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Abstract 

 

Proteins are the active functional biomolecules. They are responsible for many tasks 

in the cells, such as catalyzing the biochemical reactions, creating the cell walls, 

involving in the defending the body from foreign invaders, involving in the movement, 

and so on. Most proteins interact with the other proteins or molecules to perform their 

functions; only a small number of them can work alone.  

Though many advances have been achieved in the field of genome biology and 

Bioinformatics, the functions of many protein sequences have not been determined 

until now. However, the functions of the unknown protein can be inferred from the 

functions of the known proteins that interact with it. In addition, functions of a protein 

directly depend on its three-dimensional structure. The understanding of protein is the 

understanding its sequence, structure and function. Therefore, studying of 

protein-protein interaction and protein structure is very important in bioinformatics 

and has been receiving a lot of interests.   

The study of protein-protein interaction aims to localize where protein sequence 

can physically interact, and to predict which proteins interact with which others. The 

first problem is called protein-protein interaction sites prediction. Learning about this 

issue leads to the understanding how proteins recognize the other molecules.  

Predicting -turns and their types is one of the protein structure prediction 

problems, and also is one of the interesting and hard problems in bioinformatics in 

recent years. The purpose is to provide more information for fold recognition study. 

However, the performances of both -turns prediction and protein-protein interaction 

sites prediction are still far from being perfect. One of the main reasons is the 

existence of class-imbalance problem in the datasets. 

This thesis intends to enhance the performances of predicting (i) the 

protein-protein interaction site by relaxing the class imbalance problem utilizing our 

novel over-sampling method together with using predicted shape strings; and (ii) the 

-turn and beta-turn’s types applying PSSMs, predicted protein blocks and random 

under-sampling technique. 
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For the predicting protein-protein interaction sites problem, experimental results 

on the dataset that contains 2,829 interface residues and 24,616 non-interface residues 

showed a significant improvement of our method in comparison with the other 

state-of-the-art methods according to six evaluation measures. 

We performed experiments on three standard benchmark datasets that contain 426, 

547 and 823 protein sequences, respectively, to evaluate the performance of our 

method for predicting the -turns and their types. The results showed the substantial 

improvement of our approach compared with the other strategies.  
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Chapter 1  

Introduction 

 

In this chapter, we introduce some basic concepts related to our methods in the 

next chapters, such as protein structure levels, torsion angles, protein blocks, -turn, 

and so on. After that, we briefly present some concepts and research problems of 

protein-protein interaction sites and -turns and their types prediction. And then, 

class-imbalance problem, one of the difficulties in predicting protein-protein 

interaction site and -turn is introduced. Dealing with these problems is our purpose. 

Finally, we show the contributions and organization of our thesis. 
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1.1 Introduction 

1.1.1 Protein overview 

Protein  

Proteins are cellular large molecules that are constructed from chains of hundreds or 

thousands amino acids. Each chain is called a polypeptide. Each individual amino 

acid in this chain is called a residue. Two amino acids link together through the 

peptide bond. 

There are 20 amino acids that most commonly occur in nature. All of them consist 

of the same part, but the side chain R, as in Figure 1.1 

Figure 1.2 presents the way that two amino acids link together to form a dipeptide 

in a protein chain. 

 

Figure 1.1 Basic structure of amino acid. 

The different amino acids have the different side-chain R. (Figure adapted from 

http://sph.bu.edu/otlt/MPH-Modules/PH/PH709_A_Cellular_World/PH709_A_Cellular_World6.html) 

 

Proteins play a very important role in the cells of living organisms. Each protein 

has a specific function, for example, enzymes catalyze the metabolic reactions; 

structural protein involves in creating the cell wall; regulatory proteins regulate the 

transcription of genes; transport proteins bring molecules traveling through the body; 

antibodies help to protect the body by binding to the specific foreign invaders such as 

bacteria or viruses, and so on.  
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Most proteins interact with the other molecules to perform their function. If the 

interactions between proteins in a cell disappear, the cell will be blind, deaf, paralytic 

and disintegrate. 

 

 

 

Figure 1.2 The condensation of two amino acids to form a dipeptide. (Figure adapted from 

ttp://en.wikibooks.org/wiki/An_Introduction_to_Molecular_Biology/Function_and_structure_of_Protei

ns) 

 

Figure 1.3 presents an example of antibody Immunoglobulin G traveling in the 

blood and protecting the body by binding with the invaders. 

 

Figure 1.3 Antibody Immunoglobulin G recognizes foreign particles that might be 

harmful to defend the body. 

(Figure downloaded from http://ghr.nlm.nih.gov/handbook/howgeneswork/protein) 

http://en.wikibooks.org/w/index.php?title=Peptide_bond&action=edit&redlink=1
http://ghr.nlm.nih.gov/handbook/howgeneswork/protein
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Functions of proteins directly depend on their structure and shape. Protein 

structure can be presented as four levels (Figure 1.4): 

 The primary structure is a linear amino acid sequence. 

 Secondary structure refers to the local spatial arrangement of a polypeptide’s 

backbone atoms without regard to the conformations of its side chains.  

 Tertiary structure is the three-dimensional structure of an entire protein sequence.  

 Some proteins contain more than one polypeptide chain. In this case, quaternary 

structure of a protein is the arrangement of the three-dimensional polypeptides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Four levels of protein structure.   

a) Primary structure is a sequence of amino acids. 

b) Secondary structure is the spatial arrangement of the specific regions. 

c) Tertiary structure is the 3D structure of the whole polypeptide chain. 

d) Quaternary structure, if exists, is the 3D structure of many polypeptide chains. 

 

 

 

 a) 

d) c) 

b) 
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Torsion angles 

The backbone (main chain) of a protein includes the atoms which participate in the 

peptide bonds. It can be displayed as a linked sequence of rigid planar peptide groups 

and described by the torsion angles (dihedral angles)  and .  is the angle between 

two adjacent planes (CNC) and (NCC); and  is the angle between the planes 

(NCC) and (CCN) (Figure 1.5). These two angles are defined as 180  if the 

polypeptide sequence is fully extended conformation. Torsion angles are among the 

most important local structural parameters that control protein folding. If we know the 

values of these angles, we would be able to predict the corresponding protein 3D 

structure. 

 

 

 Figure 1.5 Torsion angles  and  of the polypeptide backbone 

Figure adapted from http://wiki.christophchamp.com/index.php/Ramachandran_plot 

 

Protein blocks 

Secondary structure of protein is very important for fold recognition. Secondary 

structures have been classically described into three states of backbone conformation 

as -helix, -sheet and coil. Around 50% of total number protein residues are 

assigned as coils. Meanwhile, these residues actually correspond to many distinct 

local protein structures. Therefore, a new view of three-dimensional protein structure 

that combines the small local fragments (or prototypes) has been developed. A 

structural alphabet (SA) is a complete set of these prototypes [1].  

http://wiki.christophchamp.com/index.php/Ramachandran_plot
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Because each residue relates to one of the fragments in a SA, a protein primary 

structure can be translated into a chain of prototypes in one dimension as the sequence 

of prototypes [2]. 

Many structural alphabets were developed, such as Building Blocks, Recurrent 

local structural motifs, Substructures, Structural Building Blocks, Oligons, Protein 

Blocks, LSP, Kappa-alpha, and so on. The more details can be found in [1]. 

Protein Blocks (PBs) [3] that allows a good approximation of local protein 3D 

structures [4] and has been applied to many applications at the present time [2, 5]. 

This SA is composed of sixteen local structure prototypes of five consecutive C, 

called Protein Blocks (PBs), labeled a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, 

respectively. Each of these prototypes represents a vector of eight average dihedral 

angles /. Figure 1.6 displays these kinds of blocks. 

 

 

Figure 1.6 The protein blocks. 

For each protein block, the N-cap extremity is shown on the left and the C-cap on the right. Each 

prototype is five residues in length and corresponds to eight dihedral angles (φ,ψ). The protein blocks 

m and d are mainly associated to the central region of α-helix and the central region of β-strand, 

respectively [2] 
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1.1.2 Protein-protein interaction sites prediction 

Protein-protein interactions play a major role in maintaining normal cell functions and 

physiology [6]. Specifically, they are responsible for many important biological 

processes, such as metabolic control, DNA replication, protein synthesis, 

immunological recognition, and so forth. Thus, studying of protein-protein interaction 

is a vital task in bioinformatics. This realm contains two main goals, recognizing the 

interaction sites (or protein interfaces) where proteins physically contact, and 

predicting which pairs of proteins can interact. The knowledge of protein interfaces 

allows us to understand the way protein recognizes the other molecules and engineers 

new interactions. It is also very useful in identifying drug targets, designing drug-like 

peptides to prevent unwanted interactions [7, 8]. The demonstration of the interaction 

sites of two protein sequences is presented in Figure 1.7. 

There are many experimental methods to identify the protein interaction sites and 

interface residues, such as X-ray Crystallography, Nuclear magnetic resonance [9] or 

Site-specific mutagenesis [10]. However, these approaches are expensive, 

time-consuming and problematic for transient complexes [11], while computational 

methods are more cost-effective. 

Predicting protein-protein interaction sites by machine learning methods can be 

dealt as a classification problem that to predict whether an amino acid is an interface 

residue or not. The features that can distinguish interaction and non-interaction 

residues are used to describe protein site [11]. 

There are two main groups of methods for predicting protein-protein interaction 

sites, the methods using protein structure and the methods using protein sequence 

information [12].  

The protein structure based methods represent each residue by information of its 

nearest neighbors in structure [13–15], thus they can utilize the informative features. 

However, the number of known-structure proteins to date is significantly smaller than 

the amount of protein sequences [16]. Therefore, it is necessary to develop the 

methods that can predict the interface residues from the amino acid sequence only, 

without knowing structural information. These methods generally generate the 

features for each residue from information of it and its neighbors in the sequence. 

Some studies have attempted to develop the techniques for predicting interaction 
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sites from protein sequences. For example, Kini and Evans [17] relied on the most 

common appearance of proline in the flanking segments of interaction sites to propose 

the prediction method; Chen and Li [18] combined the hydrophobic and evolutionary 

information of amino acid to construct the prediction model; Chen and Jeong [16] 

extracted a wide range of features from protein sequences only and using Random 

Forests to create a prediction integrative model, and so forth. 

However, it is not easy to apply sequence-based methods for interaction sites 

prediction due to the lack of understanding of biological properties that can provide 

vital information related to binding sites. Ofran and Rost [19, 20] proved that using 

better information would induce better prediction results. On the other hand, because 

the number of non-interacting residues is much more than the number of interacting 

residues, it often leads to the high value of false predicted negative. 

 

 
Figure 1.7 Illustration of protein-protein interaction interface residues of sequence 

1FJG-F and ribosomal subunit S18.  

Reds denote the interface residues.  

(Figure adapted from http://www.insun.hit.edu.cn/~mhli/site_CRFs/fig/1FJG_F_right_1024.png) 

 

http://www.insun.hit.edu.cn/~mhli/site_CRFs/fig/1FJG_F_right_1024.png
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1.1.3 -turn prediction 

There is a tight relationship between a protein sequence, structure, and its function. 

The understanding of structural basis for protein function can speed up the progress in 

systems biology that aims at identifying functional networks of proteins. For example, 

the rational drug design heavily relies on the structural knowledge of a protein [6]. 

Secondary structure, that includes regular and irregular patterns, is very important 

in protein folding study since it can provide the useful information to derive the 

possible three-dimensional structures. The regular structures, composed of sequences 

of residues with repeating  and  values, classified in -helix and -strand. While 

this class is well defined, the other class, irregular structures, involves 50% of 

remaining protein residues are classified as coils. In fact, coil can be tight turn, bulge 

or random coil. Among of these structures, tight turn is the most important from the 

viewpoint of structure as well as function [21].  

Tight turns are categorized into -turn, -turn, -turn, -turn and -turn basing on 

the number of consecutive residues in the turn. Table 1.1 displays the kinds of tight 

turns. 

-turn is one of the most common tight turns. A -turn is composed of four 

consecutive residues that are not in an -helix and the distance between the first and 

the fourth C is less than 7Å [22] (Figure 1.8). -turns play an important role in the 

conformation as well as the function of protein, and make up around 25% of the 

residue numbers. -turns are the essential part of -hairpins, provide the directional 

change of the polypeptide [23], and involve in the molecular recognition processes 

[24]. In addition, the formation of -turn is a vital step in protein folding [25]. 

Therefore, the knowledge of -turn is very necessary in the prediction of 

three-dimensional structure of a given primary protein sequence. 
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Figure 1.8 An example of beta-turn that contains four consecutive residues.  

The C- are numbered from 1 to 4. Dot line represents hydrogen bond 

Table 1.1 Kinds of tight turns in protein 

Type No. of residues H-bonding 

-turn 2 NH(i)-CO(i+1) 

-turn 3 CO(i)-NH(i+2) 

-turn 4 CO(i)-NH(i+3) 

-turn 5 CO(i)-NH(i+4) 

-turn 6 CO(i)-NH(i+5) 

 

-turns are categorized into nine types (I, I’, II, II’, IV, VIa1, VIa2, VIb and VIII) 

based on the dihedral angles of residues i+1 and i+2 in the turn [26]. The detailed 

values of these angles corresponding to each type are shown in Table 1.2. Because the 

turn types VIa1, VIa2 and VIb are rare, they are often combined into one type and 

named VI [21]. Figure 1.9 below displays the illustrative drawings of nine -turn 

types. 

The -turn prediction methods can be divided into two main categories: statistical 

techniques and machine learning techniques. The former group includes the 

techniques such as Chou-Fasman’s method [27], Thornton’s methods [28, 29], Chou’s 

method [30], the 1-4 and 2-3 correlation model [31] using the positional frequencies 

and -turn residue conformation parameters; and the more recently method COUDES 
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[32], that used the propensities and multiple sequence alignments. 

The latter group was reported to be effectively applied for -turns prediction in 

recent years [33]. Belonging to this realm, Artificial Neural Network (ANN) was first 

used in [34], then frequently used by the other authors [22, 35, 36]. Support Vector 

Machines (SVMs) were also selected by many authors [24, 33, 37–41]. The most 

recent reported result is KLR, which used kernel logistic regression for prediction, 

with 0.5 on Matthews correlation coefficient (MCC) [42].  

Most of the methods for the turn types prediction are based on ANN [35, 43, 44] 

or probabilities with multiple sequence alignments as COUDES [32]. More recently, 

Kountouris and Hirst [33] and X.Shi [45] used SVM in their methods and achieved 

the significant results. However, the quality of both -turn location and turn types 

prediction is a challenge. 

 

Table 1.2 Average values of dihedral angles of beta-turn types. 

The third residue of turns type VIa1,VIa2, VIb must be a proline [21, 26] 

Type Dihedral angles ()               
distance (Å) i+1 i+1 i+2 i+2 

I -60 -30 -90 0 4.6 

I’ 60 30 90 0 4.6 

II -60 120 80 0 4.6 

II’ 60 -120 -80 0 4.6 

IV -61 10 -53 17 7.2 

VIa1 -60 120 -90 0 3.4 

VIa2 -120 120 -60 0 3.7 

VIb -135 135 -175 160 6.0 

VIII -60 -30 -120 120 6.3 
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Figure 1.9 Illustrative stereo drawings of beta-turn types.  

The distances between Cα(i)-Cα(i+3) in type IV are slightly greater than 7Å since this type is a 

miscellaneous category and not really considered as an authentic -turn [21] 

. 

1.1.4 Class-imbalance problems 

In recent years, class-imbalance problems have been receiving many deep 

concerns because of their importance. A dataset is imbalanced if the number of 

samples in some classes is significantly larger than in other classes. In the case of 

two-class datasets, the class with small amount of samples is the minority (positive) 

class while the other is the majority (negative) class. For multi-class imbalanced 

datasets, there can be some minority classes, and in some situations, every class is the 

minority. However, in this thesis, we just focus on the two-class problem to agree with 

the common practices [46–50]. Figure 1.10 presents an illustration of imbalanced 

dataset.The class-imbalance problem is often found in the real decision systems which 

try to detect the rare but important cases such as fraud detection [51, 52], oil spills in 
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satellite images of the sea surface [53], risk management [54], text categorization [55] 

and so on. In the field of bioinformatics, this problem is very common, such as 

miRNA prediction [56], beta-turns prediction [33, 42], prediction of 

protein-interaction sites [16, 57, 58], protein-ATP binding residues prediction [59], 

microRNAs classification [60–62], translation initiation site recognition [63], et cetera. 

In some cases, the ratio of minority class to majority class can be as extreme as 1:100 

or 1:100,000 [46]. When applying standard machine learning to the such datasets, it 

often harvests a poor performance that results from the accuracy. Most of the learning 

systems can be seriously influenced and tend to predict majority class exactly while 

users desire for both high sensitivity and specificity. One of the most common 

examples in real biomedical applications is the “Mammography Data Set,” the 

collection of images acquired from a series of mammography exams performed on a 

set of distinct patients. Analyzing the images in a binary sense, the natural classes are 

labeled “Positive” for an image representative of a “healthy”, and “Negative” for a 

“cancerous” patient. This data set contains 10,923 “Negative” samples and 260 

“Positive” samples. We expect a classifier will provide 100% of predictive accuracy 

for both the minority and majority classes on the dataset. However, the reality showed 

that classifiers tend to provide a severe imbalanced degree of accuracy, with the 

majority class having close to 100% accuracy and the minority class having 

accuracies of 0-10 percent. If a classifier achieves 10% accuracy on the minority class 

of the mammography data set, it means that 234 minority samples are misclassified as 

majority samples. The consequence of this is equivalent to 234 cancerous patients 

diagnosed as noncancerous. This is clearly an undesired result [46]. 

In addition, class distribution and error costs also affect the learning algorithms. 

Standard classifiers assume that (i) the algorithms will perform on data drawn from 

the same distribution as the training data while the training and testing distributions 

are often different; (ii) the errors coming from different classes have the same costs 

while they are unlike in practice [64].   

To solve this problem, many strategies have been proposed. Basically, all of them 

are divided into two categories: data level including the resampling methods, and 

algorithmic level including the methods aiming at adjusting the parameters of 

machine learning algorithms [46, 49]. However, [46] shows that resampling 

techniques are more effective on improving classifier accuracy than algorithm level 
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methods. Due to that reason, in this study, we mainly focus on the resampling 

techniques. 

 

Figure 1.10 An illustration of an imbalanced dataset.  

Blackened shapes represent samples; circles are majority class samples and stars are minority class 

samples. 

1.2 Objectives 

Because of the importance of predicting the interface residue and -turn and what 

kind of turn it is, our thesis aims to the following problems: 

Firstly, we would like to improve the performance of predicting protein interface 

residue by solving the problem of class-imbalance. To do that, we propose a new 

over-sampling algorithm for balancing the dataset. We chose the dataset that contains 

2,829 interacting residues and 24,616 non-interacting residues for training and testing 

the predictor, and compare our results with the state-of-the-art approaches. We also 

combine our algorithm with some other methods to enhance the better results. 

In addition, we try to use a new kind of feature for well distinguishing the protein 

interface and non-interface residues. We apply our new algorithm to this new dataset 

to evaluate the performance. 

Secondly, we would like to better the quality of predicting -turn . Since the high 

proportion of non--turn residues to the -turn residues is one of the reasons 

decreasing the prediction’s performance, we utilize random under-sampling method to 

balance the dataset. We create the well-characterized datasets for training and testing 

the model. We also apply this idea for predicting -turn types. The results are 

compared with other state-of-the-art methods to evaluate the improvement.  
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1.3 Contributions 

The main contributions of this thesis are described as below: 

A novel over-sampling technique for relaxing the class-imbalance problem 

based on local density distributions. In order to alleviate the problem of overlapping 

and over-fitting simultaneously, we propose a novel over-sampling algorithm, which 

we name Over-sampling based on local Density (OSD). OSD algorithm focuses on 

only minority samples located where the local density of minority samples is small in 

comparison with that of majority samples. As the local minority density is smaller, 

OSD increases the number of minority samples more strongly by synthesizing 

artificial minority samples. 

The enhancement on the performance of predicting protein-protein 

interaction sites by using our new over-sampling method OSD. We also proposed 

the methods combined with KSVM-THR and random under-sampling methods to 

reinforce the tolerance for the class imbalance problem. Results from experiments 

showed that the combination of our OSD algorithm and new feature group led to high 

sensitivity, precision, G-mean, MCC, F-measure, and AUC-PR, and comparable 

performance with the state-of-the-art methods. In addition, we found that the 

information of predicted shape strings increased the performance for predicting 

whether interface or non-interface residues.  

The improvement in the performance of predicting -turns and their types. 

We utilize predicted protein blocks and position specific scoring matrix together with 

random under-sampling method to improve the predicting the -turns and their types. 

We executed the experiments on three benchmark datasets, and achieved MCCs of 

0.58, 0.59 and 0.58 on the three datasets BT426, BT547 and BT823, respectively, in 

comparison of the state-of-art -turn prediction methods. In the field of -turn types 

prediction, we also harvested the high and stable results. 

1.4 Thesis Organization 

This thesis includes five chapters.  
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The first chapter is the current one that gives the basic concepts such as protein 

structure levels, protein blocks and the brief introduction of our research topic, thesis 

contributions and organization. 

Chapter 2 introduces the overview of techniques for dealing with class-imbalance 

problems and evaluation metrics for imbalanced datasets classification. 

Chapter 3 describes the improvement in predicting protein-protein interaction sites 

by using a novel over-sampling method and predicted shape strings. 

Chapter 4 presents the improvement in the prediction of -turns and their types 

applying predicted protein blocks and under-sampling method. 

Chapter 5 concludes this thesis and mentions the future works.  
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Chapter 2  

Methods for Dealing with  

Class-imbalance Problems  

 

 

The methods to handle the class-imbalance problem are categorized into two groups, 

data-level methods and algorithm-level methods. This chapter aims to present briefly 

the methods that have been used to deal with this problem. Then, the performance 

evaluation measures such as overall accuracy, G-mean, Mathews Correlation 

Coefficient, and so on, which are often utilized to evaluate the classification 

performance on the imbalanced datasets are presented. 
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2.1 Standard Classifier Modeling Algorithm 

There are many basic well-known classifier learning algorithms such as K-nearest 

Neighbors [65], Decision trees (ID3 [66], C4.5 [67]), Back-propagation Neural 

Networks [68], Support Vector Machines [69], and so forth. Due to the limitation of 

space, in this thesis, we just focus on Support Vector Machines that are mainly used 

for our research. 

Support Vector Machines (SVMs), a popular machine learning technique, which 

have been successfully applied to many real-world classification problems from 

various domains, were proposed by Vapnik.  

The goal of the SVM learning algorithm is finding the optimal hyper-plane to 

separate the dataset into two classes, with the maximal margin. Here, margin is the 

minimal distance from the hyper-plane to the closest data points. The solution is based 

only on the support vectors, which are the data points at the margin. SVMs originally 

were for the linear binary classification problem. However, in many applications, the 

linear classifier cannot work well but the non-linear classifier. In these cases, the 

non-linear separated problem is transformed into a high dimensional feature space 

using a set of non-linear basis functions. An important property of SVMs is that it is 

not necessary to know the mapping function explicitly. A kernel representation by a 

kernel function can be used, instead. When perfect separation is not possible, slack 

variables are introduced for sample vectors to balance the trade-off between 

maximizing the width of the margin and minimizing the associated error [48]. 

SVMs are believed to be less affected by the class imbalance problem than other 

classification learning algorithms [70] since boundaries between classes are calculated 

based on the support vectors and the class sizes may not affect the class boundary too 

much. However, some weaknesses of SVMs when applying to the imbalanced 

datasets were reported. [71] showed that in this case, the separating hyper-plane of an 

SVM model can be skewed towards the minority class, therefore can degrade the 

performance of the model with respect to the minority class. Wu and Chang [72] 

reported when the dataset is unbalanced, the positive samples lie further from the 

ideal boundary result in the boundary skew. They also said that in this case, the ratio 
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of positive and negative support vectors would be imbalanced. However, the authors 

in [73] objected to this idea. 

2.2 The State-of-the-art Solutions for Class-imbalance Problems 

2.2.1 Resampling techniques 

Generally, resampling techniques aim to balance the distribution of the dataset by 

some mechanisms. This group includes the methods such as over-sampling the 

minority class, under-sampling the majority class, and combinations of the above 

techniques. 

Over-sampling 

Over-sampling method tries to balance the data set by increasing the number of 

minority class samples. 

The simplest way is named Random Over-sampling, which randomly chooses 

some minority samples, replicates them and then adds to the original dataset. 

However, this strategy can lead to the over-fitting since over-sampling simply 

appends duplicated samples to the original data set, multiple instances of certain 

samples become “tied” [49, 74]. In addition, in case of large data sets, the cost in time 

and memory of classifying phase will be increased [46, 49]. 

Related synthetic sampling, the Synthetic Minority Over-sampling TEchnique 

(SMOTE) [75] is a powerful method that has been successfully applied for many 

research [76]. SMOTE tries to overcome the over-fitting by generating synthetic 

samples between each minority class instance and its randomly selected nearest 

neighbors. The synthetic sample xnew of a minority sample xi is created by  

                    

where δ is a random number in [0,1] and xn is one of the k nearest neighbors of xi. 

Figure 2.1 presents an example of SMOTE. 
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Figure 2.1 An illustration of SMOTE algorithm. 

Dataset with majority class samples (circles) and minority class samples (stars). Minority sample xi (in 

red) and its five nearest neighbors (in blue). The synthetic sample which is generated by xi and one of 

its random chosen nearest neighbor is presented as the blue square. 

 

Though SMOTE can overcome the drawback of Random Over-sampling, the 

numbers of synthetic samples corresponding to each minority class instance are the 

same may result in the overlapping between classes. Many improvements of SMOTE, 

therefore, were developed, such as SMOTEBoost [77], Smote-RSB [78], 

Safe-Level-SMOTE [79], Borderline-SMOTE [80] and so on. 

The other over-sampling methods that need to pay attention to are the 

Cluster-based sampling algorithms. These methods are more flexible than the simple 

and synthetic sampling algorithms, and can be tailored to target very specific 

problems. CBO, the cluster-based over-sampling algorithm [81], effectively deals 

with the within-class imbalance problem [46]. The basic idea of this method is 

clustering before over-sampling. Specifically, in [81], the authors used K-mean to 

cluster the whole dataset. Then, both the minority class and majority class were 

oversampled. All the clusters in the majority class were randomly oversampled but 

the largest one. After this step, every majority cluster had the same size. In the 

minority class, each cluster was oversampled so that it would contain 

maxsize/nclusters samples, where maxsize was the overall size of the majority class 

after over-sampling, and nclusters was the number of minority clusters. The 

illustrative example of this method is in Figure 2.2 [46].   
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Figure 2.2 Cluster-Based Sampling method example. 

a) Dataset with three majority clusters (A, B, C) and two minority clusters (D, E). Cluster A contains 

the most number of samples. 

b) After applying the method, every cluster contains the same number of samples as cluster A. 

 

Under-sampling 

Contrary to Over-sampling, Under-sampling method solves the class-imbalance 

problem by decreasing the number of majority class samples, therefore, decreases the 

cost of computation. 

Random Under-sampling balances the original data set distribution by randomly 

eliminating some majority samples. However, this way may lead to lose a lot of 

important information of the majority class.  

EasyEnsemble, BalanceCascade [82] were proposed to overcome this limitation. 

EasyEnsemble develops an ensemble learning system by independently sampling 

several subsets from the majority class and developing multiple classifiers based on 

the combination of each subset with the minority class samples. On the other hand, 

the BalanceCascade develops an ensemble of classifiers to select which majority class 

samples for under-sampling systematically.  

The other under-sampling methods that based on k-nearest neighbors are 

NearMiss-1, NearMiss-2, Near-Miss-3, and the “most distant” method [50]. The 

NearMiss-1 method chooses majority samples whose average distance to the three 

minority class nearest neighbors is the smallest. The NearMiss-2 method selects the 

majority class samples whose average distance to the three farthest minority class 
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neighbors is the smallest. NearMiss-3 selects a given number of majority class 

samples that are closest to each minority sample to guarantee that every 

minoritysample is surrounded by some majority examples. The “most distance” 

method selects the majority class samples whose average distance to the three 

minority class nearest neighbors is the largest. 

Anand et al. [61] introduced an under-sampling method that also based on nearest 

neighbor and weighted SVM. For each minority class sample, its k closest majority 

class samples will be removed. The distance between samples here is weighted 

Euclidean distance. 

2.2.2 Algorithm level methods for handling imbalance 

This group of methods modifies the standard classification algorithm to account for 

class-imbalance. A popular way for dealing with the class-imbalance problem is to 

choose a proper inductive bias. For decision trees, approaches are adjusting the 

probabilistic estimate at the tree leaf [83, 84] or developing new pruning techniques 

[83].  

For SVMs, the use of different penalty constants for different classes 

(cost-sensitive) [73, 85, 86], and adjusting the class boundary based on 

kernel-alignment ideal [72] were proposed.  

Cost-sensitive learning methods deal with the class-imbalance problem by 

considering the costs associated with misclassifying samples [87, 88]. One of the 

simple ways is adjusting the decision threshold in assigning class memberships. Chen 

et al. [89] shows that the adjustment decision threshold can increase the sensitivity 

and decrease specificity via the experiments on for four classification algorithms: 

logistic regression model, classification tree, Fisher’s linear discriminant and 

modified nearest neighbor. Using the same idea, Lin and Chen [90] proposed the 

SVM-THR method that adjusted the decision threshold of SVM. These methods are 

said to be naturally applied to handle the imbalanced datasets [46]. 

The other strategy is one-class learning method. The one-class learning approach 

learns on only one class to determine the decision boundary [91, 92]. Raskutti and 

Kowalczyk [93] demonstrates that one-class learning method performs well for 

extreme imbalanced datasets composed of a high dimensional noisy feature space.  
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One drawback of these methods is the requirement of the algorithm-specific 

modification.  

2.3 Feature Selection for Imbalance Datasets 

Feature selection is a pre-processing technique that to select a subset of best features. 

The purpose of feature selection is to avoid over-fitting and improve model’s 

performance, to provide a cost-effective model, and to gain a deeper insight into the 

underlying processes that generated the data [94]. In the field of imbalanced datasets 

mining, feature selection is even more important than the choice of the learning 

method [64, 95].  

The general feature selection process is described as follow: 

 

A feature selection algorithm belongs to one of three groups: filter methods, 

wrapper methods, and embed methods.  

Filter method selects the features based on their relevance scores. The relevance 

scores of features are calculated by various feature-ranking techniques such as 

Euclidean distance, Chi-squared, Information Gain, Gain Ratio, Symmetric 

Uncertainty, ReliefF, and so on [96]. These methods are fast, easily scale for high 

dimensional datasets, independent of the classification algorithm but ignoring the 

Feature selection algorithm 

Training set 

Selected feature subset 

Test set Final evaluation 

Output performance 
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interaction with classifier [94]. The general scheme of filter method description is in 

Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wrapper methods (Figure 2.4), such as Sequential forward selection technique, 

Sequential backward selection technique, SVM-RFE, ect., use the classifier to 

calculate the score of feature-subsets based on their predictive power. These methods 

pay attention to the feature dependencies and interact with the classifier. However, the 

common drawback is that they are computationally intensive and have high risk of 

overfitting [94, 97]. 

The embedded methods can be seen as the hybrid methods with the combination 

of filter and wrapper methods. Firstly, filter model is applied to identify the goodness 

of features. Then, a wrapper model is performed to choose the optimal feature-subset. 

Table 2.1 from [94] presents the taxonomy of feature selection techniques. 

 

 

 

 

 

Dimension 

Reduced 

Training 

Set Machine Learning 

Algorithm 
Training 

Set 

F
ea

tu
re

 S
et

 

F
ea

tu
re

 

M
er

it
 

Feature Search 

Feature Evaluate 

E
st

im
at

ed
 

A
cc

u
ra

cy
 

Final Evaluation 

H
y

p
o

th
es

is
 

Dimension Reduced Test Set 

Figure 2.3 Filter method. Figure adapted from [97] 
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Table 2.1 A taxonomy of feature selection techniques [94] 

Model search Advantages Disadvantages Examples 

Filter 

(Uni-variate) 

 

 Fast 

 Scalable 

 Independent of 

the classifier 

 Ignores feature 

dependencies 

 Ignore interation with 

the classifier 

 Chi-squared 

 Euclidean distance 

 t-test 

 Information gain, 

Gain ratio  

 

Filter 

(Multivariate) 

 Models feature 

dependencies 

 Independent of 

the classifier 

 Better 

computational 

complexity than 

wrapper methods 

 Slower than 

univariate techniques 

 Less scalable than 

univariate techniques 

 Ignores interaction 

with the classifier 

 Correlation-based 

feature selection 

(CFS)  

 Markov blanket 

filter 

 Fast 

correlation-based 

feature selection 

(FCBF)  

Wrapper 

(Deterministic) 

 Simple 

 Interacts with the 

classifier 

 Models feature 

dependencies 

 Less 

computationally 

 Intensive than 

randomized 

methods 

 Risk of over fitting 

 More prone than 

randomized 

algorithms to getting 

stuck in a local 

optimum (greedy 

search) 

 Classifier dependent 

selection 

 Sequential forward 

selection (SFS) 

 Sequential 

backward 

elimination (SBE) 

 Plus q take-away r 

 Beam search 

Wrapper 

(Randomized) 

 Less prone to 

local optima 

 Interacts with the 

classifier 

 Models feature 

dependencies 

 Computationally 

intensive 

 Classifier dependent 

selection 

 Higher risk of 

over-fitting than 

deterministic 

algorithms 

 Simulated 

annealing 

 Randomized hill 

climbing  

 Genetic algorithms 

 Estimation of 

distribution 

algorithms 

Embedded 

 

 

 Interacts with the 

classifier 

 Better 

computational 

complexity than 

wrapper methods 

 Models feature 

dependencies 

 Classifier dependent 

selection 

 Decision trees 

 Weighted naïve 

Bayes 

 Feature selection 

using the weight 

vector of SVM  
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Figure 2.4 Wrapper method. Figure adapted from [98] 

 

 

 

2.4 Evaluation Metrics 

Evaluation measures aim to evaluate the classification performance and to guide the 

classifier modeling. For the normal situation, overall accuracy is often used. However, 

when performing the classification on the imbalanced datasets, overall accuracy is no 

longer suitable for evaluating the performance of classifier [99]. If the 

class-imbalance problem is severe, a naive approach will make the overall accuracy 

very high even though, most samples are assigned to the majority class and no sample 

is assigned to the minority class [46].  

Thus, besides overall accuracy, in this study, the other metrics such as sensitivity, 

specificity, G-mean, F-measure and Matthews correlation coefficient are used, which 

are defined as follows: 

 

Overall accuracy =                       

 

Sensitivity = Recall =           
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Specificity =           

 

Precision              

 

G-mean (Balanced accuracy) =  
     

               
 
   

 

 

F measure  
    

          
 

 

Matthews Correlation Coefficient (MCC) = 
           

                                 
     

 

where TP is the number of positive samples that are correctly predicted as positive; 

TN is the number of negative samples that are correctly predicted as negative; FP is 

the number of negative samples that are predicted as positive; and FN is the number 

of positive samples that are predicted as negative.  

Sensitivity and specificity have been commonly used in medical community [27]. 

G-mean is the combination of both sensitivity and specificity [24]. F-measure is the 

harmonic mean of precision and recall. Matthews correlation coefficient measures 

how good the correlation of the predicted class labels and the actual class labels is. It 

lies in the range from -1 to 1, where -1,1, and 0 represents the worst, the best and the 

random predictor, respectively.  

In addition, the threshold independent measures ROC (Receiver Operating 

Characteristics) curve and AUC (Area Under the Curve), which are often used in 

bioinformatics [100], are adopted. ROC graphs are two-dimensional graphs with the 

Y axis and the X axis are TP rate and FP rate, respectively. An ROC graph pictures 

relative tradeoffs between true positives (benefits) and false positives (costs). From 

ROC graph, AUC can be calculated. The AUC of a classifier represents the 

probability that the classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance [101]. AUC receives the value between 0 

and 1. An acceptable classification model should have AUC above 0.5. An AUC value 

above 0.7 indicates a useful prediction, and a good prediction method achieves AUC 

above 0.85.   
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Chapter 3  

 

Improving the Prediction of Protein-Protein 

Interaction Sites Using a Novel Over-sampling 

Approach and Predicted Shape Strings 

 

Identification of protein-protein interaction (PPI) sites is one of the most challenging 

tasks in bioinformatics and many computational methods based on support vector 

machines have been developed. However, current methods often fail to predict PPI 

sites mainly because of the severe imbalance between the numbers of interface and 

non-interface residues. In this study, we propose a novel over-sampling method that 

relaxes the class-imbalance problem based on local density distributions.We applied 

the proposed method to a PPI dataset that includes 2,829 interface and 24,616 

non-interface residues. The experimental result showed a significant improvement in 

predictive performance comparing with the other state-of-the-art methods according 

to the six evaluation measures. 
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3.1  Introduction 

Protein-protein interactions, known as physical contacts among proteins, are essential 

molecular processes for living organisms to maintain their lives. They play a central 

role in various biological functions such as regulation of metabolic and signaling 

pathways, DNA replication, protein synthesis, immunological recognition, and so 

forth. Especially, physical interface between two interacting proteins is a key to 

understand enzymatic activities of proteins. Therefore, one important task in 

bioinformatics is to develop computational methods to find binding interfaces 

between two interacting proteins accurately. 

However, a naive approach based on support vector machines, one of the most 

standard classifiers, often fails to predict binding interfaces among interacting 

proteins with high specificity since the number of non-interaction residues is much 

larger than the number of interaction residues. This is so-called the class-imbalance 

problem. A dataset is imbalanced if the number of samples in some classes is 

significantly larger than in other classes. In the serious cases, the ratio of minority 

class to majority class can be as large as 1:100,000 [46]. Use of traditional machine 

learning techniques for these datasets often leads to undesirable results that only 

majority class is correctly predicted. This is a common problem in bioinformatics 

such as prediction and classification for miRNAs [56], beta-turns [33, 42], 

microRNAs [60, 61], breast cancer, lung cancer [90] and so on. 

Many methods to deal with the class-imbalance problem have been developed. 

One important class of such methods is resampling-based techniques such as 

over-sampling and under-sampling methods, which have been reported to improve 

classification accuracy significantly [46]. In this study, we propose a novel 

over-sampling approach in order to relax class-imbalance for the dataset of PPI sites. 

Instead of dealing with all minority class samples equivalently, we intentionally 

increase the number of minority samples according to their local distribution. 

Furthermore, predicted shape strings, which have been utilized in many researches in 

recent years [102–104], are used to enrich the feature groups. We present numerical 

experiments compared with state-of-the-art methods such as Anand et al. [61]. 
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3.2 Materials and Methods 

3.2.1 Dataset 

In this study, we used two datasets. The first one (that was named D1050) was the 

same with Chen and Jeong [16]. For predicting interface residues and non-interface 

residues, Chen and Jeong used the information of physicochemical features, 

evolutionary conservation score, amino acid distances, and position specific score 

matrix (PSSM) to extract features for 99 polypeptide chains of 54 hetero complexes 

[11]. By using a sliding window with size 21, the central residue of a partial peptide 

was assigned as interface residue if its relative solvent accessible surface area (RASA) 

was greater than 25% and the difference of accessible surface areas (ASAs) between 

its unbound state and bound state was greater than 1Å
2
. As a result, each residue was 

represented as a 1,050 features. The dataset contained 2,829 interface residues 

(positive class) and 24,616 non-interface residues (negative class). The ratio of 

positive class samples to negative class samples was 1:8.7. That is, this dataset was 

highly imbalanced. 

The second dataset (was named D1239) was prepared by adding information of 

predicted shape strings to the original dataset. The shape string of a protein is a 

sequence of symbols categorized according to the phi-psi torsion angles. There are 

eight shape symbols representing for eight categories (S,R,U,V,K,A,T,G). DSP 

program [104] was used to predict the shape strings. Each residue was predicted as 

one of these eight states or state N as the undefined phi-psi angle pair. Each sample in 

this dataset includes 1, 239 features. 

3.2.2 Methods 

Resampling techniques 

As presented in [46], resampling techniques such as over-sampling methods, 

under-sampling methods, and under-over-sampling combination methods effectively 

improve classification accuracy for imbalanced datasets. Under-sampling methods 

balance the imbalanced dataset by removing samples in the majority class until the 

dataset becomes balanced. An important disadvantage of under-sampling methods is 

that this removal of majority samples leads to a significant information loss for the 

majority group. On the contrary, over-sampling methods increase the number of 
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samples in the minority class. The synthetic samples are generated by various 

methods. The most naive technique is random over-sampling, which arbitrarily 

chooses some minority samples and replicates them (one or many times). One of the 

other common methods is SMOTE [75], which synthesizes the new samples locating 

between each minority class sample and its randomly chosen nearest neighbors. While 

random over-sampling techniques often lead to the over-fitting, SMOTE may result in 

the overlapping between classes [46]. Especially when the number of minority 

samples is small and they are distributed sparsely among the majority samples, the 

problem becomes more serious because most of the synthetic samples will be located 

among the majority class samples. Prati et al. [105] showed that the decrease in 

classification performance is caused by not only class-imbalance but also 

data-overlapping. Borderline-SMOTE [80] addresses this drawback by generating 

new samples for minority samples if they are located near the borderline, while the 

samples, which are surrounded by majority samples or have enough minority nearest 

neighbors are not considered. Though Borderline-SMOTE successfully improved 

predictive accuracy for imbalanced datasets, the overlapping problem is not carefully 

avoided.  

In order to alleviate the problem of overlapping and over-fitting simultaneously, 

we propose a novel over-sampling algorithm, which we call Over-sampling based on 

local Density (OSD). Instead of generating the same number of synthetic samples for 

each minority sample as SMOTE, OSD algorithm focuses on only minority samples 

located where the local density of minority samples is small in comparison with that 

of majority samples. As the local minority density is smaller, OSD increases the 

number of minority samples more strongly by synthesizing artificial minority samples. 

Here we define local density for each sample as follows: 

Definition 1. Suppose m and n are the numbers of samples with the same and 

different class labels for sample x, respectively. Local density of x with radius r is the 

proportion m/(m+n). 

OSD- a novel over-sampling approach 

A key idea of the OSD algorithm is to increase the number of minority samples 

located where the local density of minority samples is small in comparison with 
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majority samples. For each minority class sample x, first of all, OSD finds neighbors 

of x and divides into two groups, majority and minority neighbors, according to their 

class labels (line 2). Note that the terms “majority” and “minority” are used in the 

global context. Here, neighbors of x are defined as samples in hyper-sphere with 

radius r. The number of synthetic samples for each x depends on its local distribution 

with parameter d (lines 6-9): 

 

 If x doesn’t have neighbor (i.e. m + n = 0), or local density of x is 0 (i.e. m = 0), 

x locates far from the other minority samples and OSD generates the maximum 

number of synthetic samples with the same class labels as x in order to avoid the class 

imbalance problem and diminish boundary variance derived from local sparsity, 

simultaneously. Hence, d new samples will be synthesized. 

 If local density of x is greater than 0, d*(1-m/(m+n)) new synthetic samples are 

created.  

 If sample x has no different class label neighbor, OSD does not adjust the local 

density of x. 

 

Then, OSD generates the samples by function New_sample_generation (line 10). 

The synthesized samples are generated so that their distances to x are always less than 

r_min and they tend to be located closer to x as follows: (1) OSD randomly generates 

a number r’ which follow the density            (0<r<1) where c=r_min /     

with k is the number of features. (2) adds it to the element of feature vector (lines 

14-15). The pseudo-code for OSD algorithm is as follows: 

 

OSD algorithm 

 

Input:  Minority dataset M; Majority dataset N; ratio of generation d; radius r. 

Output:  Set of synthetic samples. 

Begin 

1. For each xM 

2. calculate the local minority neighbors m & local majority neighbors n for x; 

3. calculate the distance r_min from x to its local majority nearest neighbor; 
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4. if (r_min>r) 

5. r_min = r; 

6. if (m+n = 0) 

7. number_of_new_samples = d; 

8. else 

9. number_of_new_samples = d*(1-m/(m+n)); 

10. New_samples_generation(x,r_min, number_of_new_samples);  

11. End_for 

End  

 

Function New_sample_generation(x, r_min, d) 

Input:   Sample x = (x1,x2,…,xk,class_label); number of new samples d; radius  

r_min. 

Output:  Set of synthetic samples new_samples_array of x. 

Begin 

12. For i = 1:d 

13. new_sample_class_label = class_label; 

14. for j = 1:k 

15. new_samplej= xj+ r’; 

16. end_for 

17. push(new_samples_array,new_sample); 

18. end_for 

End 

KSVM-THR 

We note that OSD generally does not balance imbalanced datasets entirely. To address 

this issue, we combine OSD and KSVM-THR, SVM with adjustment of the decision 

parameter, proposed by Lin and Chen [90]. The decision threshold    of 

KSVM-THR is defined as 

                           

where p and n are the numbers of minority and majority class samples, respectively. 
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The constant  is the tuning parameter and in the experiments below, it was optimized 

by grid search. If a data set is balanced,  becomes zero. In this study, we utilize this 

technique to compose OSD-THR and RU-OSD-THR that combine KSVM-THR with 

OSD and RUS-OSD (Random Under-sampling –OSD). 

 

Experimental design 

SVM with Gaussian RBF kernel was utilized to create a basic classifier. We 

conducted 10-fold cross validation. All the features of the datasets were normalized. 

Noise samples in the datasets were filtered out before over-sampling, where we 

defined samples that have the same feature vector and that belongs to different classes 

as noise samples. The overall predicting process is shown in Figure 3.1. To determine 

the radius r for algorithm OSD, we calculated the distance between each pair of 

samples in the training set, sorted them in ascending order, saved in array D, set k = 

dim(D)*0.1% (k = dim(D)*0.01% for the D1239) where dim(D) was the size of D and 

assigned r as value of element k
th

 of D. 

Since the ratio of positive class to negative class of this dataset is 1:8.7, overall 

accuracy is not suitable for evaluating the performance of classifier. If the 

class-imbalance problem is severe, a naive approach that assigns all samples to the 

majority class makes overall accuracy high though no sample was assigned to the 

minority class [46]. Thus, as measures of performance evaluation, we use overall 

accuracy, sensitivity, specificity, G-mean and Matthews correlation coefficient, which 

are defined as follows: 

Overall accuracy =                       

Sensitivity =           

Specificity =           

G-mean (Balanced accuracy) =                              

Matthews correlation coefficient (MCC) = 
           

                                 
     

Where TP and TN are the numbers of interface residues and non-interface residues 

that are correctly predicted; FP and FN are the numbers of non-interface residues and 

interface residues that are predicted as different from what they really are. Sensitivity 



 

35 
 

and specificity have been commonly used in medical community [61]. G-mean is the 

combination of both sensitivity and specificity [15]. Matthews correlation coefficient 

measures how good the correlation of the predicted class labels and the actual class 

labels is. It lies in [-1,+1], where -1,1, and 0 represents the worst, the best and the 

random predictor, respectively.  

 

 

 

Figure 3.1 Schematic representation of our method 

 

 

 

3.3 Results and Discussions 

3.3.1 Evaluation on the D1050 Dataset 

Using D1050 dataset, we evaluated the performance of OSD algorithm. It was 
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compared with KSVM without resampling (KSVM-only), Random Under-sampling 

(RUS), KSVM-THR-only, weighted SVM, SMOTE, the method of Chen and Jeong, 

and the under-sampling method introduced by Anand et al. [61]. The results of all 

these methods are shown in Table 3.1. In addition, Table 3.2 shows the results of 

experiments with the different decision thresholds of the methods.  

Since non-interface residues approximately nine times outnumbered interface 

residues, KSVM-only could not perform well, whereas weighted-SVM, which assigns 

different costs of misclassification to minority and majority classes, could predict 

more positive samples than KSVM-only. Also, KSVM-THR-only achieved better 

performance by decreasing the decision threshold.  

RUS removed many negative samples to balance the dataset (the new ratio of 

negative: positive samples was 1.1:1) so it improved the prediction results in 

comparison with KSVM-only and weighted-SVM but the best previous method 

(Anand et al.). However, RUS-THR was worse than RUS: since RUS itself balanced 

the dataset, the decrease in the decision threshold resulted in a higher sensitivity and 

low specificity. Meanwhile, RUS-OSD achieved better sensitivity, specificity, and 

G-mean than the corresponding results of Anand et al. by eliminating a part of 

majority class samples and then using OSD to increase the minority class samples. 

Two of our over-sampling methods, OSD and OSD-THR, outperformed the 

method of Anand et al. (Table 3.1). For example, overall accuracy, specificity, and 

G-mean of OSD were 10.70%, 12.30%, and 3.36% higher than the competing method 

while sensitivity was 3.18% lower. The latter approach, OSD-THR, was better than 

the best previous method at all evaluation metrics. 

Since MCC was not reported in [61], we could not directly compare with their 

method, under various conditions. However, at least under the condition that 

sensitivity equals to 70%, the MCC values of the method in [16] and our method were 

0.32 and 0.48, respectively. Figure 3.2 describes the correspondence between MCC 

and sensitivity of KSVM-only and OSD.  

Figure 3.3 demonstrates the ROC curves of OSD and the other methods. ROC 

curve of Cheng and Jeong was taken from [16]. It shows that while RUS decreased 

the performance of KSVM-only, the combination of RUS and OSD achieved a better 

result.  
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Table 3.1 Performance measures comparison of different methods on the dataset D1050 

in terms of best G-mean 

Method Overall 

accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 

G-mean 

KSVM-only 90.11 4.66 99.93 21.59 

OSD 88.23 67.86 90.57 78.40 

RUS (1.1:1) 76.17 70.59 76.81 73.63 

RUS-OSD 75.31 80.73 74.69 77.65 

KSVM-THR-only 90.66 11.48 99.76 33.85 

OSD-THR 83.36 77.73 84.01 80.80 

RUS-THR(1.1:1) 65.71 82.11 83.82 72.39 

RUS-OSD-THR 64.94 88.51 62.24 74.22 

Weighted-SVM* 91.57 55.87 95.56 73.08 

SMOTE* 92.96 51.74 97.69 71.07 

Chen and Jeong (2009)* 71.90 71.20 71.98 71.59 

Anand et al. (2010)* 77.53 71.04 78.27 74.54 

*: Result was taken from the paper of Anand et al. 

 

 

 

 

 

Figure 3.2 MCC vs. sensitivity of the two methods KSVM-only and OSD on the D1050 

dataset 
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Table 3.2 Performance of KSVM-THR-only, OSD-THR, RUS-THR and RUS-OSD-THR with different decision threshold values on 

the dataset D1050 

Method KSVM-THR-only  OSD-THR   RUS-THR RUS-OSD-THR 

Thr ACC SN SP G ACC SN SP G  ACC SN SP G  ACC SN SP G 

0.96 89.69 0.07 1.00 2.65 91.93 31.07 98.93 55.44 90.34 21.63 98.24 46.10 90.66 31.28 97.49 55.22 

1.73 89.69 0.00 1.00 0.00 89.68 0.00 99.99 0.00 89.71 0.42 99.97 6.51 89.72 0.42 99.98 6.51 

8.52 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 

-2.92 10.30 1.00 0.00 0.00 10.31 1.00 0.00 0.00 10.31 1.00 0.00 0.00 10.30 1.00 0.00 0.00 

-1.24 17.60 99.71 8.16 28.54 35.80 98.23 28.63 53.03 20.02 99.46 10.89 32.91 21.19 99.78 12.16 34.83 

-0.85 90.23 58.71 93.85 74.23 62.94 91.69 59.64 73.94 38.16 96.50 31.45 55.09 39.08 97.84 32.32 56.24 

-0.79 91.52 49.80 96.32 69.26 65.90 90.70 63.05 75.62 41.35 95.72 35.10 57.97 41.97 97.13 35.63 58.83 

-0.73 92.03 43.51 97.61 65.17 68.36 89.74 65.90 76.90 43.90 94.76 38.06 60.05 44.43 96.42 38.45 60.89 

-0.58 91.91 29.26 99.11 53.85 74.74 86.63 73.37 79.73 51.83 91.19 47.31 65.68 51.82 94.23 46.94 66.51 

-0.45 91.34 20.25 99.51 44.89 78.72 83.28 78.20 80.70 57.81 87.84 54.35 69.10 57.28 92.08 53.28 70.04 

-0.37 91.01 15.69 99.67 39.55 81.14 80.98 81.16 81.07 61.57 85.25 58.85 70.83 60.83 90.77 57.39 72.18 

-0.32 90.81 13.22 99.73 36.31 82.47 79.28 82.84 81.04 63.92 83.42 61.67 71.73 63.14 89.46 60.11 73.33 

-0.28 90.66 11.48 99.76 33.85 83.36  77.73 84.01 80.80 65.71 82.11 63.82 72.39 64.94 88.51 62.24 74.22 

*Thr = Decision threshold; *ACC = accuracy (%); *SN = sensitivity (%); *SP = specificity (%); *G = G-mean (%) 



 

39 
 

 

 

 

Figure 3.3 ROC curves of the competing methods on the D1050 dataset 

 

 

3.3.2 Evaluation on the D1239 Dataset 

We conducted experiments on the D1239 dataset and compared with the results of the 

D1050 to evaluate the effect of shape strings and the new over-sampling algorithm on 

the PPI sites prediction problem.  

In addition to the evaluation criteria above, F-measure and Area Under 

Precision/Recall Curve (AUC-PR) [16] were used. F-measure is defined as follows: 

 

F measure                                          

 

where: 

 

precision              
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recall            

 

These metrics show the ability of classifier for detecting rare positive samples in 

the imbalanced dataset. Table 3.3 shows the results of experiments on the dataset 

D1239 with the different decision thresholds of the methods. Table 3.4 shows the 

improvements using our algorithm and new decision threshold in the comparison of 

the naïve classifier. In Table 3.4, OSD and OSD-THR outperformed the others and the 

best previous result in G-mean. It indicates that our over-sampling algorithm based on 

the local density can relieve the class-imbalance problem in this dataset. On the other 

hand, KSVM-only and KSVM-THR-only on the dataset D1239 achieved higher 

accuracy, sensitivity, G-mean than on the D1050. It demonstrated that shape string is 

an informative feature for discriminating interface and non-interface residues.Figure 

3.4 and Figure 3.5 show that performance curves on D1239 are similar to the ones on 

D1050. 

 

 

Figure 3.4 MCC vs. sensitivity of KSVM-only and OSD on the D1239 dataset 
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Figure 3.5 ROC curves of the competing methods on the D1239 dataset 

 

Table 3.5 displays the comparative results on the datasets D1050 and D1239. 

Though sensitivity of OSD and OSD-THR decreased 4.73% and 3.29% (from 67.86% 

to 63.13% and from 77.73% to 74.44%), respectively, precision increased 4.45% and 

3.42%. All the experiments on D1239 achieved higher F-measure than the 

corresponding one on the D1050. In addition, F-measure of OSD and OSD-THR on 

the both datasets are higher than that one of Chen and Jeong (49%) [17]. Furthermore, 

AUC-PR of KSVM-only and OSD on D1050 and D1239 were 0.56, 0.55, 0.58, and 

0.57, respectively. In Figure 3.6, it can be seen that the performance of KSMV-only 

on D1239 is apparently better than the one on D1050 in the area of recall lower than 

0.3 and precision higher than 0.8. It means that shape string is effective for 

performance improvement in this area. 
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Figure 3.6 PR curves for the datasets with shape string (D1239) and without shape 

string (D1050) prediction with KSVM as basic classifier 
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Table 3.3 Performance of KSVM-THR-only, OSD-THR, RUS-THR and RUS-OSD-THR with different decision threshold values on 

the dataset D1239 

Method KSVM-THR-only OSD-THR  RUS-THR RUS-OSD-THR 

Thr ACC SN SP G ACC SN SP G ACC SN SP G ACC SN SP G 

0.96 89.70 0.14 1.00 3.76 90.66 12.44 99.65 35.21 90.30 20.29 98.35 44.67 91.00 32.91 97.68 56.70 

1.73 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.67 0.18 99.96 4.20 89.69 0.49 99.94 7.03 

8.52 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 

-2.92 10.30 1.00 0.00 0.00 10.30 1.00 0.00 0.00 10.31 1.00 0.00 0.00 10.31 1.00 0.00 0.00 

-1.24 17.85 99.61 8.46 29.03 34.74 98.30 27.44 51.93 19.73 99.26 10.59 32.43 20.99 99.61 11.96 34.51 

-0.85 90.11 59.31 93.65 74.53 64.88 92.08 61.75 75.41 37.76 96.36 31.02 54.67 39.13 97.63 32.40 56.24 

-0.79 91.60 50.83 96.29 69.96 68.02 90.27 65.46 76.88 41.01 95.40 34.76 57.59 42.02 97.24 35.68 58.90 

-0.73 91.99 44.50 97.45 65.85 70.54 89.14 68.40 78.09 43.69 94.56 37.85 59.82 44.65 96.50 38.69 61.10 

-0.58 91.97 29.97 99.10 54.50 76.93 84.72 76.04 80.26 51.66 91.34 47.10 65.59 52.28 94.49 47.43 66.95 

-0.45 91.57 22.23 99.54 47.04 80.92 80.38 80.98 80.68 57.61 87.45 54.18 68.83 58.00 92.19 54.07 70.60 

-0.37 91.32 18.55 99.68 43.01 83.21 77.80 83.83 80.76 61.33 84.66 58.65 70.46 61.50 90.31 58.19 72.49 

-0.32 91.17 16.54 99.74 40.62 84.56 75.82 85.57 80.54 63.76 82.40 61.62 71.26 63.95 88.55 61.12 73.57 

-0.28 91.07 15.30 99.78 39.08 85.49 74.44 86.76 80.36 65.54 80.88 63.78 71.82 65.72 87.56 63.21 74.39 

*Thr = Decision threshold; *ACC = accuracy (%); *SN = sensitivity (%); *SP = specificity (%); *G = G-mean (%) 
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Table 3.4 Performance measures comparison of different methods on the dataset D1239 

Method Overall accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

G-mean 

KSVM-only 90.45 8.02 99.92 28.31 

OSD 89.61 63.13 92.66 76.48 

KSVM-THR-only 91.07 15.30 99.78 34.79 

OSD-THR 85.49 74.44 86.76 80.36 

 

Table 3.5 Performance measures comparison on the datasets D1239 and D1050 

Data set Method Precision (%) Recall (%) F-measure (%) 

D1050 KSVM-only 89.18 4.66 8.86 

OSD 45.27 67.86 54.31 

KSVM-THR-only 85.07 11.48 20.24 

OSD-THR 35.84 77.73 49.06 

D1239 KSVM-only 92.65 8.02 14.76 

OSD 49.72 63.13 55.63 

KSVM-THR-only 89.09 15.30 26.12 

OSD-THR 39.26 74.44 51.40 

3.4 Conclusion 

In this study, we aimed at the identification of protein-protein interaction sites. The 

PPI datasets used in this study were highly class-imbalanced, which often decrease 

classification performance of SVMs. To avoid this issue, we proposed a novel 

over-sampling technique that effectively utilizes local density of minority samples. 

We also proposed several methods combined with KSVM-THR and random 

under-sampling methods to reinforce the tolerance for the class imbalance problem. 

Experimental results showed that the combination of our OSD algorithm and new 

feature group led to higher sensitivity, G-mean, precision, MCC, F-measure, and 

AUC-PR, at least comparable performance with the state-of-the-art methods. In 

addition, we found that the information of predicted shape strings increase the 

performance for predicting whether interface or non-interface residues. Further 

extensions can be considered, for example, combining our algorithm with other 

heuristic under-sampling method, or feature selection methods.  
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Chapter 4  

Improvement in -turns Prediction  

Using Predicted Protein Blocks  

and Random Under-sampling Method 

 

-turn is one of the most important reverse turns because of its role in protein folding. 

Many computational methods techniques for predicting -turns and their types have 

been actively studied. However, the performance of prediction is still a challenge. In 

this study, we utilized predicted protein blocks and position specific scoring matrix 

together with Random Under-Sampling method to improve the prediction of he 

-turns and their types. We performed the experiments and harvested the impressive 

results on three benchmark datasets that contain 426, 547 and 823 protein sequences, 

respectively.  
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4.1 Introduction 

Among five types of tight turns, -turn is one of the most common kinds. -turn 

contains four consecutive residues that are not in an -helix and the distance from the 

first C to the fourth one is less than 7Å [21]. -turns play an important role in the 

both conformation and function of protein, such as constructional part of -hairpins, 

providing the directional change of the polypeptide [23], and involving in the 

molecular recognition processes [24]. The formation of -turn is also a vital step in 

protein folding [25]. In addition, -turns make up around 25% number of protein 

residues.  

There are nine -turn types (I, I’, II, II’, IV, VIa1, VIa2, VIb and VIII) that are 

different from the dihedral angles of the two center residues in the turn [26].  

Though many researches in beta-turn prediction have been studied [22, 29, 34, 38, 

40–42], the performance of methods still be limited. The most recently reported MCC 

was only 0.5 [42]. In addition, the quality and the number of studies of -turn types 

prediction are still low. X.Shi [45] the first time could recognize the rare -turn types 

such as I’, II’ and VI. However, for each turn type, the variance of results on different 

datasets was high while the distribution was almost similar (Table 4.1).  

In this study, we introduce a novel method that can enhance the result of 

predicting -turns and their types by using the informative feature groups and dealing 

with class imbalance problem where the ratio of non-turn residues to the turn residues 

and the non-specific-type-turn residues to the correct-type-turn residues are high. We 

present the experimental results on three standard benchmark datasets in comparison 

with state-of-the-art methods. 

4.2 Materials and Methods 

4.2.1 Datasets 

We utilized three datasets to evaluate the performance of our method. The first one 

was named BT426 [24] and has been used by many -turn prediction methods [22, 33, 

35–37, 39, 40, 42] as the standard dataset for comparison. The two others were BT547 

and BT823, that were used to construct for training and testing COUDES [32]. The 

numbers of protein sequences in these datasets are 426, 547 and 823, respectively. All 
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these protein chains contain at least one -turn and the similarity of each pair chains is 

less than 25%. Table 4.1 presents the distribution of -turn types in these datasets. 

Because of the rare appearance in protein chain, it is hard to predict type VI [32, 33]. 

Therefore, in this study, just types I, I’, II, II’, IV and VIII were considered.  

The observed turns and their types in protein sequences were assigned by 

PROMOTIF program [108]. 

 

Table 4.1 The type turn’s distributions (%) in the datasets 

Dataset I I’ II II’ IV VI VIII 

BT426 9.55 1.29 3.85 0.69 9.48 0.54 2.74 

BT547 9.93 1.43 4.05 0.75 9.84 0.62 2.95 

BT823 9.87 1.46 3.96 0.77 9.75 0.64 2.70 

 

4.2.2 Feature vector 

In this work, PSSMs and predicted Protein Blocks were used as the features for the 

prediction of -turns and their types. 

Position Specific Scoring Matrices (PSSMs) 

The PSSMs were generated by using PSI-BLAST [109] against National Center for 

Biotechnology Information (NCBI) non-redundant sequence database with default 

parameters. PSSM is a matrix of N rows corresponding to the length of the protein 

sequence and 20 columns corresponding to 20 kinds of standard amino acids. Each 

element x of these matrices was scaled within the range [0,1] by the logistic function: 

     
 

     
 

 

Predicted Protein Blocks 

Predicted secondary structures of protein were effectively applied to predict -turns 

and their types [22, 33, 39]. However, the classical classification secondary structure 

of protein into three states of backbone conformation as -helix, -sheet and coil is 

quite simple, because it lacks the information of the relative orientation of connecting 

regions. Basing on this kind of classification, 50% total number residues are assigned 
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as coils while they are believed to belong to a large set of distinct local structures [1, 

2].  

Many local protein structure libraries that can be able to approximate almost all 

the local protein structures and do not consider the classical secondary structures were 

developed to overcome this drawback. These libraries led to the formation of the 

specific small local structures, named prototypes. A complete set of such prototypes 

defines a structural alphabet [1]. 

Protein Blocks (PBs) [3] that can well approximate local protein 3D structures [4] 

has been successfully applied to many applications at the present time [2, 5]. This 

structural alphabet consists of sixteen pentapeptide motifs. Each of these prototypes 

represents a vector of eight average dihedral angles /, and is labeled as a character 

in the set of {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p}. 

Here, PB-kPRED [110] was used to get the predicted protein blocks. Sixteen 

characters from A to P symbolized sixteen blocks and X represented the unidentified 

state. For each residue i in a protein chain, its predicted protein block was represented 

by a vector of 17 features (  
 
)17, where   

 
 was the probability of residue i as state j. 

The feature vector corresponds to each query residue was generated by using a 

sliding window of size nine amino acids. Thus, there were 333 attributes in one input 

vector. 

4.2.3 Experimental design 

We conducted seven-fold cross validation to evaluate the performance of our method. 

Each dataset was divided into seven parts that contained the same number of positive 

samples. Support Vector Machines (SVMs) with Gaussian RBF kernel were employed 

as the basic classifier in this study. Specifically, we used kernlab package (KSVM) 

[111] to train and test the data. 

 Since the number of -turn outnumbers the number of non-turn samples, and for 

the turn-types prediction problem where the number of each specific type turn 

samples is many times more than the number of non-specific-type-turn samples, the 

datasets are imbalanced. This issue results in many positive samples are predicted as 

negative samples. Many methods have been proposed to handle the class imbalance 

problem such as over-sampling methods, under-sampling methods, cost-sensitive 
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methods, and so on [46]. Though SVM is better than these other standard classifiers at 

dealing with imbalanced data, it often fails when the imbalanced ratio is high [73]. 

Therefore, in this work, Random Under-Sampling (RUS) was utilized to balance the 

training datasets before predicting. Grid search relying on MCC to choose the optimal 

ratio for RUS was operated. 

 In addition, feature selection based on information gain ratio [96] was applied 

after under-sampling to reduce the redundant features and achieve the highest MCC.  

 Figure 4.1 demonstrates the overall architecture of our method. 

4.2.4 Filtering 

Since a -turn contains four or more consecutive residues, the output from SVMs 

needed to be filtered by applying the following rules in order [35]: 

i. Change isolated non-turn prediction to turn: tnt  ttt 

ii. Change isolated turn prediction to non-turn: ntn  nnn 

iii. Change the two non-turn neighbors of two successive turns to turns: nttn  tttt 

iv. Change the two non-turn neighbors of three successive turns to turns: ntttn  ttttt 

These rules ensure that every final predicted turn is longer than four residues. 
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Figure 4.1 The general scheme of our method. 

 

4.2.5 Performance metrics 

As MCC, Qtotal, Qobs, Qpred are often used to measure the quality of -turn prediction 

methods [32], they are also used to evaluate the performance of our method and are 

defined as below: 

Matthews correlation coefficient (MCC) = 
           

                                 
     

Qtotal =                       

 

Qobs =            

 

Qpred =            

 

where TP, TN, FP, FN are the number of true positive, true negative, false positive and 

false negative samples, respectively. Here, positive sample is the turn or specific type 
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turn sample; negative sample is the non-turn or non-specific-type-turn sample.  

MCC, lies in [-1,1], measures how good the correlation of the predicted and the 

actual class labels is. It is the most robust measure for -turn prediction [33].  

Besides these metrics, some papers reported specificity value [36, 42] to measure 

the negative samples prediction ability of predictor, where: 

Specificity =            

In addition, the threshold independent measures ROC (Receiver Operating 

Characteristics) and AUC (Area Under the Curve), which are often used in 

bioinformatics [100], are adopted. 

4.3 Results and Discussions 

4.3.1 Turn/non-turn prediction 

The proper choice of sliding window size for extracting the feature vectors affects the 

performance of prediction. Shepherd [35] showed that window of seven or nine 

residues was optimal for -turn prediction. We employed experiments with various 

sliding window sizes to choose the appropriate one. Table 4.2 presents the results of 

the sizes from five to eleven residues on the BT426 dataset using PSSMs and 

predicted protein blocks as features. We selected the size of nine residues since it 

returns not only the highest MCC but also the highest Qtotal, Qobs and Qpred.   

 

Table 4.2 The evaluation results of using different window sizes for PSSM values and 

predicted protein blocks without under-sampling and feature selection on the BT426 

dataset 

Window size Qtotal(%) Qobs(%) Qpred(%) MCC 

5 84.7 56.7 74.0 0.55 

7 85.0 58.2 74.6 0.56 

9 85.2 58.6 75.1 0.57 

11 84.9 57.8 74.6 0.56 

 

 Experiments to value the impact of evolutionary information PSSMs, predicted 

protein block, and their combination were also performed. Table 4.3 presents the 

effect of each kind of features on -turn prediction. The much higher MCC, Qtotal, Qobs 
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and Qpred in the two cases of using predicted protein blocks in comparison of using 

PSSMs on the three datasets demonstrates the importance of this group of features. 

Figure 4.2 shows that predicted protein blocks is more effective than PSSMs in the 

area of true positive rate lower than 0.9 for the dataset BT426, and 0.85 for BT547 

and BT823 datasets; and the combination of these two feature groups produces the 

best result on all three datasets.    

 

Figure 4.2 ROC curves for the comparison of various feature groups, without feature 

selection on the BT426, BT547 and BT823 datasets. 
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Table 4.3 The evaluation results of the three datasets using different kinds of feature 

groups with sliding window size of 9, without under-sampling and feature selection 

Dataset Feature group Qtotal 

(%) 

Qobs 

(%) 

Qpred 

(%) 

MCC 

BT426 

PSSMs 79.90 33.87 67.17 0.37 

Predicted protein blocks 83.76 52.70 73.00 0.52 

PSSMs + Predicted protein blocks 85.24 58.60 75.19 0.57 

BT547 

PSSMs 79.92 38.38 69.15 0.40 

Predicted protein blocks 83.66 54.43 74.66 0.54 

PSSMs + Predicted protein blocks 84.72 59.68 75.31 0.57 

BT823 

PSSMs 80.39 37.55 70.00 0.40 

Predicted protein blocks 83.97 53.05 75.55 0.53 

PSSMs + Predicted protein blocks 85.38 59.31 76.90 0.58 

 

 The comparison of our method with the other competitive methods on the BT426 

dataset is presented in Table 4.4. It shows that our method outperformed KLR and the 

others with MCC of 0.585. 

 Table 4.3 and Table 4.4 show that the use of under-sampling and feature selection 

for eliminating negative samples and redundant features to relax the class-imbalance, 

not only increased Qobs (12.41%) but also MCC (0.015). Figure 4.3 displays the ROC 

curves of our method and KLR that was taken from [42]. 

 

 

Figure 4.3 ROC curves of KLR and our method on the BT426 dataset. 
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 Table 4.5 presents the results of the competing methods on the datasets BT547 

and BT823, with our method achieved the highest values on MCC, Qtotal and Qpred. 

ROC curves of our methods on these two datasets are shown in Figure 4.4.  

 

Figure 4.4 ROC curves on BT547 and BT823 datasets. 

 

 

Table 4.4  Comparison of competitive methods on the BT426 dataset. “_” means this 

value was not reported 

Method Qtotal 

(%) 

Qobs 

(%) 

Qpred 

(%) 

Specificity 

(%) 

MCC AUC 

Our method 84.41 71.01 66.89 88.71 0.585 0.893 

KLR [42] 80.4 65.25 58.98 85.34 0.50 0.86 

NetTurnP [36] 78.2 75.6 54.4 79.1 0.50 0.86 

DEBT [33] 79.2 70.1 54.8 - 0.48 0.84 

BTNpred [40] 80.9 55.6 62.7 - 0.47 - 

SVM [39] 79.8 68.9 55.6 - 0.47 0.87 

BTSVM [37] 78.7 62.0 56.0 - 0.45 - 

BetaTPred [22] 75.5 72.3 49.8 - 0.43 - 

BTPRED [35] 74.9 48.0 55.3 - 0.35 - 
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4.3.2 Turn types prediction 

 Our performance of -turn types prediction on the three datasets BT426, BT547, 

BT823 is shown in Table 4.6. All the AUC values are higher than 0.7, and most of 

them are higher than 0.85. It proofs that our method is acceptable in predicting -turn 

type [42].         

 Table 4.7 presents the MCC of competing methods. While DEBT cannot predict 

type I’ and II’, our methods achieved the highest MCC in comparison with the other 

method on all three datasets (0.635 and 0.530 on BT426; 0.632 and 0.453 on BT547; 

0.635 and 0.454 on BT823 for type I’ and II’, respectively). Though MCC of X.Shi et 

al. was higher than our in some cases, our method appeared to be stable on the three 

datasets. For example, MCC of X.Shi et al. on type VIII of dataset BT426 decreased 

from 0.246 to 0.044 on dataset BT547, or from 0.714 to 0.529 on type I. It shows that 

the performance of this method was quite dependent on the specific dataset. ROC 

curves of our -turn types predictions are shown in Figure 4.5.  

 

 

Table 4.5 Comparison of competitive methods on the BT547 and BT823 datasets. “_” 

means this value was not reported 

Dataset Method Qtotal 

(%) 

Qobs 

(%) 

Qpred 

(%) 

Specificity 

(%) 

MCC AUC 

BT547 

Our method 85.01 64.70 73.37 91.96 0.591 0.894 

KLR [42] 80.46 65.36 59.04 - 0.50 - 

DEBT [33] 80.0 68.7 55.9 - 0.49 0.85 

BTNpred [40] 80.5 54.2 61.6 - 0.45 - 

SVM [39] 76.6 70.2 47.6 - 0.43 - 

COUDES [32] 74.6 70.4 48.7 - 0.42 - 

BT823 

Our method 84.96 68.46 70.51 90.46 0.595 0.896 

KLR [42] 80.66 64.64 58.42 - 0.49 - 

DEBT [33] 80.9 66.1 55.9 - 0.48 0.84 

BTNpred [40] 80.6 54.6 60.8 - 0.45 - 

SVM [39] 76.8 72.3 53.0 - 0.45 - 

COUDES [32] 74.2 69.6 47.5 - 0.41 - 
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Table 4.6 Beta-turn types predicting results of our method on the BT426, BT547 and 

BT823 datasets 

Dataset -turn type Qtotal 

(%) 

Qobs 

(%) 

Qpred 

(%) 

Specificity 

(%) 

MCC AUC 

BT426 

I 91.65 64.30 55.45 94.54 0.551 0.915 

I’ 99.11 60.83 67.36 99.61 0.635 0.968 

II 94.88 81.59 41.64 95.42 0.561 0.963 

II’ 99.35 53.26 53.44 99.67 0.530 0.977 

IV 78.72 66.18 25.78 80.03 0.315 0.823 

VIII 82.91 69.45 10.51 83.29 0.223 0.847 

BT547 

I 91.21 64.21 54.93 94.18 0.545 0.916 

I’ 99.00 60.45 67.16 99.57 0.632 0.972 

II 96.03 70.40 50.83 97.12 0.578 0.965 

II’ 99.35 32.70 63.58 99.85 0.453 0.942 

IV 78.79 66.30 26.74 80.16 0.322 0.825 

VIII 85.32 64.43 12.26 85.95 0.235 0.859 

BT823 

I 91.63 63.53 56.82 94.71 0.554 0.917 

I’ 98.99 60.50 67.84 99.57 0.635 0.974 

II 96.40 68.30 53.68 97.56 0.587 0.964 

II’ 99.31 35.54 59.02 99.80 0.454 0.952 

IV 78.46 68.08 26.49 79.59 0.326 0.827 

VIII 86.69 60.57 11.82 87.42 0.225 0.861 

 

Table 4.7 MCCs comparison between the competitive methods. “_” means this value was 

not reported 

Dataset Method I I’ II II’ IV VIII 

BT426 

Our method 0.551 0.635 0.561 0.530 0.315 0.223 

X.Shi et al. [45] 0.714 0.513 0.684 0.415 0.459 0.246 

NetTurnP[36] 0.36 0.23 0.31 0.16 0.27 0.16 

DEBT[33] 0.36 _ 0.29 _ 0.27 0.14 

COUDES [32] 0.309 0.226 0.302 0.106 0.109 0.071 

BT547 

Our method 0.545 0.632 0.578 0.453 0.322 0.235 

X.Shi et al. [45] 0.529 0.538 0.548 0.337 0.311 0.044 

DEBT[33] 0.38 _ 0.33 _ 0.27 0.14 

BT823 

Our method 0.554 0.635 0.587 0.454 0.326 0.225 

X.Shi et al. [45] 0.636 0.416 0.630 0.361 0.317 0.125 

DEBT[33] 0.39 _ 0.33 _ 0.27 0.14 



 

57 
 

 

Figure 4.5 ROC curves of our method on the three datasets BT426 (black), BT547 

(green), and BT823 (blue). 
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4.4 Conclusions 

In this study, we presented a new method to identify the -turns and their types in 

protein sequence. We focused on both using more the well-characterized features and 

class-imbalanced-dealt technique. We achieved the highest MCCs of 0.585, 0.591 and 

0.595 on the three datasets BT426, BT547 and BT823, respectively, in comparison 

with the state-of-the-art -turns prediction methods. In the field of -turn types 

prediction, we also harvested the high and stable results. Further extension can be 

considered such as using the effective method to handle the class-imbalanced 

problem. 
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Chapter 5  

Conclusions  

 

The previous chapters introduced the problems, proposed the methods to improve the 

performance of predicting protein-protein interaction site and -turn. This chapter 

summarizes our works, and suggests some ideas for the future works.  

 
 
 
 
 

5.1 Dissertation Summary 

Proteins are very important because they are involved in many functions in a living 

cell. Most proteins perform their functions via protein-protein interactions to maintain 

the organism’s life. However, many interactions between proteins are unidentified 

until now. Therefore, study the mechanism of protein-protein interactions, especially, 

which part in protein sequence has the contacted ability, is one of the necessary 

problems in bioinformatics.  

Nevertheless, to clearly understand the protein-protein interaction sites as well as 

the other functions of proteins, it is necessary to understand their three-dimensional 

structure. One of the most important tasks in this field is learning about -turns and 

their types. 

In this thesis, we aimed at (i) improving the performance of protein-protein 

interaction sites prediction using a novel over-sampling method and informative 
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features; and (ii) improving the prediction of -turns and their types by applying 

predicted protein blocks and under-sampling techniques. The main contributions of 

our thesis are listed below. 

Firstly, the datasets we used for protein-protein interaction sites prediction were 

highly class-imbalanced. Thus, when using SVMs for prediction, the performance 

often fails. To overcome this drawback, we proposed a new method that over-sampled 

the training set before classifying, and it was effective in this case. The combinations 

of our new algorithm with KSVM-THR and random under-sampling methods were 

also proposed. Experimental results showed that our new methods achieved higher 

sensitivity, precision, G-mean, F-measure, and AUC-PR than the state-of-the-art 

methods. We also found that the predicted shape strings were informative for 

predicting whether interface or non-interface residues. 

Secondly, we investigated the information of predicted protein blocks and applied 

for -turns prediction. The use of this feature can improve the performance of 

prediction, in comparison with the most recent publication. Once again, resampling 

strategy was used to deal with the class imbalance. Specifically, in this study, we 

utilized random under-sampling method. In addition, feature selection based on gain 

information ratio was applied to remove redundant features. We also performed the 

-turn types prediction to recognize which type of turn that residue belonged to. 

Results of experiments on three standard benchmark datasets showed that our 

methods are comparable with the state -of-the-art methods. 

 

5.2 Future Works 

The methods to deal with imbalanced datasets are very important because the class 

imbalance problems exist everywhere in the real world, especially in the realm of 

biological datasets. In this thesis, we developed the new algorithm OSD to 

over-sample the minority set of an imbalanced dataset by focusing on the local density. 

This algorithm was applied to improve the prediction of protein-protein interaction 

sites. Though we achieved good results, further extensions can be considered. 

Firstly, OSD just handles the numerical values but the nominal values. Thus, the 

extension of OSD can be thought about so that it can be applied for the datasets with 

nominal features. Secondly, because feature selection affects the performance of 
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prediction on imbalanced dataset, we can combine feature selection with our methods, 

as a preprocessing step. It may lead to improve the results. In addition, random 

under-sampling is the most naïve under-sampling method. This method is simple and 

fast, however, leads to lose many informations. Our experiment showed that reducing 

the number of majority samples before applying the other methods could create the 

good model. Thus, the use of better under-sampling method may result in better 

performance than random under-sampling. 

About the second problem in our thesis, the -turn prediction, we also think about 

applying the under-sampling technique that is better than random under-sampling. 

Since the model that was created by utilizing PSSMs, predicted protein block, 

under-sampling and feature selection returns good results in this situation, it also can 

be used for predicting protein-protein interactions sites and the other kinds of tight 

turn such as -turn or -turn. 

In addition, in this study, residues belong to -turn type VI were not predicted 

because of the limitation of their appearances in a protein chain. However, 

recognizing these residues is as important as identifying the other kinds of residue in 

the sequence. Thus, we aim to develop our method that in the future, we can 

recognize all the -turn types. 
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