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Abstract

Precipitation (or its absence) plays a major rolalmost any ecosystem as wa-
ter balance and circulation are crucial factors fowst living biological species.
Studies concerning precipitation are common infiblel of meteorology as contrib-
uting to a range of purposes in such areas asudtgne, disaster prevention and
others.

Depending on the location, the intensity and typleprecipitation greatly var-
ies. In countries having a cold winter season wather low temperature or areas of
high latitude, the studies of solid precipitatioe &eing conducted mainly in order to
decrease the potential damage caused by heavyahowf

Recently numerous advances in meteorological fegld weather forecasting
had been achieved due to the development of higheptics, electronics, and raise of
computational power. However, important issues sashthe snowfall formation
mechanism and accurate winter precipitation qugntf are still lacking deeper
studies.

In this study, we intended to develop a novel sysier particle-by-particle ob-
servation and accurate classification of solid jpigation particles explicitly using
their shape and performing fractal analysis. Thesis aims to enhance the accuracy
in the microphysical parameterizations in numerioeg¢cast models.

In order to conduct field experiments, a groundeobstion system for solid
precipitation using two-dimensional video disdroen§2DVD) was developed on the
roof of Kanazawa University. Among 16,010 particlesserved by the system,
around 10% of them were randomly sampled and mbnalassified into five clas-
ses, that is snowflake, snowflake-like, intermegligtaupel-like, and graupel. At first,
each particle was represented by a vector of 72ikes containing fractal dimension
and box-count to represent the complexity of pertghape. Feature analysis on the
dataset clarified the importance of fractal dimensand box-count features for
characterizing particles varying from snowflakes giaupel. On the other hand,
performance evaluation of two-class classificabgrSupport Vector Machine (SVM)
was conducted.

The experimental results revealed that, by selgatimy 10 features out of 72,

the average accuracy of classifying particles snowflakes and graupel can reach



around 95.4%, which has not been achieved by pus\studies. Although the 2DVD
takes binary image with lower resolution than CG&ew camera, combination of up-
to-date classifier and features including fractd&ted ones enabled the system to
outperform the accuracy achieved in our previoudyst

We believe that the approach described in thisighesay be adapted and im-
plemented for the purpose of further research oderstanding the snowfall

formation processes contributing to reduce heaweyal damage.



Acknowledgments

Looking back at the accomplished work, | realizat ihwould not be done without
the help and support of a large number of peopéan Ithankful to everyone who
helped and encouraged me all along these thres.ydagreby take the opportuni-
ty to express my gratitude and appreciate everydrmecontributed to this work.

First, | would like to emphasize my great respext deep gratitude to my su-
pervisor, Professor Kenji Satou for all his enorsibelp and exceptional guidance
throughout the research. He is the supervisor @meonly wish for: motivating,
encouraging and kind.

| owe my sincere gratitude to Professor Mamoru Kabdo the person who
taught me everything | know about meteorology andws His help goes far
beyond the limits of an advisor, as he is the ohe was always there to help and
advice on any matter.

| feel proud and lucky to be able to study andkweith these people as my
advisors.

My gratitude also goes to all the staff of Kanazawaversity, to everyone
teaching me and cooperating with me.

Special thanks to President Ken-ichiro Muramotdsbikawa National Col-
lege of Technology and Professor Yasushi FujiyashHokkaido University for
cooperation in the snowfall observation.

Furthermore, | am very thankful to Mitani Sangydaétifor the provided
scholarship.

| am also very grateful to Doctor Ryoko Shibata pooviding financial sup-
port that gave me the opportunity to live and studyapan.

| would like to thank all of my surrounding: theudents of Bioinformatics
Laboratory, my Japanese friends as they providedanvearm atmosphere for
living.

Last but not least, | would like to thank my famigspecially my mother and
my wife as those two are always cheering up andwaging me.



Contents

ADSITACT e e e [
ACKNOWIBAGMENTS ... e e e e e e e e e e ettt bbb e e e e as ii
CONENTS e e e e v
LISt OF FIQUIES ettt e e e eee e e eeanaan s Vi
LISt Of TABIES oo e e viii
ADDIEVIALIONS oot emme et e e e IX
Chapter 1 1] 0T (33 1o o SRR 1
1.1 RESEAICH CONIEXL.....coiiiiiiiiie et e e 1
1.1.1 Meteorology and weather monitoring .........occceeeevvvreniiiinieee e, 1
1.1.2 Two-dimensional video diSdrometer..........occcocceeeeeeiiiiiiieiciiieee 2
1.1.3 Types of solid precipitation ..............uuiemeeeiiieiieiiiii e
O © ] o] 1= 1)V 5
1.3 CONtrDULIONS ... 5
1.4 ThesSiS OrganiZatiON..........ceeuuuuuruunnirrnnesss e s e e e eeeeeeeeeeeeeeeesnnnnnnnnnnnnrnnnns 7
Chapter 2 Related Works and ODJECHIVES ... 8
2.1 Snow classification MethodsS OVEIVIEW .......ciiiiiiiiiiiiiiiiiiiiiieeeees
2.2 THESIS OrganiZAriON ........uueeeuuiiiiiee e eeeeee e enaa e s 10
2.3 ODJECHIVES ..o e e e e e e e e e e e et e e e —rrt—————————————_ 12
Chapter 3 Materials and Methods ............ceuuuiiiiiiiiiiiie e 14
3.1 System and condition of observation .........ccccccceeiiiiiiiiiiiin 14
3.2 Preparation of data for analysis and classification............cccccccvvvviiiiinnnnn. 14
3.2.1 Particle images and basic features..........cuuvvueiiiiiiiieeeee e, 14
3.2.2 Fractal-related fEAatUreS ..............uuewimmmeece e 20
3.2.3 HUMaN anNOLatioN ...........oeeiiiiiiiiiiiiieeecee e 22
G0 T A [ To] 111 o0 24



3.3.1 NOMMANZALION ... e 24.
3.3.2 Pearson’s correlation CoOeffiCient .........oveeeeeee e 24

3.3.3 Principal component analysis (PCA).........mmeeerrriiiiiiiiinensnenennnnn. 24

3.3.4 Support vector maching (SVM)........uuueiiiiiiieeeeeeeeeeeeeeeeeeiii 25
3.3.5 Cross-Validation...........ceeeiiiiiiiiiiiss e 25,
Chapter 4 Experimental Results and DiSCUSSION.............cevvvvviiiiiiiiiinieeeeeeeeeeeeen 26
4.1 Feature analysis by Pearson’s correlation coefficie...........cccceeevveeieeennnn... 26
4.2 Feature analysiS DY PCA ...t e e 28
4.3 Particle classification by SVM ... A2
4.4 Classification of unlabeled data............cceeeeiiiiiviiiiiinnne 45
Chapter 5 Conclusion and Future WOrKS ... 58
5.1 Dissertation SUMMAIY ..........ccuuuuuuuumummmmmmmmeeeeeeennnnnneeaeaaeaaaseesreersssrnnnnns 58
5.2 FULUIE WOTKS ...ttt ettt e e e e e e 59
BiblIOgrapny oo ————————— 60



List of Figures

Figure 1.1 2DVD UNItS OrganiZation.. ......cceeeeeeeeeeerurrennnniiaseeeeeeeeseeereeeeeeeeens 3
Figure 1.2 A 2DVD Sensor unit architeCture.....c......ccoeeeeeeeevieeveeeeiiininnnn 4
Figure 1.3 Example of snowflake image from 2DVD............cccceeeiiiiiiniiiieininnene. 4
Figure 2.1 Overview of CCD video camera systegdus previous research......9
Figure 2.2 Overview of data processing floW. ceee..cooeeeeeeeeiiiviiiee, 10.
Figure 3.1 Photograph of 2DVD sensor unit covavet sSnow. ................ccc..... 15
Figure 3.2 MTSAT-2 satellite image at 1200 JSTJa6uary 2011..................... 16
Figure 3.3 Particle images taken by 2DVD. .ceeeeerieeiieeeiiiiiiieieeenn 17.
Figure 3.4 Integration of camera-specific feadurgo max and min values. ...... 19
Figure 3.5 Example of covering results from tb&-bounting method. ............. 21
Figure 3.6 The log-log plot of the box-countingthrod. ..., 22
Figure 4.1 Correlation analysis of featureS..............cccevvvvevveviiiiicicecne e 27
Figure 4.2 PC1 of the datasets except “warningZon............cccevvevvvvvvvnnnnnnnnn. 29
Figure 4.3 PC2 of the datasets except “warningZon.............ccoeevvvvvvvvvennnnnnnn 29
Figure 4.4 PC3 of the datasets except “warningZon.............ccoeevevvvvvvvvennnnnnn 30
Figure 4.5 3D plots of PC1, PC2, and PC3 in ekt “all” from three different
ANGIES OF VIBW. ... et s s e e e e e e e e e e e e e e eeeeesssennnnneessnsnnnnnns 35
Figure 4.6 3D plots of PC1, PC2, and PC3 in ttaskt “no-warning” from three
different angles Of VIEW. .........uuuieiiiieee e 36
Figure 4.7 3D plots of PC1, PC2, and PC3 in theskt “5-classes” from three
different angles Of VIEW. .........uuiiueiiicr s e e e e e e e e e e eeeeneeenennes 37
Figure 4.8 3D plots of PC1, PC2, and PC3 in theskt “2-classes” from three
different angles Of VIEW. ........uuuiueiiii e 38
Figure 4.9 3D plots of PC1, PC2, and PC3 in tamskt “warning” from three
different angles Of VIEW. .........uuiiueiiiireeeees s e e e e e e eeeeneeeeenees 39

Figure 4.10 3D plots of the dataset “5-classesghiaut some features. In left and
right panels, camera-specific and camera-indepéntder-count features are
removed, reSPECHIVEIY. ... 40

Vi



Figure 4.11 3D plots of the dataset “5-classesghiaut some features. In left and
right panels, camera-specific and camera-indepérichstal features are removed,
FESPECHIVEIY. .ottt s e e e e e e e e e e et et e e ettt s e as 41
Figure 4.12 3D plots of PC1, PC2, and PC3 indduaset “unlabeled” from three
different angles Of VIEW. .........uuiiieiiiie s e e e e e e e e eeeeneeenenees 46
Figure 4.13 3D plots of PC1, PC2, and time indhtaset “unlabeled” with the
view from PCL-time Plane. ........cooo oo 47
Figure 4.14 3D plots of PC1, PC2, and time indh&set “unlabeled” with the

view from PC2-time Plane. ........coooii oo 48
Figure 4.15 3D plots of PC1, PC2, and time indhtaset “unlabeled” with the
view from PCL-time Plane. ........cooo oo 49

Figure 4.16 3D plots of PC1, PC3, and time indh&set “unlabeled” with the

view from PCL-time Plane. ........coooi oo e 50
Figure 4.17 3D plots of PC1, PC3, and time indhtaset “unlabeled” with the
view from PC3-time Plane. ........cooo oo 51

Figure 4.18 3D plots of PC1, PC2, and time indh&set “unlabeled” with the

view from PCL-time Plane. ........ccoooii oo 52
Figure 4.19 3D plots of PC2, PC3, and time indhtaset “unlabeled” with the
view from PC2-time Plane. ........cooo oo 53

Figure 4.20 3D plots of PC2, PC3, and time indh&set “unlabeled” with the

view from PC3-time Plane. ........coooiiio oo 54
Figure 4.21 3D plots of PC1, PC2, and time indh&aset “unlabeled” with the
view from PCL-time Plane. ...... .o 55
Figure 4.22 Histogram of predicted snowflake&unlabeled” dataset............... 56
Figure 4.23 Histogram of predicted graupels inlabeled” dataset. .................. 57

Vii



List of Tables

Table 3.1 Features for Analysis and ClassificatiQ...............cccceevvvvvvvvrrnnnnnnns 8.1
Table 3.2 The number of samples after annotatian..............ccceevviiiiiiiciinnnn. 23
Table 3.3 Datasets according to annotation...............coevvvveiiiiiiiiiiiininneennn 23
Table 4.1 Top 10 features in descending ord@®Qif values............ccccceeeeeeennnn. 31
Table 4.2 Top 10 features in descending ord@®G# values.............cccceeeeeeennn.. 32
Table 4.3 Top 10 features in descending ord@®QC8 values............ccccceeeeeeeennnn. 33
Table 4.4 Average errors in the predictions lngla feature and multiple features
with backward elimination. ...........cccccoiiiiiiiiii e 44

viii



Abbreviations

2DVD = Two-dimensional Video Disdrometer
CCD = Charge-Coupled Device

PCA = Principal Component Analysis

SVM = Support Vector Machine

HSE = Heavy Snowfall Events

QPF =Quantitative Precipitation Forecasting

MPS =Microphysical Parameterization Schemes



Chapter 1

Introduction

In this chapter we first introduce some basic aspects of meteorology concerning
solid precipitation (snowfall). After that, we present current weather monitoring
and prediction problems such as snow type identification and precipitation quanti-
fication. The purpose of this thesisis to deal with these problems. In the end of this

chapter thesis contributions and further structure organization are provided.

1.1 Research context

1.1.1 Meteorology and weather monitoring

Due to the diversity of terrain, rainfall and snaWfjphenomena take on different
forms depending on location. The amount and typeretipitation may change
quite rapidly over a short period of time[1][2].

As heavy snowfall may cause severe damage, isigraficant issue to be able
to monitor precipitation continuously for decreasthe potential damage as well
as obtaining a better meteorological understandingrographic snowfall. Espe-
cially, it is important to understand the snowfédirmation mechanism with
different types of solid precipitation such as sfiakke and graupel.

Modern meteorological weather monitoring considta ¢arge variety of ap-
proaches and techniques, using both remote (ratidess) and ground-based
observation equipment and methods.

For the purpose of remote measuring the precipnatitensity on a wide area,
a popular facility is gpolarimetric radar[3][4][5][6]. This device is commonly



used to obtain the cloud microphysical paramet@/bile polarimetric radars
operate on large-scale, a device nardiedrometer is additionally used for the
ground-based observation of precipitation at a.sipas a relatively-small instru-
ment which can measure the size and falling velaafta particle. Based on the
fact that rain and graupel have different distiitnutof size and falling velocity, it
is possible to discriminate them using a disdromigl{@][9]. However, if two
particles have similar size and falling velocityisiimpossible to discriminate them
by a disdrometer. In this sense, the observatigor@gipitation using a polarimet-
ric radar and/or a disdrometer is not sufficiemtdocurately estimating the amount

of precipitation consisting of various types[10][l1R2][13].

1.1.2 Two-dimensional video disdrometer

A two-dimensional video disdrometer (hereafter 2DVIS an optical device
developed for measuring solid precipitation chanastics on ground. The instru-
ment is manufactured by Joanneum Research of Au&iVD measures volume,
diameter, shape, and velocity of every individuaftigle. From this data, one can
estimate particle size distribution, precipitatioate, and other related varia-
bles[14][15].

The device consists of 3 units: a sensor unit hgstameras and optics, an
outdoor electronics unit that operates the camarak sends data to the indoor

processing unit. The equipment arrangement is stoowFigure 1.1.
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Figure 1.1 2DVD units organization (Original figure from [16]).

Figure 1.2 shows the 2DVD sensor unit inner stmgctlthe sensor unit con-
sists of two orthogonal and synchronized line-scameras and a bright light
source in front of each of them. While precipitatiparticles fall between the
cameras and light sources (an area of 10¢h®cm), their shapes are recorded as
shadows are being projected. Although they are ries@iution images of black
and white (Figure 1.3), the obtained shape infoionais sufficient for particle

classification.
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Figure 1.2 A 2DVD Sensor unit architecture.
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Figure 1.3 Example of snowflake image from 2DVD.

1.1.3 Types of solid precipitation

While liquid precipitation consists of raindropslynsolid precipitation may

be split into a variety of classes, depending om plarticle parameters. These



parameters are influenced by various factors sadnaw formation processes and
macro physical conditions.

This study is intended to make difference only lestw hydrometeors of 2
basic classessnow and graupel. Nevertheless it makes use of 3 intermediate
classes which are artificial in the sense thatdmmved by manual annotation in
difficult to classify cases.

A graupel is round-shaped as an approximate elgrse in contrast, a snow-
flake has a complex shape. As to the size of acpgrigraupels are relatively
smaller than snowflakes. These features meetiveuiriteria in human’s discrim-
ination of snowflake and graupel. The latter featwas frequently used in

previous studies since it is easier to observe[16].

1.2 Objectives

As the classification of solid precipitation intoasvflake and graupel is important
for weather monitoring purposes, this thesis aimsdlve the problem of improv-
ing the accuracy of that kind of studies implemata new approach to enhance
the results.

The main objective of this work is to create a nawethod of particle-to-
particle classification of solid precipitation inemowflake and graupel based on
enriched information about the fractal propertiésegery single particle using
2DVD as primary data acquiring system and makingliex use of obtained

particles shape features.

1.3 Contributions

Studies related to solid precipitation monitoringyntontribute to a wide range of
theoretical and practical issues, for instance $albviormation mechanism or
winter precipitation estimation to predict interessnowfall.

This study may contribute to the following matters:

Decreasing the damage of heavy snowfall events (HSE



Unexpected heavy snowfall may cause severe darmdgege areas of crops,
disrupt or block the traffic on roads and stop the@ispensable facilities opera-
tion.[17] Furthermore, heavy snowfall may resultlange floods after the snow
melts.[18] Natural hazards are usually inevitabtejt makes extremely important
the need to be able to forecast them as soon athf@oto get prepared and mini-

mize the potential risks and decrease the causedgia

Understanding the snowfall formation mechanism.

Snowfall formation mechanism is a matter to whighrecent years there has
been marked scientific interest as foretelling plssible HSE is complicated due
to the variety of impact factors such as elevalemels, climate change and so on.
[19] Nevertheless we believe that the method pregas this thesis is adaptive to
the location specifications and various environrakobdnditions and may contrib-
ute to get a better understanding of the snowfatmétion mechanism via

additional acquired data.

Improvement microphysical parameterizations in numeical forecast models.
Despite of the recent significant improvementsumerical model resolution and
major achievements in various meteorological pataradorecasting, the progress in
the area of quantitative precipitation forecasii@iF) has been relatively slow. That
is also related to the lacking in microphysicalgmaeterization schemes (MPS) used to
make cloud models and precipitation processes atmubk. In order to solve this
problem, one needs to differentiate errors in QRIfNf MPS to those from other
sources.[20] That data obtained from our studyblmnsed to enhance the microphys-

ical processes and hydrometeor fields simulateblB$.

Quantifying winter precipitation accurately.

The need to increase solid precipitation measuremeuracy in all weather
conditions remains challenging despite currentestétthe-art methodologies
improvement. This is mostly due to high error inadacquisition during windy
conditions (not all particles are being caught lasurement devices).[21]



Development algorithms for determining particle siz distributions with
remote sensors such as polarimetric radar.

Solid precipitation type distributions derived frar2 dimensional video dis-
drometer might be used to find mutual relationshiptween particle size
distribution parameters and to verify the polarincetadar accuracy in hydromete-
or type identification.[3] This makes ground basdxervations a useful tool for
improving and checking the data acquired from radkr this sense, the develop-

ment of accurate and computationally easy algostieva challenging issue.

1.4 Thesis organization

The thesis consists of 5 chapters, including threeoti introduction chapter cover-
ing the background concepts, introducing the maesearch objectives,
contributions and organization.

The remaining chapters are as follows:
Chapter 2 reviews state-of-the-art snow classification mdththat contribute to
nearly same objectives. Some of the main probleimesearch in this field are
being addressed.
Chapter 3 introduces the proposed novel approach usingdiraelated features to
enhance the accuracy of solid precipitation clasdibn. Main methods and
algorithms used in the study are also describeédisnchapter.
Chapter 4 shows and discusses the obtained experimentdisesul
Chapter 5 summarizes the thesis giving conclusion of achiev@s and discusses

the future works vector.



Chapter 2
Related Works and Obijectives

In this chapter, the review of the state-of-the-art snow classification methods is
presented. It gives an overview of the previous works along comparison with the
current thesis. It is followed by the common problems in the research field of solid
precipitation classification and objective discussion.

2.1 Snow classification methods overview

Modern meteorological studies make use of the ¢opt devices and approaches
not only to quantitatively evaluate the preciptatiamount but to gain additional
information about precipitation particles. This alaay then be used to interpret
images obtained from radars and enhance the uaddnsg of particle microphys-
ics, cloud formation processes and so on.

Liquid precipitation consists of raindrops only atah be easily distinguished
from solid precipitation. In case of solid precgtion, it may be split into a variety
of classes, depending on the particle parametéies task to classify solid precipi-
tation particles is still being an open problem andely discussed in communities
related to weather monitoring in countries withdcalinter season.

Among the variety of works and studies relatedhie tssue, we consider the
following 2 papers to be the closest and most rteagmks in the field of snow
classification:

1. Nurzynska, K., Kubo, M. and Muramoto, K. (2010) Beature Space for

Snow Particle Classification into Snowflake and @prel. IEICE Transac-
tions on Information and Systems, E93-D,12, 3344-3351. [16]



2. Grazioli, J., Tuia, D., Monhart, S., Schneebeli, Raupach, T. and Berne,
A. (2014) Hydrometeor classification from two-dinsegonal video dis-

drometer dataAtmospheric Measurement Techniques, 7, 2869-2882. [22]

First one is the previous work of the Bioinformaticaboratory of Kanazawa
University. In that study a deep analysis of featumportance, classifier differ-
ences and data flow impact had been conducted.rM#gntion is dedicated to the
feature selection and gaining highest accuracyilplesssing pairs of features and
different classifiers and data flow organizatioheTused optical device was a CCD

video camera, which had been taking 128860 grayscale images. Using rich

information of these high-resolution grayscale ieggt achieved high accuracy

(over 90%) of particle-by-particle classificatiario snowflake and graupel.

¥ Snow particle
| * Light
* LK : Camera slit
= Mca\un.llw m “‘ /yL
: e
H volum:,
[ (SRS SR ')

Computer

g' IEEE1394b cable
m
r——2

(a) General (b) Measuring volume

Te 110000 s

Camera
_ Halogen lamps

Figure 2.1 Overview of CCD video camera system &d in previous research.
(From original paper by Nurzynska, K., Kubo, M. and Muramoto, K.)

Among the weak points one can mention that sineeetiuipment set requires
large space comparable by size to a small room ¥2m), portability and ap-
plicability are rather low. In addition, it is a tdtmade facility and not easy to
adjust and use.

Comparing to that work the current study uses diffe equipment - 2DVD
instead of a CCD video camera - and makes usefigreht features; explicitly

using the fractal related ones. While on the oth@nd some features such as



brightness and Hu moment of th& drder are unavailable due to the black and
white source image.

Moreover, the classifiers selected to be used enpitevious study were Ma-
halanobis Minimum Distance and k-Nearest NeighbodhoAs classifiers
algorithms used in the two studies differ it makasd to estimate and compare the
overall method results accuracy.

Our study aims to get a higher accuracy rate basedl set of features gained
from low resolution black and white imagery.

In the second paper the authors used 2DVD to deterthe dominant type of
precipitation observed in a time interval. Whilengssame equipment, the feature
sets of the studies are different as the aims efféhmer are to select the main
precipitation type rather than to get a full ovewiof the precipitation process.
Conversely saying, it does not perform particleplayticle classification which is

the main basis of our study.

2.2 Thesis organization

Problems that arise during the whole research psoaee being described in order
of this thesis process workflow (Figure 2.2) and @alated to each particular step

or method.

Flow of processing

Eeature calculation € Particle data from 2DVD

v

Normalization

\

Noise removal Feature analysis
¥ / (correlation, PCA)
Annotation l

Classification (SVM) with Feature selection

Figure 2.2 Overview of data processing flow.
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Briefly, one can consider two main groups of prable those arising during
the data acquisition and the problems concerning plaocessing. Both groups are
derived from limitations of hardware and methodglogspectively.

lllumination

In order to obtain a high resolution precipitatfwarticle image all the measur-
ing volume should be properly enlightened. Good geaplane illuminance
becomes critical as the exposure time may not beeased (shutter speed should
be fast in order to operate online) and the traddeetiveen these two variables to
obtain needed photometric exposure is impossible.

The need of a good illumination system providindfisient light was taken
into account in both researches according to tlee optical devices. In this sense
line-scan cameras are more compact than CCD vide®i@s though provide less
detailed information about particle shape.

Dealing with strong wind

One of the most challenging problems is to deahhie strong wind during
the experiment. Box-shaped shields protecting fiteca devices cause problems
to snowfall particles evenly reach the entrandeoslhole to the measuring volume
in the case of strong horizontal shift during poéeition.

The construction characteristics and included sawof 2DVD are decreas-
ing the influence of wind to the acquiring datdl £tannot deal with wind after a
certain velocity threshold. This problem seemsedard to deal with.

Manual annotation

Solid precipitation takes different forms dependoepgraphic location and
many other factors influencing snow formation medtias. Classification into
snow and graupel adopted in this study and theiguswvork by Nurzynska et al.
is appropriate for Kanazawa city (36.544°N, 1367H)5 In case of the work of
Grazioli et al. the discrimination of 8 hydrometedasses was used (small-
particle-like, dendrite-like, column-like, graupée, rimed particle-like, aggre-

gate-like, melting-snow-like, and rain).

11



Manual annotation requires an utter knowledge bf gpecipitation types not
only theoretical but applied to the location ofirgst as the production of a reliable
training set significantly decreases the accuragcgre in further classification
process. Such specialists are a rarity and ouarelséeam is lucky to have one in
the person of Professor Mamoru Kubo.

Feature selection

One of the most challenging problems concerningrtirovement in accura-
cy is which features to use. As it is seen fromrdgilts evaluation a large variety
of shape related features do not provide efficieftrmation for the classification
purpose. Vise verse, some features that are notively apparent may drastically
contribute to it. That makes essential the neefihding new features and check-
ing the existing.

The work by Nurzynska et al. focuses on pair wesgure analysis explicitly
checking features classification value. In thelgthy Grazioli et al. most features
are also those shape related which are used inteessmsing and new feature
derivation for accuracy maximizing was not theméte goal [22]. In our work we
are making use of the fractal properties and tryngstimate their contribution.

Classifier selection

Currently existing classifier algorithms are rathemerous and may show dif-
ferent results depending on the datasets. Thetigaéisn of the best of them for
the use on the snowfall dataset is nontrivial amghtrbe a separate topic. Nurzyn-
ska et al. study showed performance differencedbasethe different classifiers.
Our research and the study by Grazioli et al. areguSVM due to its popularity,
applicability and high-performance. The search epfimal classifier was not

included in these research outlines and remairsa study.

2.3 Objectives

Speaking of the state-of-the-art projects and rebeatudies related to solid
precipitation classification one can see that theain objectives vary mostly

depending on the area of practical contributionttas research area is tightly

12



connected to further real-world implementation evag current meteorological
systems.

Dealing with these common problems that were maatioin the previous
subsection is subject of this kind of studies anmid particular one. Achieving
success in solving these complex tasks along watvidual additional ones, leads
to the proper solution of the prescribed objective.

The evaluation of the two works results shows that particle-by-particle
classification using the fractal-related shape desg features allows enhancing

the classification accuracy at least by 4.5% carifig the objective of this thesis.
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Chapter 3

Materials and Methods

In this chapter, various information about observation, data, algorithm, etc. used
in this study is presented.

3.1 System and condition of observation

We have observed snowfall event from 1250 JST GO 15T in January 26, 2011
at Kanazawa University. The data of 16,010 snoviigles were recorded by the
2DVD (Figure 3.1). Figure 3.2 shows MTSAT-2 satellimage at 1200 JST 26
January 2011 and the location of observation padiné air temperature was about

0°C through the event duration.
3.2 Preparation of data for analysis and classification

3.2.1 Particle images and basic features

Figure 3.3 illustrates examples of particle imag&adecognized and generated by
2DVD. Since 2DVD scans two line images at once ftam orthogonally oriented
cameras (A and B), two different images are obthioe each patrticle.

In Figure 3.3, it can be seen that a graupel isdeshaped as an approximate
ellipse, and in contrast, a snowflake has a compleape. As to the size of a
particle, graupels are relatively smaller than siees. These features meet
intuitive criteria in human’s discrimination of snflake and graupel. The latter
feature was frequently used in previous studiesesiinis easier to observe.

In addition to shape and size, it is possible t@miobvarious features of a parti-

cle by using 2DVD.The list of features used in stisdy is shown in Table 3.1.
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Figure 3.1 Photograph of 2DVD sensor unit coveredith snow.
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Figure 3.2 MTSAT-2 satellite image at 1200 JST 28anuary 2011
(from http://weather.is.kochi-u.ac.jp/). The 2DVD & installed at Kanazawa University and the
location of observation point is indicated by a rectircle. (36.544°N, 136.705°E).
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Figure 3.3 Particle images taken by 2DVD.




Table3.1 Features for Analysis and Classificatian

Feature type Feature name
f(ézir&?éi-lndependent equivolumetric_diameter[mm], volume[nimvertical_fall_velocity[m/s], height_of one_limajm]

heightimm]_A, heightfmm]_B, number_of lines_A, nuenbof lines B, pixelwidthimm]_A, pix-
elwidthi[mm]_B, width[pixel]_A, width[pixel]_B, heigt[pixel]_A, height[pixel]_B, total pixels_A,
total_pixels_B, area[mfh A, area[mm]_B, perimeterfmm]_ A, perimeterfmm] B, box_countAl
box_count_1 B, box count 2 A, box _count 2 B, boxntod4 A, box count 4 B, box count 8 A,
box count 8 B, fractal 1 2 A, fractal 1 2 B, frhc®da4 A, fractal 2 4 B, fractal 1 4 A, frac-
tal_1 4 B, fractal_4 8 A, fractal 4 8 B, fractal82A, fractal 2 8 B
heightimm]_max, heightfmm]_min, number_of _lines_maxmber_of lines_min, pixelwidth[mm]_max,
Camera-independent pii(elyvidlth[mm]_min, wildth[pii(el]__max, width[pixellmin, height[pixel]_max, height[pixel]_min, to-
features (max and min)ta__plxe s_max,  total_pixels_min, area[rfjnmax, a_rea[mrﬂ_mln, perlmeter[mm]_max_,
converted  from C(,imera_perlmeter[mm]_mln, box_count_l_max, box_count_1¢m|box_count_2_max, box_count_2_min,
specific features (A and |_D))box_count_4_max, box_count_4 min, box_count 8 mlasx_count 8 min, fractal 1 2 max, frac-
tal_1 2 min, fractal_2_4 max, fractal_2_4 min, fahcl 4 max, fractal_1 4 min, fractal_4 8 max,
fractal 4 8 min, fractal 2 8 max, fractal 2 8 min
Other features (not used in.

analysis and classiﬁcation)t'me

Camera-specific features

18



The 2DVD software computes the volume and equivelnim diameter based
on three-dimensional shape reconstructed from twogonal projections. The
particle shadows in the upper light sheet are neatatith particle shadows in the
lower sheet, and the software obtains the vertadhl/elocity and height quantiza-
tion (height_of one_line) from the falling time dlugh the planes separated 6.2
mm vertically at the line-scan rate of 34.1 kHzeTtumber of lines scanned by
each camera is the height of the particle. The lsfieet of 10 cm is mapped onto
512 pixels in the line-scan camera, and the hotaoresolution of pixel (pix-
elwidth) is about 0.2 mm. The longest scan linéhes particle width. The area of
each particle was computed by multiplying total temof pixels (total_pixels),
height_of_one_line and pixelwidth. We got the baanydof particle shape and
computed the particle perimeter.

Camera-specific features are important since tloeyain various information
obtained by 2DVD. However, it is not sufficientuse them directly in the analy-
sis and classification. When we use machine legralgorithms listed in section
3.3, the same type of features obtained by canfeeasd B (e.g. perimeter[mm]_A
and perimeter[mm]_B) are also treated as simplieiht and independent ones.
To overcome this problem, we added extra featinatsare the result of integrating
camera-specific features by calculating maximum emdimum values (Figure
3.4). For example, if perimeterfmm]_ A > perimeteniiln B, then perime-
terfmm]_max = perimeter[mm]_A and perimeter[mm]_nsinperimeter[mm]_B.
In a sense, it is a sorting operation of valuesftavo cameras and if a feature is
mainly characterized by large (small) values oftle integrated feature of its
maximum (minimum) will have strong power in the lgses and classification of

particles.

width[pixel]_A width[pixel]_B width[pixel]_min width[pixel]_max

SIS

Figure 3.4 Integration of camera-specific feature into max and min values.
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3.2.2 Fractal-related features

Perimeter is a feature that reflects two differeimaracteristics of particle, that is,
size and complexity of shape. In this study, weohiced fractal-related features
also related to complexity of shape.

Fractal geometry provides a mathematical modelnriany complex objects
with property of self-similarity found in nature[f34][25]. Fractal dimension is a
useful feature for shape classification. The snakdlformation modeled by fractal
dimension, was proposed for improvement estimatasn@wfall retrieval by radar
remote sensing [26][27]. This study uses the baxatiag method, which is one of
the frequently used techniques to estimate thedrattmension also known as
Minkowski dimension [28][29][30]. First, the smadke number of box shaped
elements covering the particle boundary is couffeglre 3.5). Next, the obtained
amount of covering elements is log-log plotted usrhe reciprocal of the element
size (Figure 3.6). Finally, the box dimension estienis taken from the monoton-

ically rising linear slope.
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(a)

(b)

Figure 3.5 Example of covering results from the &ix-counting method. (a) Snowflake by
camera A; raw image by 2DVD (leftmost), boundary ceered by boxes of size 1, 2, 4, and 8.

(b) Snowflake by camera B.
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Figure 3.6 The log-log plot of the box-counting ethod.

3.2.3 Human annotation

Total number of particles in our dataset is 16,0b@f is, it consists of 16,010
feature vectors with the features listed in Table 3o conduct meaningful analy-
sis and evaluation of classification performance mandomly sampled 1,600
feature vectors and annotated them manually. Bedoretation, five categories
were preparedsnowflake, snowflake-like, intermediate, graupel-like, andgraupel.
Additionally, if one of two images for a particleatched one of the following rules,
it was automatically annotated warning and filtered out before random sampling
since it can be regarded as outlier or erroneotss da

* equivolumetric_diameter[mm] is less than 0.2.

» vertical_fall_velocity[m/s] is greater than 4.
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» width[pixel] / height[pixel] is less than 1/3 oregater than 3.

* The horizontal position of the particle in the ramage is left-end and
over 50% of left edge of the particle image is gued by black pixel
(i.e. it is strongly suspected that the particleseal by the left end of a

camera and whole image of it was not taken by 20VD)

The numbers of annotated samples are shown in Babléccording to these

annotations, the datasets shown in Table 3.3 & fos analysis and classification

in chapter 4.
Table 3.2 The number of samples after annotation.
Annotation The number of particles
snowflake 559
snowflake-like 111
intermediate 39
graupel-like 144
graupel 747
warning 2,118
not annotated 12,292
Table 3.3 Datasets according to annotation.
Dataset Annotation The number of particles
snowflake, snowflake-like, interme-
whole diate, graupel-like, graupel, warningl6,010

not annotated
snowflake, snowflake-like, interme-
no-warning diate, graupel-like, graupel, nofl3,892

annotated

warning-only  warning 2,118
snowflake, snowflake-like, interme-

5-classes . : 1,600
diate, graupel-like, graupel

2-classes snowflake, graupel 1,306
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3.3 Algorithms

In this section, the algorithms we used for analysid classification are being

described.
3.3.1 Normalization

A feature vector consists of two or more featurkies for features. However, it is
problematic to use the original values for macheening because in general,
value distribution can differ from feature to fetuTherefore, it is popular to
normalize the original values of feature vectorstisat all the features have the
same average and variance. In this study, we naedabur dataset with average =
0 and variance = 1 for each feature before theyaisaand classification.

3.3.2 Pearson’s correlation coefficient

To see the direct and pairwise relationship betweesry pair of features, we
calculated Pearson’s correlation coefficient. $f vialue is near to 1, two features
are quite similar. It is one of the most basicdeatanalysis methods. In addition, it
is known that, removing one of two similar and nedant features may lead to

better performance of classification, regressitustering, etc.

3.3.3 Principal component analysis (PCA)

Among various unsupervised learning algorithms, Rfight be the most popular
one[31][32]. Based on the calculation of featulegar combination that maxim-
izes the variance, PCA converts the original featspace into the space of
principal components (PCs). After PCA, all the R@s ordered as PC1, PC2, ...
and it is believed that PC1 is the strongest feafar characterizing the feature
vectors, PC2 is secondly strong, and so on. Dubkisceffect of PCA, it is broadly
used for different purposes. As the basic analysaiginal features, coefficient of
each feature in the linear combination formulasome important PCs like PC1 is
evaluated. In this study, it may reflect the impade of the feature to characterize

and classify snowflakes and graupels.
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3.3.4 Support vector machine (SVM)

SVM was first developed by Vladimir Vapnik [33]. Buo its applicability and
high-performance, it is one of the most popular i@ learning algorithms
today.[34][35] Among various variants and implenagians of SVM, we used
ksvm function implemented in kernlab package forRegarding the choice of
kernel, the default one (Radial Basis Function &kralso known as Gaussian
kernel) was adopted. A hyper-parameter “sigma’tfics kernel is being automati-

cally optimized by ksvm.

3.3.5 Cross-validation

To evaluate the performance of predicting the clabsl (i.e. snowflake or grau-
pel) of unseen samples (i.e. unseen particless popular to conduct cross-
validation. In this study, we adopted 10-fold creafidation that randomly divides
given dataset into 10 and perform learning andiptied 10 times by changing
10% of dataset for test (rest of 90% is used faining). One problem about this
kind of cross-validation is that the evaluated perfance is affected by the result
of random division and different performances arhieved in every evaluation.
To solve this problem, we repeated 10-fold crodslaaion 100 times and aver-

aged the accuracy.
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Chapter 4

Experimental Results and Discussion

In this chapter, four different types of particle analyses are conducted. Experi-
mental results proved that our system is highly accurate and can be a powerful
tool for meteorological analysis.

4.1 Feature analysis by Pearson’s correlation coefficre

Figure 4.1 illustrates the result of correlatiomlgnis on all feature pairs. It can be
summarized as follows:

* Box-count features (i.e. features about the nurobboxes) are high-
ly similar to each other. In contrast, fractal teas are dissimilar to
each other.

 Some of other features are similar to each other fieight and pe-
rimeter features). It indicates that redundantuiiest like box-count
may exist also in these other features.

* About the difference between camera-specific fest(b), (c), and
(d)) and camera-independent features ((e), (f), @)yl calculated
from them, fractal features (d) and (g) showed rctlifference. In
other words, calculation of max and min was meduningt least for

fractals.
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Figure 4.1 Correlation analysis of features. Grae(red) color corresponds to high (low) value. (afamera-independent features, (b) Camera

features, (c) box-count features, (d) fractal feates, (e)(f)(g) max and min of (b)(c)(d).
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4.2 Feature analysis by PCA

Figures 4.2-4.4 illustrate the similarity among ghiecipal components 1-3 in four
datasets (except “warning-only”). In each figureatiires are sorted in descending
order of principal component of whole dataset. TOpimportant features in each
dataset and PC are shown in Tables 4.1-4.3. Fresethgures and tables, it can

be clearly seen that:

* PCl1s of these datasets are similar to each otlguré=4.2). Most of
the important features in PC1 are occupied by lmt features
(Table 4.1).

* PC2 of the dataset “whole” is quite dissimilar thers (Figure 4.3)
and the difference is caused by the inclusion c&rfwng-only”. In
other words, after filtering errors, PC2 is moreless the same in
each dataset. About top 10 features of PC1 of “ingronly” (Table
4.1), it is convincing that most of them are oceupby size-related
features (height, perimeter, area, etc.) becausw wiahe particles in
this dataset were removed from “whole” dataset tutheir strange
size. About PC2s of the datasets “no-warning”, f&sses”, and “2-
classes”, some of the fractal features occupy toppbrtant features
(Table 4.2).

* In Figure 4.4, PC3s of the datasets “5-classes” “@aclasses” are
quite dissimilar (correlation between them is -(.93ince in “2-
classes”, ambiguous particles annotated as “snkedike”, “inter-
mediate”, or “graupel-like” are removed from “5-s$@s”, it can be
interpreted that PC3 of “5-classes” is highly aféecby the character-

istics of such ambiguous particles.
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Figure 4.2 PC1 of the datasets except “warning-dyf.
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Features sorted in descending order of PC2 of whole dataset

Figure 4.3 PC2 of the datasets except “warning-dyf.
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Figure 4.4 PC3 of the datasets except “warning-dyf.
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Table 4.1 Top 10 features in descending order &fC1 values.

rank  whole no-warning 5-classes 2-classes warning-only

1 box_count_4 min box_count_ 4 min  total pixels B taltgixels_B heightfmm]_min

2 box_count_ 8 max box_count_8 min  total_ pixels_maxtotal pixels_max heightimm]_B

3 box_count_ 4 max box_count 8 max total pixels_min total_pixels_min heightfmm]_max
4 box_count_ 4 B box_count 8 B total_pixels_A tgpatels A heightimm]_A

5 box_count_4 A box_count_ 4 B width[pixel]_B widbifel] B perimeter[mm]_min
6 box_count_2 min  box_count_ 4 max box_count 8 B _bount_ 8 B perimeter[mm]_B
7 box_count_8 min box_count 8 A box_count 8 min _lsoxint_ 8 min perimeter[mm]_A
8 box_count_8 A box_count_2 min  box_count_ 4 B wkel]_max perimeter[mm]_max
9 box_count 8 B box_count 4 A width[pixel]_max bogunt 8 max area[mmz2]_max
10 box_count_2 max box_count_2 B box_count_ 8 max x_dmunt 4 B area[mmz2]_min
10 box_count 2 max box count 2 B box_count 8 max x_¢munt 4 B arealmm2]_min

31



Table 4.2 Top 10 features in descending order &fC2 values.

rank  whole no-warning 5-classes 2-classes warning-only

1 heightimm]_B fractal 4 8 min fractal 4 8 min ta@c4 8 min pixelwidth[mm]_min

2 heightfmm]_min fractal_ 4 8 B fractal 4 8 B frdcta 8 B pixelwidthjmm]_B

3 heightimm]_max fractal 4 8 A fractal 4 8 A frdcth 8 _max pixelwidth[mm]_max

4 heightimm]_A fractal_4_ 8 max fractal_ 4 8 max fahcd 8 A pixelwidthjmm]_A

5 perimeterfmm]_min  fractal 2 8 min width[pixel]_mi width[pixel]_min  fractal_1 2 max

6 perimeter[mm]_B fractal_ 2 8 B width[pixel]_A wigpixel]_A fractal_1 2 min

7 perimeter[mm]_A fractal 2 8 ma e_quwolumetnc_ equwolumetrlc_ fractal 1 2 B
dlameter[mm] diameter[mm]

8 perimeterfmm]_max  fractal 2 8 A vertlc_al_fall_ vertlc_al_fall_ fractal 1 2 A
velocity[m/s] velocity[m/s]

9 area[mm2]_max width[pixel]_min nﬁé%ma?f—one— width[pixel]_B height_of_one_line[mm]

10  area[mm2]_B width[pixell A widthpixel B NS/9NLOLONE_ ¢ tal 1 4 max

line[mm]
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Table 4.3 Top 10 features in descending order BfC3 values.

rank  whole no-warning 5-classes 2-classes warning-only

1 fractal 4 8 min fractal_ 2 8 min  width[pixel] A afital 4 8 min pixelwidth[mm]_min

2 fractal_ 4 8 max fractal_ 2 8 A width[pixel_min aétal 4 8 max pixelwidth[mm]_B

3 fractal 4 8 B fractal 2 8 B width[pixel]_max frac4 8 A pixelwidthjmm]_A

4 fractal_ 4 8 A fractal_2_ 8 max gquwolumetrlc_ fractal 4 8 B volume[mm3]

iameter[mm]

5 fractal_2_8 min fractal_4 8 max  width[pixel]_B adtal 2 8 min  width[pixel]_max

6 fractal 2 8 B fractal 4 8 min box_count 8 A fehc®_ 8 max  width[pixel] _A

7 fractal 2 8 max fractal 4 8 A Ihelght_of_one_ fractal 2 8 B box_count_8 max
ine[mm]

8 fractal 2 8 A fractal 4 8 B vertica |_tall_ fractal 2 8 A box_count_8 A
velocity[m/s]

9 heightimm]_max  fractal_2_4 min box_count_8 max lune[mm3] total_pixels_max

10 heightimm]_A fractal 2 4 B fractal 2 4 A totakgls B box_count 8 B
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For visually understanding the sample distributiae, show 3D plots of the
datasets. In Figures4.5-4.9, it can be seen tleadligtributions of samples in three
datasets “no-warning”, “5-classes”, and “2-classa& almost the same. The 3D
plots from three angles for “5-classes” show tisapwflake samples have their
own distribution distinguishable from others. Imtast, samples of other annota-
tions (snowflake-like, intermediate, graupel-liked graupel) are distributed in the
plane near to the PC2-PC3. About the L-like disiitn of these samples, it is
caused by the combined use of camera-specificairéeatures (fractal_1 2 A, ...,
fractal_ 2 8 B) and camera-independent fractal featyfractal 1 2 max, ...,
fractal_2_8 min). For example, removal of box-cote#tures does not affect to
the L-like shape of the distribution, however, remaloof camera-specific or
camera-independent fractal features makes it arobgFigure 4.10 and 4.11).
Although the meaning of the distribution is stihalear, this result suggests that
the fractal features could provide more detailesksification of non-snowflake
particles.
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Figure 4.5 3D plots of PC1, PC2, and PC3 in theathset “all” from three different angles of view. The colors of points (gray, black, blue, green, whet

yellow, red) indicate the annotations (not annotat@ warning, snowflake, snowflake-like, intermediategraupel-like, graupel), respectively.
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View from PC1-PC2 plane View from PC1-PC3 plane wfeom PC2-PC3 plane
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Figure 4.6 3D plots of PC1, PC2, and PC3 in theathset “no-warning” from three different angles ofview. The colors of points (gray, blue, green, wht,
yellow, red) indicate the annotations (not annotaté, snowflake, snowflake-like, intermediate, graupelike, graupel), respectively.
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View from PC1-PC2 plane View from PC1-PC3 plane w/feom PC2-PC3 plane

-—>

Figure 4.7 3D plots of PC1, PC2, and PC3 in theathset “5-classes” from three different angles ofiew. The colors of points (blue, green, white, yeiv,

red) indicate the annotations (snowflake, snowflakéike, intermediate, graupel-like, graupel), respetively.
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View from PC1-PC2 plane View from PC1-PC3 plane wfeom PC2-PC3 plane

Figure 4.8 3D plots of PC1, PC2, and PC3 in theathset “2-classes” from three different angles ofiew. The colors of points (blue, red) indicate the

annotations (snowflake, graupel), respectively.
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View from PC1-PC2 plane View from PC1-PC3 plane wWfeom PC2-PC3 plane
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Figure 4.9 3D plots of PC1, PC2, and PC3 in theathset “warning” from three different angles of view.
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Figure 4.10 3D plots of the dataset “5-classes’itlout some features. In left and right panels, camra-specific and camera-independent box-count

features are removed, respectively.
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Figure 4.11 3D plots of the dataset “5-classes’itlvout some features. In left and right panels, camra-specific and camera-independent fractal feature

are removed, respectively.

41



4.3 Particle classification by SVM

As shown in Table 3.1, 72 features are availabld@rfoning a statistical model to
classify given samples (particles) into snowflakesl graupels. Using the algo-
rithms described in subsections 3.3.4 and 3.3&; \fite evaluated the accuracy of
prediction with “2-classes” dataset and all 72dea¢. The average error of predic-
tion (i.e. 1 - average accuracy) was 0.08263. Adteverting the 72 features into
72 PCs by PCA, the average error decreased to@071

Since so many redundant features exist in the &@ifes, reduction of feature
set by feature selection might decrease the average of prediction. Although
various algorithms have been proposed for fullyematic feature selection, in this
study we initially tried to select a representatfeature in each feature group,
assuming a feature group consisting of all featwi#és common name prefix. For
example, perimeter[mm]_A, perimeter[mm]_B, perimjgten]_max, and perime-
terfmm]_min belong to the same group. In case of&munt and fractal features,
numbers in the names were ignored since they arefenous except the parame-
ters for calculating them. To choose the represeptdeature in each group, 72
evaluations were performed using only one spetafature in each evaluation. As
a result, 14 representative features with the Ibwagsrage errors in their groups
were selected (Table 4.4). Among them, box_coumhgX achieved the best
performance (0.1055) as a single feature. It is atdable that the suffixes “_max”

and “_min” frequently appear instead of “ A” andB”. It indicates that the
conversion of camera specific features to cametapgandent ones contributed to
achieve better classification performance.

Starting from the feature set with all of thesefddtures, feature selection by
backward elimination was performed. It is an iteeatfeature selection method
which removes a feature in an iteration. If theef feature set in the iteratioms
ni, all subsets with sizei -1 are evaluated, and if the elimination of a deat
achieved the best improvement of average err@ rémoved in the next iteration.
As a baseline performance before th# iteration, the average error 0.0543

achieved by the feature set with all of these kuiees was used.
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In this study, four features were removed throutjtiol4" iterations, and the
process of backward elimination stopped sintetération could not achieve any
improvement. Using the remaining 10 features, therage error 0.0461 was
achieved and it was the best performance of claasiin in this study Unlike the
analysis in section 4.2, this result revealed ttadtal features could not contribute
to the best performance. In other words, they mightuseful for more detailed
characterization of various particles, not for judassifying snowflakes and
graupels. In contrast, a box-count feature (boxntd max) was so important as
to the classification by only one feature achiewasgrage error 0.1055 that is
nearly 90% accuracy. It is an interesting findihgtt although a box-count feature
is a by-product of fractal calculation, it is sificantly important in the classifica-
tion of snowflakes and graupels.

We conducted t-test on two groups of errors bedafeulating 0.0465 and 0.0461 in Table 7, but it
did not show statistically significant differencp-yalue = 0.05153). However, at least it was
confirmed that 0.0484 and 0.0465 were significadtfferent (p-value = 3.815e-14).
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Table 4.4 Average errors (i.e. 1 — average accu in the predictions by single feature and multipe features with backward elimination. Before
backward elimination, average error of prediction by using all 14 features listed in the first columnwas 0.0543. In each iteration of backward elimina-
tion, if the elimination of a feature decreased (ioreased) the average error of prediction, it is shen in red (blue) color. The least average error ireach

column is shown in bold face and the correspondinfgature is being not used in the succeeding iteratis of backward elimination.

prediction by

feature : 1stiteration 2"%jteration 3Yiteration 4" iteration 5" iteration
single feature
box_count_2 max 0.1055 0.0599 0.0543 0.0481 0.0493 0.0463
total_pixels_max 0.1198 0.0577 0.0538 0.0485 0.0461 removed
number_of lines_min  0.1222 0.0549 0.0511 0.0485 0.0480 0.0466
height[pixel]_min 0.1224 0.0548 0.0513 0.0481 0.0480 0.0467
f’ne;;meter[mm]— 0.1274 0.0683 0.0665 0.0626 0.0654 0.0653
width[pixel]_max 0.1405 0.0564 0.0509 0.0471 0.0479 0.0476
area[mm2]_max 0.1886 0.0602 0.0574 0.0495 0.0526 0.0522
heightfmm]_min 0.1913 0.0546 0.0531 0.0465 removed removed
equivolumetric_ 0.2026 0.0652 0.0622 0.0556 0.0561 0.0573
diameter[mm]
volume[mm3] 0.2045 0.0567 0.0506 0.0481 0.0486 0.0469
fractal_2_8 min 0.2069 0.0520 0.0484 removed removed removed
%');ilw'dth[mm]— 0.2434 0.0517 removed removed removed removed
[‘rﬁ'r?];‘t—o‘c—one—"”e 0.3449 0.0557 0.0529 0.0509 0.0504 0.0513
vertical_fall_ 0.4261 0.0556 0.0522 0.0503 0.0499 0.0503

velocity[m/s]
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4.4 Classification of unlabeled data

In the previous section, we optimized the set afufees and achieved low average
error (i.e. 0.0461). It means that now we can ately predict the type of particles
without annotation. Hereinafter, we define the datdunlabeled” by subtracting
“5-classes” from “no-warning”. The size of this ds¢t is 12,292.

Before the prediction, we trained a model for afssyy snowflake and grau-
pel using all data in “2-classes” dataset. Theo$détatures is the same as the best
one optimized in the previous section. Using thasned model, we predicted the
type of particles in “unlabeled” dataset. As midig expected, the result was
similar to the one for “2-classes” (Figure 4.12).

A key question here is whether our system is udefudnalyzing time-varying
behavior of precipitation. In Figures 4.13-4.21e tesult of prediction is shown
with a time axis which indicates 600 seconds okoletion. Among them, Figures
4.13-4.15 with PC1, PC2, and time clearly illustththe dynamic change of type
and amount of particles. For example, we can sae dfter 320 seconds, the
variety of snowflakes suddenly increased. In catiréhe variety of graupels
decreased around 100 seconds and 200 seconds.

Finally, Figure 4.22 and 4.23show the histogramsnaiwflakes and graupels.
We can easily see that both of snowflakes and gtaugre suddenly increased
around 260 seconds. After that, graupels rapidigretsed whereas snowflakes
kept a level of intensity. Although these figures hased on the result of predic-
tion, they demonstrated that such a fine-graine@. (particle-by-particle)
prediction of particles can be a powerful tool fmrderstanding behavior of snow-

fall and meteorological theories behind it.
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Figure 4.12 3D plots of PC1, PC2, and PC3 in thdataset “unlabeled” from three different angles ofview. The colors of points (blue and red) indicate

the predicted class labels (snowflake and graupebespectively.
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Figure 4.13 3D plots of PC1, PC2, and time in th@ataset “unlabeled” with the view from PC1-time phne. The colors of points (blue and red) indicate

the predicted class labels (snowflake and graupebgspectively.
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Figure 4.14 3D plots of PC1, PC2, and time in th@ataset “unlabeled” with the view from PC2-time phne. The colors of points (blue and red) indicate
the predicted class labels (snowflake and graupebgspectively.
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Figure 4.15 3D plots of PC1, PC2, and time in thdataset “unlabeled” with the view from
PC1-time plane. The colors of points (blue and redhdicate the predicted class labels

(snowflake and graupel), respectively.
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Figure 4.16 3D plots of PC1, PC3, and time in thdataset “unlabeled” with the view from PC1-time phne. The colors of points (blue and red) indicate

the predicted class labels (snowflake and graupebgspectively.
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Figure 4.17 3D plots of PC1, PC3, and time in théataset “unlabeled” with the view from PC3-time phne. The colors of points (blue and red) indicate
the predicted class labels (snowflake and graupebgspectively.
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Figure 4.18 3D plots of PC1, PC2, and time in th@ataset “unlabeled” with the view from
PC1-time plane. The colors of points (blue and redphdicate the predicted class labels

(snowflake and graupel), respectively.
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Figure 4.19 3D plots of PC2, PC3, and time in th@ataset “unlabeled” with the view from PC2-time phne. The colors of points (blue and red) indicate

the predicted class labels (snowflake and graupebgspectively.
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Figure 4.20 3D plots of PC2, PC3, and time in thdataset “unlabeled” with the view from PC3-time phne. The colors of points (blue and red) indicate
the predicted class labels (snowflake and graupebgspectively.
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Figure 4.21 3D plots of PC1, PC2, and time in thdataset “unlabeled” with the view from
PC1-time plane. The colors of points (blue and redhdicate the predicted class labels

(snowflake and graupel), respectively.
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Figure 4.22 Histogram of predicted snowflakes itunlabeled” dataset.
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Figure 4.23 Histogram of predicted graupels in “nlabeled” dataset.
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Chapter 5

Conclusion and Future Works

This final chapter is dedicated to review and summarize the accomplished work
described in this paper. The closing section is also providing some ideas of future
work vectors in the aim of improvement and modification.

5.1 Dissertation summary

Modern meteorological weather monitoring systems t@ enhance the knowledge
in various research areas. One of them is snoWdathation mechanism. Proper
on-ground observations are indisputably neededistify the results of remote
sensors work. One of the challenging tasks in riagter is to be able to perform
the classification of solid precipitation into sritakke and graupel.

The ground-based measurements of snow particlegdandfication of snow
type would be useful for deriving radar reflectywgtnow rate relationships.

In this study, we tried not only to (i) outperfotiime accuracy of the existing
analogous classification methods, but to (i) esipli use the fractal features
derived from particle shape and (iii) estimate tladue of each feature in the
contribution to classification. That was a nontviask due to the described study
area problems. Moreover, it had been challengingeaent researches show
significant advance in adjacent domains.

We conducted feature analysis and classificatiopaoficle data from 2DVD
through the combined use of various statisticalho@s$ including supervised and
unsupervised machine learning. Experimental reseltsaled that fractal and box-

count features are useful for the characterizatioth classification of snowflakes
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and graupel. The average accuracy of particle-biepa classification was around
95.4%, which has not been achieved by previousesud

From this result, it can be said that we could tgye system for automatical-
ly monitoring solid precipitation with practicallysufficient accuracy of
discriminating snowflakes and graupel. Additionallye demonstrated that com-
bining acquisition time information with the resulof classification on large
amount of particles, it becomes possible to contdowt-series analysis of amount
and type of patrticles, which contributes to elutaddhe mechanism of orographic

snowfall (phenomena).

5.2 Future works

In this study, we mainly focused on two types oftipkes (i.e. snowflake and
graupel). As an extension of this study, conduchingnan annotation with not only
two types but also other detailed types of pasi¢keg. dendrite-like, aggregate-
like, melting-snow-like, and other depending onaloprecipitation particularity),
makes it possible to quantitatively analyze wideats of snowfall in places with
weather conditions not necessarily similar to thos&anazawa. This may un-
doubtedly boost the practical applicability of timethod yet lies beyond the scope
of this study.

We hope that these two future work vectors willies an even better meth-

od useful in a range of meteorological purposes.
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