDIs for 

comparing our prediction results with other methods. 

For negative data, we obtained mammalian non-DDIs from Negatome database 

[106] for sampling non-DDIs training set. These non-DDIs are stringently extract-

ed by manual curation of literature or by analyzing protein complexes using known 

3D structure. We obtained 979 non-DDIs from the Negatome in total. 

After combining and processing the data above, we obtained 3,607 DDIs of 

3did database among 2,598 domains, and 505 mammal non-DDIs of Negatome 

database as the standard dataset to generate a negative training set to estimate the 

performance of our method. 

3.3.3 Protein-protein interaction data 

To calculate co-occurrence frequency score of the formula (3.3), we collected PPI 

data of six species in Table 3-1 from three PPI databases: DIP, HPRD, and 

BIOGRID [108–110]. After proteins in the PPIs of six species are mapped to the 

identifiers used in UniProt [111], we then used Pfam database [53] to obtain their 

domain annotation. This process eliminated proteins without any domain. Table 3-

1 lists the number of proteins and PPIs in each species after the processing.  

3.4 Results 

3.4.1 Effect of conditional and unconditional random sampling 

To know the effect of random sampling in our model DDIFACT for generating 

negative training set of non-DDIs, we conducted the performance evaluation using 

conditional and unconditional random sampling with the parameter   representing 

the ratio of non-DDIs to DDIs, described in subsection 3.2.5, with different values: 
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1, 2, 3, 5, 7, 9, and 11. For each value of  , we did three-times of seven-fold cross-

validation procedure, and calculated average area under the ROC curve (AUC). In 

each time of the cross-validation, a negative training set of non-DDIs is newly 

generated and used for both conditional and unconditional cases. From the experi-

mental results shown in Figure 3.1, it can be seen that the larger   leads to the 

better AUC, but saturates at   = 9 or 11. In addition, unconditional sampling 

worked well for only small values of  , then the conditional sampling method 

achieved the best performance in a relatively larger  =9. 

 

Table 3-1   Summary of proteins and PPIs in six species 

Species Database # of proteins # of PPIs 

S. cerevisiae (Baker's Yeast) DIP 1,925         7,921         

E. coli DIP 1,332         7,164         

Homo sapiens (Human) HPRD 6,374         33,408         

Arabidopsis thaliana BioGrid 1,022         2,326         

D. melanogaster (Fruit fly) BioGrid 904         3,117         

Mus musculus (Mouse) BioGrid 1,212         2,197         

 

 

 

Figure 3.1   Comparison of AUCs by conditional sampling and unconditional sampling for the 

non-DDIs training sets with different values of p. 
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However, it is well-known that, in case of highly imbalanced data like  =9, 

AUC often overrates the performance [112]. Therefore, to construct our model 

DDIFACT with a good performance in practice, we adopted F1-measure for 

choosing the best value of   realizing the best balance of positive and negative data. 

After each cross-validation, we applied grid search algorithm with various cut-off 

values varying from 0 to 1 to find the one that achieves the best F1-measure. Table 

3-2 shows that the conditional sampling with  =5 achieved the best F1-measure 

(87.89%). In consequence, we chose this setting for the experiments below. 

Table  3-2   Precision, Recall, and F1-measure by conditional sampling and unconditional 

sampling for the non-DDIs training sets with different values of p. 

  
unconditional sampling 

 
conditional sampling 

Precision Recall F1-measure 
 

Precision Recall F1-measure 

1    83.21     86.23 84.69      
 

79.41     87.58    83.28 

2    85.24     83.97 84.56      
 

83.86     84.70    84.28 

3    85.46     86.26 85.85      
 

86.06     87.31    86.65 

5    85.16     85.98 85.56      
 

89.04     86.78    87.89 

7    85.00     86.66 85.82      
 

86.55     89.16    87.82 

9    83.58     87.96 85.70      
 

83.40     88.72    85.96 

11   82.45     86.93 84.63      
 

77.44     89.27    82.93 

 

3.4.2 Contribution of a set of features to the prediction performance 

To evaluate the importance of each feature and find the best set of features in our 

model, the combinations of two or three features were tested. Here we denote the 

functional similarity feature as G, the co-occurrence frequency feature as F, and 

the topological feature as R. Then, we formed the set of features into Baseline 

(only latent features without any explicit feature), GF, FR, GR, and GFR (the 

DDIFACT). For these five sets of features, we performed three-time seven-fold 

cross-validation again. In addition, some combinations of the parameter values for 

k,  , and   are tested, where   is the number of latent feature,   is regularization 
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parameter, and   is learning rate parameter. In this experiment,   was fixed to 5 

since it mostly achieved the best performance in various combination of   and  .  

Table 3-3 shows that the model using all three features is the best: it achieved 

the highest AUC=97.83% at   =5,  =0.2, and  =0.1. The result also shows that the 

topological feature R contribute most to the performance of the model among three 

features. In addition, the model with the feature set GR sometime achieved higher 

AUC than the model including all three features. Hence, the order of important 

feature is: the most important feature is the topological feature R, the function 

similarity feature is second, and the last one is the co-occurrence frequency feature. 

Table 3-3   The AUC score of the model with different feature sets and different parameter 

values.  

      
Base-

line 
GF FR GR GFR 

5 0.15 0.1 64.05 78.87 94.36 97.29 97.83 

5 0.2 0.15 48.97 69.05 91.87 97.10 97.23 

5 0.2 0.2 42.52 62.06 87.00 95.48 95.27 

5 0.3 0.25 41.21 57.74 80.54 92.91 92.98 

5 0.3 0.3 40.94 56.50 77.51 91.05 90.76 

 

The best AUC score 97.83% seems to be sufficiently high, but we need to 

compare it with the performances of other methods. Unfortunately, there is no 

benchmark dataset commonly used for evaluating performances in DDI prediction. 

In addition, existing DDI prediction methods adopt wide variety of settings, e.g., 

some methods are species-specific (single- or multi-species), different training 

datasets are used. Therefore, it is difficult to compare directly the performance of 

our method with the others. Here we just show Table 3-4, a list of some previous 

works from the viewpoint of approaches, data resources, and evaluation measures.  

3.4.3 Comparison of prediction results for unlabeled domain pairs 

AUC scores calculated through cross-validations can reveal the effect of various 

settings to the prediction performance. However, since only the known data (DDIs 
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(“0”) and non-DDIs (“1”) (described in subsection 3.2.1)) are used in the cross-

validation, the prediction power of our method for unlabeled DDIs (i.e. “?”) is 

unclear. As mentioned in subsection 3.3.2, we used DOMINE database [38] to 

retrieve the intersection set between the prediction results of our method and other 

methods.  

Firstly, we generated the training data composed of 3,607 DDIs and non-DDIs 

by our conditional sampling approach at  =5 to train a classifier by the DDIFACT. 

Then we used the learned model to predict new DDIs from unlabeled domain pairs. 

Following this, a cut-off value that gives the best F1-measure score was defined by 

using grid search. Finally, 27,127 DDIs were newly predicted at the cut-off value 

0.385.  

On the other hand, we collected all DDIs from DOMINE database that have 

Pfam IDs of 2,598 protein domains in our data. Note that all DDIs of 3did database 

included in our training set were eliminated. Then, we counted the number of 

predicted DDIs shared by our method and other methods for each of them (sharing 

portion). Based on the number of predicted and shared DDIs, we calculated the 

percentage of them for each of other methods.  

Table 3-5 presents the percentages of the sharing portions between DDIFACT 

and other methods at the cut-off value 0.385. The row which shows the method 

Domine indicate that the percentage of the sharing portion between DDIFACT and 

all filtered DOMINE’s DDIs (17.18%), while the next row shows 29.18% with 

only high confident (HC) and medium confident (MC) DDIs ranked by DOMINE, 

and so on. Our predicted DDIs have the highest percentage of the sharing portion 

with the iPfam (55.40%), a gold-standard dataset like 3did often used in training or 

comparison with previous methods. This result is promising because more than 

half of DDIs in iPfam remained after we eliminated duplicate DDIs included in our 

training set. It shows that the DDIFACT is comparable to the structure-based 

methods. More interestingly, DDIFACT shares 37.72% of the predicted PPIs with 

the ME method, only after K-GIDDI and domainGA methods (38.46% and 

38.52%, respectively). The ME method is the best method among nine methods in 

[37] using structure-based gold-standard databases iPfam and 3did to evaluate. 
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Note that both methods K-GIDDI and domainGA were not evaluated in [37]. 

These results affirm that our proposed method has high reliability. 

Table 3-4   A list of some DDI prediction methods summarizing their approaches, data 

resources, and performance measures 

Method 
Brief explanations of approach and data 

resource 
Performance 

ME [27] - Association approach. 

- Data: Swissprot; TrEMBL; PFam; Uetz 

and Ito’s data. 

- Specificity = 42.5% 

- Sensitivity = 77.6% 

DPEA  

[28] 

- An extension of [27]. 

- Data: PPIs of 69 organisms on DIP; 

PFAM; iPfam. 

- 3,005 high-

confidence DDIs 

were inferred and 

evaluated using 

known DDIs in PDB. 

PE  

[32] 

- Apply a parsimony-driven explanation of 

the network. 

- Data: PPIs dataset used in DPEA; Pfam. 

- Precision = 75.3%  

- Sensitivity = 76.9% 

DIPD  

[33] 

- Discriminative approach for predicting 

DDIs based on both PPIs and the derived 

information of non-PPIs. 

- Data: PPIs dataset used in [28] (randomly 

generated non-PPIs;  iPfam. 

- Precision = 20.80% 

- Recall = 29.76% 

K-

GIDDI 

 [34] 

- Build initial DDI network based on the co-

occurrence frequency of domains in six PPI 

networks, then extend the initial DDI 

networks by a biclustering-based algorithm. 

- Data: DIP; BioGRID; Pfam; GO. 

- 17-22% predicted 

DDIs are confirmed 

by DOMINE data-

base. 

- 9-13% is known to 

be true in PDB. 
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K-GIDDI (knowledge-guided inferences of DDIs) method [34] firstly con-

structs an initial DDI networks from cross-species PPI networks and then expands 

the initial DDI network by using a divide-and-conquer bi-clustering algorithm 

guided by Gene Ontology information, which identify partial-complete bipartite 

sub-networks by adding edges. We tried to apply the expansion procedure of K-

GIDDI with some different values of the threshold to our current training data to 

know how new DDIs are predicted by the procedure. The difference in using their 

expansion procedure is that we used GO annotated for domains level to guide the 

bi-clustering algorithm. Table 3-6 shows that the predicted results are quite poor. 

The numbers of newly predicted DDIs are only 2, 266, and 490 when the value of 

threshold is greater than or equal to 0.4, equal to 0.3, and lesser than or equal to 

0.2, respectively. In the same order, there were 0, 4, and 7 newly predicted DDIs 

sharing with the DDIs predicted by DDIFACT, and no sharing DDIs with iPfam. 

This result proves that the expansion procedure might only work well on high 

density networks and it is unsuitable for the real situation of observed sparse DDI 

networks in 3did. 

3.5 Conclusions 

In this chapter, we introduce a new computational method to predict domain-

domain interactions by an advanced link prediction model that adapts with the 

state-of-the-art of observed DDIs networks. Based on the experimental result, our 

method has higher reliability compared with previous methods. This approach is 

also a solution for an open question in [100] which is how to get the best recon-

structed network for biological networks. However, in this work we just predict 

DDIs for the network of 2598 Pfam domains, while the number of domains in the 

Pfam database is around 13000. This limitation is caused of difference between 

domains annotated GO terms and domains investigated in 3did database. Current-

ly, there are some methods have been developed to validate the predicted DDIs of 

DDI prediction methods [37–39]. Based on the results of these methods, we can 

collect more domains to enlarge the network, and then apply our proposed method. 
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Table 3-5 Comparison of prediction results for unlabelled domain pairs by DDIFACT and 

various methods listed in DOMINE database.  

methods 
# of  predicted 

DDIs 

# of predicted and 

shared DDIs 

percentage of fraction 

sharing 

Domine 8,671         1,490               17.18                   

HC&MC 2,262         660               29.18                   

iPFam 287         159               55.40                   

ME 806         304               37.72                   

RCDP 464         118               25.43                   

Pvalue 343         63               18.37                   

Fusion 1,065         265               24.88                   

DPEA 475         61               12.84                   

PE 836         178               21.29                   

GPE 633         200               31.60                   

DIPD 685         117               17.08                   

RDFF 1,473         486               32.99                   

K-GIDDI 247         95               38.46                   

INSITE 694         124               17.87                   

DomainGA 257         99               38.52                   

PP 2,937         34               1.16                   
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Table 3-6 The comparison of predicted results of applying expansion procedure of K-GIDDI 

with predicted results of DDIFACT and iPfam. 

Threshold(s) 

# of DDIs newly 

predicted by network 

expansion 

# of sharing with 

DDIFACT 

# of sharing with 

iPfam 

0.4, 0.5 2 0 0 

0.3 266 4 0 

0.1, 0.2 490 7 0 
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Chapter 4   

Predicting residue-residue contacts for 

protein domains by binding sites and 

residue co-evolution 

 

In this chapter, we will present a new method to predict residue-residue contacts of 

two protein domains by integrating information about co-evolution, pairwise 

amino acid contact potentials, and as well as  interaction interface of  domains, 

and by using interaction profile hidden Markov models (ipHMM) in combination 

with support vector machines (SVM). Experimental results and comparison with 

other state-of-the-art methods are discussed later on. 

4.1 Introduction 

Proteins enroll in many biological processes such as DNA replication, gene 

expression, catalyzing metabolic reactions, and transporting molecules of living 

cells. To implement their functions, proteins often interact with other proteins to 

form permanent or transient protein complexes. Protein interfaces are the regions 

where protein chains are touched. The knowledge of these regions is helpful for 

not only providing insights into the biological functions of the protein at proteomic 

level, but also for structure-based drug discovery and therapeutics development.  

Since the important roles of PPIs in cellular systems, recently, different levels 

of detecting and characterizing PPIs have been developed in both experimental and 

computational approaches. High-through experimental technologies such as yeast-
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two-hybrid, protein chips, co-expression analysis, and mass spectrometry generate 

a large amount of binary protein-protein interactions. In parallel, nuclear magnetic 

resonance (MNR) and X-ray crystallography methods were developed to provide 

details of the structure information of protein-protein complexes. On the other 

hand, many different computational protein-protein interaction binding site predic-

tion method are published [50, 113–123] . These methods are based on sequence, 

structure, and physic-chemical characteristics to discriminate the interface residues 

from non-interface residues of a single protein. However, interfaces are formed by 

complementary surface between two protein chains. To understand deeply how 

two proteins interact with each other and what the latent function under the interac-

tion is, we have to find the interacting residues between them. Moreover, Zhou and 

Qin [6] stated that the current protein binding site prediction and protein structure 

information organized in Protein Data Bank are sufficient for forming large 

protein-protein complexes. Hence, it is necessary to develop new methods to detect 

protein-protein complexes based on the prediction results of binding site prediction 

and structure information. Another important thing is that one protein can interact 

with few other proteins at once or different times and then they form interfaces on 

different places on the surface. Developing a method to identify which interface is 

for which partner is one of the most challenges. 

 From these motivations, in this study, we aim to develop a new method using 

machine-learning approaches to predict residue-residue contacts for interactive 

domain pairs based on protein domain profile, domain interface information, 

residue pairwise co-evolution, and statistical amino acid pairwise contact poten-

tials. The advantage of our method is that it has ability to predict the residue-

residue contacts on the touched regions between protein domain chains without 

prior knowing 3D structure of them. In addition, it promises to be able to enrich the 

template-based protein docking’s source, e.g. KBDOCK database [124]. 
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4.2 Methods 

Proteins with similar sequences often interact in similar ways [125], and one 

domain family may contain one or some interfaces[124, 126]. Hence, we assumed 

that the interaction ways of a given pair of domain sequences is more likely to 

resemble DDIs that have the most sequence identity with its corresponding se-

quences. Based on this assumption, we developed a method for predicting residue-

residue contacts between two interactive domain sequences. Figure 4.1 illustrates 

the general framework of our method. Given a pair of interactive domain sequenc-

es, which belong to two families, we firstly filtered out a subset DDIs which the 

number of substitutions corresponding to query domains smaller than a given 

threshold. Next, these extracted DDIs were used to estimate two corresponding 

ipHMMs. The algorithm 1 represents these first steps in details. Subsequently, 

interacting probability of each residue, which belongs to testing and training 

sequences, was obtained from the estimated ipHMMs and was named residue’s 

ipHMM score. Besides, we evaluated the residue co-evolution scores and normal-

ized statistical residue contact potentials to form feature vector for samples (i.e., 

residue pairs). Note that, unlike the calculation of residue’s ipHMM score, we used 

all binary DDIs retrieved and processed from 3did database to evaluate the covari-

ance scores to guarantee the statistic significant requirements of covariance based 

methods. Finally, we trained a learning model by SVM and then used it to classify 

class label for residue pairs (i.e., contact residue pair or non-contact residue pair). 

The ultimate outcome is the characterized query DDI, i.e. what residue pairs of two 

given domain sequences contact with each other. The algorithm 2 represents in 

detail how we coordinated information sources to conduct the supervise learning 

with SVMs. In the next subsections, we will explain more about the interaction 

profile hidden Markov models (ipHMMs) and direct coupling analysis methods 

(DCA) used to evaluate residue co-evolution of residue pairs. 

4.2.1 Interaction profile hidden Markov models 

In a multiple alignment sequence, the selective pressures of residues in a sequence 

are presented at the pattern of conservations. The folding, structure, and function of 
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protein sequences are presented by those conservations [88]. Profile hidden Mar-

kov model (pHMM) is a hidden Markov model  which converts a multiple 

sequence alignment into a position-specific score system [87]. Based on the 

pHMM, Friedrich et al. [50] proposed the ipHMM to predict binding sites for 

protein domains, which are parts of protein-ligand interactions. ipHMM embeds 

interaction information of protein domain sequences extracted from PDB to 

domain family by dividing each match state of pHMM into two states, one is 

interacting match state, and the other is non-interacting match state. Then, ipHMM 

is estimated by the maximum likelihood estimation method and training examples 

(the sequences and their structure information). Each interaction match state 

indicates interacting probability of residues aligned at that position.  
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Figure 4.1   The framework of proposed prediction method. 
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The ability of the ipHMM is that it can transfer the binding site information 

among the member in the domain family, i.e., it only uses known binding sites of 

sequences to estimate its parameters and then can infer binding sites for other 

sequence members that are solely known sequence information. This advantage is 

inherited from the pHMM and it makes the ipHMM becoming a scalable method. 

However, as same as other predicting PPI binding site methods, the ipHMM only 

concerned predicting binding sites for a single protein. 

Take the advantages of the ipHMM into account, González and Liao [127, 128] 

applied it to achieve Fisher score vectors for domains. Then the singular value 

decomposition and support vector machine were employed to do the feature 

selection and binary classification for DDIs. The interesting of their method is they 

used two leaning models (i.e., ipHMM, and SVM) in tandem. The ipHMM was 

used to transfer the binding site information among the member in the family. The 

SVM was used to classify DDIs and non-DDIs based on Fisher score vectors of 

domains. In this study, we also applied the approach of using these two machine 

learning models in tandem, and used the ipHMM as same as their target. However, 

unlike their models, the extracted information from ipHMMs was used as features 

of the residues in our model. Then, we combine this information with others (i.e., 

residue co-evolution, and amino acid pairwise contacts potentials) to form feature 

vectors for residue pairs. The SVM then was used to discriminate RRCs and non-

RRCs in our method. Therefore, the objective of our method is to aim to answer 

how two interactive domains interact while their methods aim to answer which 

domain pairs can interact. Our method was inherited an advantage of the methods 

proposed by Friedrich et al. and González et al. ([50, 128]), that is it requires no 

prior structure information of the query domains. 

4.2.2 Direct Coupling Analysis 

Covariance–based methods have been used for defining residue contacts in intra-

proteins and inter-proteins in protein structures and protein-protein interactions 

analysis. The basic idea of covariant is defining a relationship between a correlated 

substitution pattern and residue-residue contacts. It was stated in (Morcos et al., 

2011) that if two residues of a protein or a pair of interacting proteins form a 
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contact, a destabilizing amino acid substitution at one position is expected to be 

compensated by a substitution of the other positions over the evolutionary time-

scale, in order for the pair of residues to maintain attractive interaction. However, 

simple covariant method could not distinguish direct correlations from indirect 

correlations. Recently, Weigt and colleagues have developed an algorithm named 

direct coupling analysis (DCA) to overcome this limitation [129, 130]. Their 

experimental results indicated that DCA method could obtain a large number of 

correctly predicted contacts, generalize the global structure of the protein domains’ 

contact maps, and specially achieve clear signals beyond intra-domain residue 

contacts and inter-domain interaction in protein oligomers, etc. Furthermore, the 

scalability of DCA method is confirmed when the research group of Hopf et al. 

[131, 132] successfully applied DCA to predict the 3D structure of membrane 

proteins, one of the most challenge in predicting protein structure. Another im-

portant application is that this method can be applied to define potential PPI with 

pair of protein rather than single protein [129]. However, the accuracy of covari-

ant-based methods strongly depends on the specific protein family and certain 

properties of the corresponding alignment [48].  

In this study, we used DCA method to obtain pairwise residue co-evolution 

scores formed by the combination of two-sequence domains. In our work, we 

examined only pairs of domain families have more than 150 observed DDIs. 

 

Algorithm 1 Extracting DDIs and training ipHMMs 

Given  

-  : a set of d domain-domain interactions and their interface that belong to two interactive 

domain families M and N 

-  : a threshold  

-          : a pair of interactive domain sequences   

Find  a set of DDIs Train_ DDIs_ipHMM,  and two trained ipHMMs:        ,         

Train_ipHMM( ,  ,          ) 

1:  Train_ DDIs_ipHMM= empty array    

2:  for each DDIs    
   
   

   
 ,        do 

3:      Calculate            ←                             
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4:      Calculate            ←                             
   
  

5:       if                                 then 

6:                        =                   
   

 

7:                        =                   
   

 

8:                            =                    
    

      
     

9:       end if 

10:  end for 

11: Use               to train       , and              to train        

 

Algorithm 2  Supervised learning with SVMs 

Given  

- Train_ DDIs_ipHMM ,       ,         obtained from algorithm 1 

-          : the pair of interactive domain sequences   

Find  Characterized query domain sequences           

SupLearning(Train_ DDIs_ipHMM,       ,        ,         )) 

/* Training */ 

/* The number of DDIs in the Train_ DDIs_ipHMM maybe large, It leads to the training data is 

also very large. To avoid this case, we randomly choose t DDIs  from Train_ DDIs_ipHMM for 

the creating training data*/  

1:  Set  t 

2:  if number of DDIs of the Train_ DDIs_ipHMM > t then 

3:      Train_ DDIs ← random chose t domain-domain interactions from the Train_ 

DDIs_ipHMM 

4:   else 

5:       Train_ ipHMM= Train_ DDIs_ipHMM 

6:   end if 

7:  l  ← count_number_elements(Train_ ipHMM) 

8:  trainData = empty array  /* Trainning dataset */ 

9:  for each DDIs    
   
   

   
 ,      l do 

10:      Align   
   

 to       , and   
   

 to          

11:      Calculate                      
    

←       
   
   

   
  

12:      for each residue i of   
   

and residue j of    
   

  do 

13:             Get               ←                   
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14:             Get               ←                   
        

15:             Get                   ←                     
   
      

16:             Get                         ←                              

17:             Create trainSample  ←   concat(                          , 

                                                            ,                      )  

18:             Add trainSample       ← assign_class_lablel(trainSample) 

19:             trainData  ← trainData   trainSample 

20:        end for 

21:   end for 

22:   Train a classifier  by using SVM and trainData 

/* Testing*/ 

23:   Align     to       , and     to          

24:   Calculate                      
 
←              

25:   for each residue i of    and residue j of       do 

26:          Get              ←                         

27:          Get              ←                    
        

28:          Get                  ←                    
   
      

29:          Get                        ←                              

30:          Create testSample ←   concat(                        , 

                                                                  ,                     )  

31:          Predict label class for testSample by trained classifier 

32:   end for 

4.3 Datasets 

We obtained interaction information of DDIs for each Pfam family pair from a 

database of  3D Interacting Domains (3did) [21] (as of December 2011).  3did used 

known 3D structure protein complexes in Protein Data Bank to extract protein-

protein interaction interfaces at domain and residue levels. A residue pair belongs 

to two domain sequences are considered contacting if it meets at least five contacts 

of van-de-Waals, electrostatic, and hydrogen bonds.  

To retrieve domain sequences for DDIs, we mapped Pfam domain information 

organized in 3did to PDB database. Besides, we employed Hidden Markov Model 

profiles (hmm) of domain families from Pfam database [53] which were used  to 

train ipHMM proposed in [50].  
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We eliminated redundancy of DDIs in 3did (i.e., Homo DDIs that occur many 

times in each PDB entry) by using two filter conditions. Firstly, DDIs organized in 

the same chain of a PDB entry were eliminated because this interaction is highly 

caused by the structural of a sequence chain rather than a biological interaction. 

Secondly, if two DDIs in a same PDB entry have similar domain sequences and 

share greater than or equal to 50% of the interacting interface, we will keep only 

one. By using this approach, we can remove duplicate DDIs while still keep 

interactions between homo domain sequences that their interaction interfaces are 

highly different.  

Furthermore, calculating the residue co-evolution score by DCA needs suffi-

cient DDIs data for satisfying statistical analysis, based on the analysis in [129], we 

do experiments on domain family pairs that have at least 150 DDIs remaining after 

the preprocessing.  

Finally, we got statistical protein contact potentials of amino acid pairs derived 

from interfacial regions of protein-protein complexes, organized in AAindex 

database [133]. The AAindex, a database of numerical indices, represents various 

physicochemical and biochemical properties of amino acids or pairs of amino 

acids. Table S4-1 in the Appendix A lists amino acid pairwise contact potentials 

used in this study. 

4.4 Results 

4.4.1 The effect of sequence distance  

Based on the framework described in the section 4.2, we conducted the experiment 

based on the sequence distance between the query interactive domain sequences 

and DDIs known interface. For each threshold value, we did cross validation five 

times. Each time, we randomly chose a DDI as the query domains, and then we 

filtered out DDIs which two sequences have substitution distance (i.e., with the 

query sequences) smaller than the threshold. The next steps are forming training 

data, learning model, and classifying.  

Figure 4.2 and Figure 4.3 show the average of the predicted results by sensitivi-

ty, specificity, AUC, and MCC on two pair of domain families C1-set/C1-set and 
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C1-set/MHC with various threshold values. From the figures, it can be seen that 

our proposed method predicts RRCs and non-RRCs in high accuracy. However, 

the predicted results of the pair C1-set/C1-set and the pair C1-set/MHC-I are 

different. The sequence distance does not influence the accuracy of the homo pair 

C1-set/C1-set, while it impacts on the hetero pair C1-set/MHC-I. In addition, the 

sensitivities of the C1-set/MHC-I are much better than the ones in the C1-set/C1-

set. It may suggest that the sequences in the C1-set/C1-set more converge than the 

sequences in the C1-set/MHC-I, and in contrast the binding sites in the C1-

set/MHC-I more converge than the ones in the C1-set/C1-set. The predicted results 

evaluated by other measurements are shown in the table S4-2 and S4-3 in the 

Appendix A. 

Moreover, we also examined the case that the filtered DDIs for training 

ipHMM have at least one sequence that has substitution distance smaller than the 

threshold. The results showed that the performance is decreased. The details of the 

predicted results are shown in the table S4-4 and S4-5 in Appendix A. 

 

 

 

Figure 4.2   The average of predicting results of the domain pair C1-set/C1-set. 
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Sensitivity 0.601 0.665 0.960 0.715 0.622 0.649 0.658 0.656 0.691 

Specificity 0.996 0.997 0.994 0.995 0.996 0.997 0.995 0.992 0.995 

AUC 0.981 0.876 0.984 0.955 0.921 0.926 0.927 0.883 0.932 

MCC 0.395 0.610 0.631 0.556 0.450 0.598 0.578 0.458 0.535 
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Figure 4.3   The average of predicting results of the domain pair C1-set/MHC-I. 

4.4.2 Comparison of performance with the DCA based method 

To access how our proposal method, named ipRRC, stacks against the previous 

approaches, we compared the performance of ipRRC with that of DCA based 

methods in [47], named mpDCA. We did the comparison based on the predicted 

results of two domain family pairs mentioned in the section 4.4.1 by using the 

AUC measurement. We chose our processed data to do the comparison because the 

number of DDIs that we collected from 3did of two domain family pairs RR/RR 

and HisKA/RR were not sufficient for our method. In addition, the mpDCA aimed 

to discriminate the directly and indirectly correlated residues based on ranking 

DCA scores, while our method aim to discriminate the pairwise residue contacts 

and non-pairwise residue contacts based on a binary classifier. Hence, the AUC 

measurement is the suitable in this situation.  

The Figure 4.6 shows the average AUCs of the both methods corresponding to 

two cases concerned in the section 4.4.1 (i.e., non-eliminating and eliminating 

DDIs caused by duplication of a protein complex in many PDB entries) with 

various threshold values. From the figure, it can be shown that average AUCs of 

the ipRRC are higher than the ones of the mpDCA. In addition, the average AUCs 

of the mpDCA on the pair C1-set/C1-set is higher than the ones of C1-set/MHC-I. 

In addition, they are improved when duplicate DDIs are removed. The comparison 

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 mean 

Sensitivity 0.994 0.945 0.969 0.917 0.858 0.850 0.668 0.807 0.876 

Specificity 0.997 0.997 0.996 0.996 0.996 0.996 0.997 0.996 0.996 

AUC 0.995 0.991 0.998 0.983 0.922 0.950 0.861 0.972 0.959 

MCC 0.641 0.632 0.544 0.565 0.512 0.582 0.466 0.503 0.556 
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0.2 

0.4 

0.6 

0.8 

1.0 
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indicates that the combination of structure information and residue co-evolution is 

useful for defining residue-residue contacts between domains. 

 

 

Figure 4.4   The average of predicting results of the domain pair C1-set/C1-set after eliminat-

ing duplication. 

 

 

Figure 4.5   The average of predicting results of the domain pair C1-set/MHC-I after eliminat-

ing duplication. 
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4.4.3 Apply ipRRC to predict residue-residue contacts of hetero DDIs in 

KBDOCK 

To verify the predictor ipRRC, we get hetero DDIs (i.e., two domain sequences 

belong two different protein chains) of two domain family pairs used in the section 

4.4.1 from KBDOCK database as the queries. KBDOCK is a database that inte-

grates 3did, PDB, and PFAM into one, then using spatial clustering technique to 

classify binding sites for proteins at domain levels. KBDOCK filtered out only 

hetero DDIs of 3did for supporting knowledge-based protein docking. We obtained 

29 and 39 hetero DDIs for the C1-set/C1-set and C1-set/MHC-I, respectively. The 

number of hetero DDIs contained in KBDOCK is much smaller the number of 

DDIs in 3did (2000 DDIs for C1-set/C1-set, and 1128 DDIs for C1-set/MHC-I). 

We eliminated obtained KBDOCK’s DDIs from our datasets, and then we took 

each DDI as a query and conducted experiments. Some query DDIs were rejected 

by ipHMM because they did not satisfied the conditions during the decoding 

process. The averaged results reported in Table 4-1 and Table 4-2 are the results 

from remained query DDIs. These two tables show that the ipRRC has ability to 

predict residue contacts between hetero domain pairs with high accuracy and prove 

that our proposed method can be applied for supporting the source of template-

based protein docking. The more details of predicted results are shown in the table 

S4-8 and S4-9 in the Appendix A. 

 

Table 4-1   The average of predicting results of hetero DDIs in KBDOCK of the domain pair 

C1-set/C1-set. 

Thres. Sen. Spec AUC MCC 

0.1 0.845 0.998 0.968 0.651 

0.2 0.961 0.998 0.978 0.709 

0.3 0.903 0.998 0.973 0.680 

mean 0.903 0.998 0.973 0.680 

The notations Thres., Pre., Spec, MCC, and AUC are Threshold and measurements Sensitivity, 

Specificity, MCC, and AUC,  respectively. 
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Table 4-2   The average predicting results of hetero DDIs in KBDOCK of the domain pair C1-

set/MHC-I. 

Thres. Sen. Spec AUC MCC 

0.1 0.736 0.996 0.927 0.515 

0.2 0.666 0.998 0.874 0.550 

0.3 0.520 0.997 0.801 0.346 

mean 0.640 0.997 0.867 0.471 

The notations Thres., Pre., Spec, MCC, and AUC are Threshold and measurements Sensitivity, 

Specificity, MCC, and AUC,  respectively. 

4.5 Conclusions 

In this study, a new method to predict residue-residue contacts was presented. The 

method follows an approach that has ability to aggregate the ipHMM (i.e., interac-

tion profile hidden Markov models) and SVM (i.e., support vector machine) for 

inferring residue-residue contacts between interactive domains. The ipHMM was 

used to transfer binding site information among members in a domain family, 

while SVM was used to classify RRCs and non-RRCs. Beside pre-predicted 

binding site information, the method added information of residue co-evolution 

and amino acid pairwise contact potentials to powerful the classifier. The experi-

ment results showed that our proposed method could predict residue contacts for 

domain pairs with high accuracy. However, the predicted results are different on 

each dataset (i.e., a pair of interactive domain families). The comparison results are 

also show that our method outperforms previous methods on the same data set. 

Moreover, the method is promising for improving the source for template based 

protein docking.  
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Figure 4.6   The comparison of average AUCs between ipRRC and mpDCA with various 

threshold values  
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                            . (a) and (c) are two cases of non-eliminating and eliminating DDIs caused by 

duplication of a protein complex in many PDB entries of the C1-set/C1-set, respectively ; (b) and 

(d) are two cases of non-eliminating and eliminating DDIs caused by duplication of a protein 

complex in many PDB entries of the C1-set/MHC-I, respectively. 
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Chapter 5   

Conclusion and Future research 

 

Previous chapters described the development of the machine learning approaches 

for mining protein-protein interactions at different levels. This final chapter 

summarizes the contributions of the dissertation and presents some directions for 

future research. 

5.1 Dissertation summary 

Interactions between proteins govern most of the essential process such as gene 

expression, cellular communication, and immunological respond of living organ-

isms. In particular, the interruption of PPIs may cause diseases for human. 

Therefore, comprehensive knowledge of structure and energy of these interactions 

is demanded and necessary to understand the metabolic interaction networks and 

protein complexes to design drugs that can modify or block interactions of disease 

treatments. The target of this research answer two questions. The first is “which 

domain pairs can interact?” and the second is “How do two domains interact?” The 

main contributions of this thesis can be summarized as the follows. 

Firstly, we present a new computational method to predict domain-domain in-

teractions by applying an advanced link prediction model that adapts with the 

state-of-the-art of observed DDIs networks. The method can overcome the incom-

pleteness and noise of PPIs data. The results showed that our method produced 

high reliable prediction results compared to previous methods. In addition, this 

approach can be a solution for the open question in [103]: “How to get the best 

rebuilt network for biological networks”. 
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Secondly, we introduced a new method for prediction residue-residue contacts. 

The method employed an approach that has ability to aggregate the interaction 

profile hidden Markov models (ipHMM) and support vector machine (SVM) for 

inferring residue-residue contacts between domains. The ipHMM was used to 

transfer information of binding sites among the members in a domain family, while 

SVM was used to classify residue-residue contacts (RRCs) and non-RRCs. In 

addition, our method combined the information of residue co-evolution based on 

direct coupling analysis and pairwise residue-residue contacts potentials for 

residues with using SVM to power up the classifier. The experimental results 

showed that our method outperformed the previous method with the same data set. 

In addition, the method is promising to improve the source for the template based 

protein docking. 

5.2 Future works 

PPIs have been received the attention of many researchers in different fields. 

However, it is so far until we can completely understand how PPIs interact. Alt-

hough this thesis addressed two questions to fulfill the knowledge of PPIs, but 

there are two remaining open problems to be considered further. 

Mining PPIs in heterogeneous graphs. Protein-protein interactions can be 

presented in heterogeneous graphs where the nodes present proteins, domains, 

functions, and the edges present the relationship between nodes (e.g., which 

domains are annotated for which proteins, and which functions are annotated for 

which proteins or domains). The question needs to be answered for this kind of 

graph is “What is the relationship between two nodes that are indirectly connect-

ed?”, and the answer for this question is very helpful for understanding the 

mechanism of metabolic interaction networks. 

Predicting conformation changes of protein. The bottleneck of protein dock-

ing is the shape of proteins (monomers) changes during forming protein 

complexes. This leads to the fail of protein docking methods such as ab-initio 

docking. There are several researches concerning to solve this problem. How we 

can apply our second method for solving this problem is also an open question. 
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In the near future, we intend to develop new computational methods to answer 

the open questions that are listed above. The interaction networks in the biological 

systems are not only involved with protein, but also other bio-molecules such as 

RNA, DNA. Developing new methods that can combine and connect all type of 

interactions of biological networks to completely reveal the mechanism of biology 

system is the most challenge and greatest open problem.  
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Appendix A 

Table S4-1 Amino acid pairwise contact potentials used in this study  (retrieved 

from [133], http://www.genome.jp/aaindex/). 

 

ID Accession # Description Ref. 

1  BONM030101 Quasichemical statistical potential for the 

antiparallel orientation of interacting side 

groups 

[1] 

2  BONM030102 Quasichemical statistical potential for the 

intermediate orientation of interacting side 

groups 

[1] 

3  KESO980101 Quasichemical transfer energy derived from 

interfacial regions of protein-protein complex-

es 

[2] 

4  KESO980102 Quasichemical energy in an average protein 

environment derived from interfacial regions 

of protein-protein complexes 

[2] 

5  KOLA930101 Statistical potential derived by the 

quasichemical approximation 

[3] 

6  MICC010101 Optimization-derived potential [4] 

7  MIYS990107 Quasichemical energy of interactions in an 

average buried environment 

[6] 

8  MIYS960103 Number of contacts between side chains 

derived from 1168 X-ray protein structures 

     [5] 

9  MOOG990101 Quasichemical potential derived from interfa-

cial regions of protein-protein complexes 

[7] 

10  SKOJ000101 Statistical quasichemical potential with the 

partially composition-corrected pair scale 

[8] 

11  SKOJ000102 Statistical quasichemical potential with the 

composition-corrected pair scale 

[8] 

12  SKOJ970101 Statistical potential derived by the 

quasichemical approximation 

 

[9] 
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Table S4-2  The average predicting results of the domain pair C1-set and C1-set 

for the case at both sequences of filtered DDIs having substitution distance is 

smaller than the threshold. 

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.1 0.524 0.601 0.996 0.310 0.687 0.395 0.981 0.413 

0.2 0.464 0.665 0.997 0.580 0.717 0.610 0.876 0.389 

0.4 0.436 0.960 0.994 0.579 0.977 0.631 0.984 0.520 

0.6 0.363 0.715 0.995 0.501 0.752 0.556 0.955 0.363 

0.8 0.345 0.622 0.996 0.533 0.702 0.450 0.921 0.372 

1.0 0.450 0.649 0.997 0.570 0.714 0.598 0.926 0.403 

1.2 0.447 0.658 0.995 0.532 0.712 0.578 0.927 0.409 

1.4 0.333 0.656 0.992 0.433 0.774 0.458 0.883 0.347 

mean 0.420 0.691 0.995 0.505 0.755 0.535 0.932 0.402 

The notations Thres., Pre., Rec., Spec, F1, Gmean, Mcc, ROC, PR are Threshold and meas-

urements Precision, Sensitivity, F_measure, Specificity, G_mean, Mcc, Auc of ROC, Auc of precision 

and recall, respectively. 

 

 

Table S4-3 The average predicting results of the domain pair C1-set and MHC-I 

for the case at both sequences of filtered DDIs having substitution distance is 

smaller than the threshold. 

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.1 0.420 0.994 0.997 0.585 0.996 0.641 0.995 0.526 

0.2 0.430 0.945 0.997 0.584 0.970 0.632 0.991 0.520 

0.4 0.327 0.969 0.996 0.466 0.982 0.544 0.998 0.426 

0.6 0.360 0.917 0.996 0.505 0.954 0.565 0.983 0.423 

0.8 0.326 0.858 0.996 0.450 0.920 0.512 0.922 0.453 

1.0 0.418 0.850 0.996 0.544 0.917 0.582 0.950 0.472 

1.2 0.340 0.668 0.997 0.545 0.728 0.466 0.861 0.444 

1.4 0.318 0.807 0.996 0.453 0.848 0.503 0.972 0.484 

mean 0.368 0.876 0.996 0.516 0.914 0.556 0.959 0.468 

The notations Thres., Pre., Rec., Spec, F1, Gmean, Mcc, ROC, PR are Threshold and meas-

urements Precision, Sensitivity, F_measure, Specificity, G_mean, Mcc, Auc of ROC, Auc of precision 

and recall, respectively. 
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Table S4-4 The average predicting results of the domain pair C1-set and MHC-I 

for the case at least one sequence of DDIs having substitution distance is smaller 

than the threshold.  

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.1 0.267 0.629 0.990 0.351 0.696 0.391 0.892 0.302 

0.2 0.299 0.731 0.992 0.407 0.761 0.453 0.912 0.442 

0.4 0.221 0.451 0.994 0.296 0.516 0.312 0.850 0.224 

0.6 0.234 0.774 0.992 0.350 0.783 0.415 0.861 0.331 

0.8 0.291 0.696 0.991 0.403 0.741 0.442 0.843 0.376 

1.0 0.325 0.743 0.994 0.446 0.768 0.485 0.861 0.472 

1.2 0.356 0.710 0.995 0.472 0.751 0.499 0.912 0.484 

1.4 0.356 0.710 0.995 0.472 0.751 0.499 0.912 0.484 

The notations Thres., Pre., Rec., Spec, F1, Gmean, Mcc, ROC, PR are Threshold and measure-

ments Precision, Sensitivity, F_measure, Specificity, G_mean, Mcc, Auc of ROC, Auc of precision 

and recall, respectively. 

 

Table S4-5 The average predicting results of the domain pair C1-set and MHC-I 

for the case at least one sequence of DDIs having substitution distance is smaller 

than the threshold.  

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.1 0.332 0.872 0.995 0.459 0.927 0.517 0.936 0.479 

0.2 0.487 0.891 0.996 0.588 0.939 0.627 0.979 0.562 

0.4 0.191 0.546 0.995 0.280 0.677 0.319 0.753 0.217 

0.6 0.301 0.863 0.995 0.439 0.919 0.503 0.963 0.460 

0.8 0.321 0.935 0.995 0.468 0.964 0.538 0.990 0.471 

1.0 0.297 0.876 0.996 0.411 0.927 0.478 0.965 0.332 

1.2 0.357 0.968 0.996 0.512 0.982 0.579 0.999 0.563 

1.4 0.523 0.837 0.998 0.634 0.911 0.655 0.969 0.612 

  

 

Table S4-6  The average of predicting results of the domain pair C1-set/C1-set 

after eliminating duplication. 

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.2 0.376 0.772 0.996 0.497 0.784 0.666 0.951 0.448 

0.3 0.406 0.974 0.994 0.571 0.984 0.625 0.992 0.517 

0.5 0.398 0.762 0.996 0.511 0.850 0.541 0.931 0.522 

0.7 0.409 0.724 0.995 0.512 0.836 0.535 0.959 0.487 

0.9 0.515 0.720 0.997 0.543 0.823 0.577 0.941 0.503 

mean 0.421 0.790 0.996 0.527 0.855 0.589 0.955 0.495 
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Table S4-7  The average of predicting results of the domain pair C1-set/ MHC-I 

after eliminating duplication. 

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.2 0.453 0.953 0.996 0.588 0.974 0.638 0.975 0.562 
0.3 0.416 0.680 0.997 0.497 0.807 0.519 0.915 0.422 
0.5 0.343 0.663 0.998 0.444 0.714 0.472 0.914 0.409 
0.7 0.246 0.685 0.995 0.448 0.734 0.406 0.895 0.380 
0.9 0.271 0.558 0.997 0.356 0.698 0.382 0.850 0.282 

mean 0.346 0.708 0.997 0.466 0.785 0.483 0.910 0.411 

The notations Thres., Pre., Rec., Spec, F1, Gmean, Mcc, ROC, PR are Threshold and measurements 

Precision, Sensitivity, F_measure, Specificity, G_mean, Mcc, Auc of ROC, Auc of precision and 

recall, respectively. 

 

 

Table S4-8 The average of predicting results of hetero DDIs in KBDOCK of the 

domain pair C1-set/C1-set 

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.1 0.505 0.845 0.998 0.629 0.905 0.651 0.968 0.655 

0.2 0.530 0.961 0.998 0.676 0.979 0.709 0.978 0.670 

0.3 0.517 0.903 0.998 0.652 0.942 0.680 0.973 0.662 

mean 0.517 0.903 0.998 0.652 0.942 0.680 0.973 0.662 

The notations Thres., Pre., Rec., Spec, F1, Gmean, Mcc, ROC, PR are Threshold and measure-

ments Precision, Sensitivity, F_measure, Specificity, G_mean, Mcc, Auc of ROC, Auc of precision 

and recall, respectively. 

 

 

Table S4-9 The average predicting results of hetero DDIs in KBDOCK for the 

domain pair C1-set/MHC-I 

Thres. Pre. Sen. Spec F1 Gmean Mcc ROC PR 

0.1 0.378 0.736 0.996 0.482 0.840 0.515 0.927 0.433 

0.2 0.467 0.666 0.998 0.627 0.753 0.550 0.874 0.487 

0.3 0.235 0.520 0.997 0.321 0.712 0.346 0.801 0.236 

mean 0.360 0.640 0.997 0.477 0.769 0.471 0.867 0.385 
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