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Abstract 

Precipitation (or its absence) plays a major role in almost any ecosystem as wa-

ter balance and circulation are crucial factors for most living biological species. 

Studies concerning precipitation are common in the field of meteorology as contrib-

uting to a range of purposes in such areas as agriculture, disaster prevention and 

others.  

Depending on the location, the intensity and types of precipitation greatly var-

ies. In countries having a cold winter season with rather low temperature or areas of 

high latitude, the studies of solid precipitation are being conducted mainly in order to 

decrease the potential damage caused by heavy snowfall. 

Recently numerous advances in meteorological field and weather forecasting 

had been achieved due to the development of high-end optics, electronics, and raise of 

computational power. However, important issues such as the snowfall formation 

mechanism and accurate winter precipitation quantifying are still lacking deeper 

studies. 

In this study, we intended to develop a novel system for particle-by-particle ob-

servation and accurate classification of solid precipitation particles explicitly using 

their shape and performing fractal analysis. This thesis aims to enhance the accuracy 

in the microphysical parameterizations in numerical forecast models. 

In order to conduct field experiments, a ground observation system for solid 

precipitation using two-dimensional video disdrometer (2DVD) was developed on the 

roof of Kanazawa University. Among 16,010 particles observed by the system, 

around 10% of them were randomly sampled and manually classified into five clas-

ses, that is snowflake, snowflake-like, intermediate, graupel-like, and graupel. At first, 

each particle was represented by a vector of 72 features containing fractal dimension 

and box-count to represent the complexity of particle shape. Feature analysis on the 

dataset clarified the importance of fractal dimension and box-count features for 

characterizing particles varying from snowflakes to graupel. On the other hand, 

performance evaluation of two-class classification by Support Vector Machine (SVM) 

was conducted. 

The experimental results revealed that, by selecting only 10 features out of 72, 

the average accuracy of classifying particles into snowflakes and graupel can reach 
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around 95.4%, which has not been achieved by previous studies. Although the 2DVD 

takes binary image with lower resolution than CCD video camera, combination of up-

to-date classifier and features including fractal-related ones enabled the system to 

outperform the accuracy achieved in our previous study. 

We believe that the approach described in this thesis may be adapted and im-

plemented for the purpose of further research on understanding the snowfall 

formation processes contributing to reduce heavy snowfall damage. 
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Chapter 1   

Introduction 

 

In this chapter we first introduce some basic aspects of meteorology concerning 

solid precipitation (snowfall). After that, we present current weather monitoring 

and prediction problems such as snow type identification and precipitation quanti-

fication. The purpose of this thesis is to deal with these problems. In the end of this 

chapter thesis contributions and further structure organization are provided. 

 

1.1 Research context 

1.1.1 Meteorology and weather monitoring 

Due to the diversity of terrain, rainfall and snowfall phenomena take on different 

forms depending on location. The amount and type of precipitation may change 

quite rapidly over a short period of time[1][2]. 

As heavy snowfall may cause severe damage, it is a significant issue to be able 

to monitor precipitation continuously for decreasing the potential damage as well 

as obtaining a better meteorological understanding of orographic snowfall. Espe-

cially, it is important to understand the snowfall formation mechanism with 

different types of solid precipitation such as snowflake and graupel. 

Modern meteorological weather monitoring consists of a large variety of ap-

proaches and techniques, using both remote (radars, lidars) and ground-based 

observation equipment and methods. 

For the purpose of remote measuring the precipitation intensity on a wide area, 

a popular facility is a polarimetric radar[3][4][5][6]. This device is commonly 
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used to obtain the cloud microphysical parameters. While polarimetric radars 

operate on large-scale, a device named disdrometer is additionally used for the 

ground-based observation of precipitation at a spot. It is a relatively-small instru-

ment which can measure the size and falling velocity of a particle. Based on the 

fact that rain and graupel have different distribution of size and falling velocity, it 

is possible to discriminate them using a disdrometer[7][8][9]. However, if two 

particles have similar size and falling velocity, it is impossible to discriminate them 

by a disdrometer. In this sense, the observation of precipitation using a polarimet-

ric radar and/or a disdrometer is not sufficient for accurately estimating the amount 

of precipitation consisting of various types[10][11][12][13].  

 

1.1.2 Two-dimensional video disdrometer 

A two-dimensional video disdrometer (hereafter 2DVD) is an optical device 

developed for measuring solid precipitation characteristics on ground. The instru-

ment is manufactured by Joanneum Research of Austria. 2DVD measures volume, 

diameter, shape, and velocity of every individual particle. From this data, one can 

estimate particle size distribution, precipitation rate, and other related varia-

bles[14][15]. 

The device consists of 3 units: a sensor unit hosting cameras and optics, an 

outdoor electronics unit that operates the cameras and sends data to the indoor 

processing unit. The equipment arrangement is shown on Figure 1.1.  
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Figure 1.1   2DVD units organization (Original figure from [16]). 

 

Figure 1.2 shows the 2DVD sensor unit inner structure. The sensor unit con-

sists of two orthogonal and synchronized line-scan cameras and a bright light 

source in front of each of them. While precipitation particles fall between the 

cameras and light sources (an area of 10cm ×10cm), their shapes are recorded as 

shadows are being projected. Although they are low-resolution images of black 

and white (Figure 1.3), the obtained shape information is sufficient for particle 

classification. 
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Figure 1.2   A 2DVD Sensor unit architecture. 

 

 

Figure 1.3   Example of snowflake image from 2DVD. 

 

1.1.3 Types of solid precipitation 

While liquid precipitation consists of raindrops only, solid precipitation may 

be split into a variety of classes, depending on the particle parameters. These 
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parameters are influenced by various factors such as snow formation processes and 

macro physical conditions. 

This study is intended to make difference only between hydrometeors of 2 

basic classes: snow and graupel. Nevertheless it makes use of 3 intermediate 

classes which are artificial in the sense that are derived by manual annotation in 

difficult to classify cases.   

A graupel is round-shaped as an approximate ellipse, and in contrast, a snow-

flake has a complex shape. As to the size of a particle, graupels are relatively 

smaller than snowflakes. These features meet intuitive criteria in human’s discrim-

ination of snowflake and graupel. The latter feature was frequently used in 

previous studies since it is easier to observe[16]. 

 

1.2 Objectives 

As the classification of solid precipitation into snowflake and graupel is important 

for weather monitoring purposes, this thesis aims to solve the problem of improv-

ing the accuracy of that kind of studies implementing a new approach to enhance 

the results. 

The main objective of this work is to create a novel method of particle-to-

particle classification of solid precipitation into snowflake and graupel based on 

enriched information about the fractal properties of every single particle using 

2DVD as primary data acquiring system and making explicit use of obtained 

particles shape features. 

 

1.3 Contributions 

Studies related to solid precipitation monitoring may contribute to a wide range of 

theoretical and practical issues, for instance snowfall formation mechanism or 

winter precipitation estimation to predict intensive snowfall. 

This study may contribute to the following matters: 

Decreasing the damage of heavy snowfall events (HSE).  
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Unexpected heavy snowfall may cause severe damage to large areas of crops, 

disrupt or block the traffic on roads and stop the indispensable facilities opera-

tion.[17] Furthermore, heavy snowfall may result in large floods after the snow 

melts.[18]  Natural hazards are usually inevitable, so it makes extremely important 

the need to be able to forecast them as soon as possible to get prepared and mini-

mize the potential risks and decrease the caused damage.   

 

Understanding the snowfall formation mechanism.  

Snowfall formation mechanism is a matter to which in recent years there has 

been marked scientific interest as foretelling the possible HSE is complicated due 

to the variety of impact factors such as elevation levels, climate change and so on. 

[19] Nevertheless we believe that the method proposed in this thesis is adaptive to 

the location specifications and various environmental conditions and may contrib-

ute to get a better understanding of the snowfall formation mechanism via 

additional acquired data. 

 

Improvement microphysical parameterizations in numerical forecast models.  

Despite of the recent significant improvements in numerical model resolution and 

major achievements in various meteorological parameters forecasting, the progress in 

the area of quantitative precipitation forecasting (QPF) has been relatively slow. That 

is also related to the lacking in microphysical parameterization schemes (MPS) used to 

make cloud models and precipitation processes simulations. In order to solve this 

problem, one needs to differentiate errors in QPF from MPS to those from other 

sources.[20] That data obtained from our study can be used to enhance the microphys-

ical processes and hydrometeor fields simulated by MPS. 

 

Quantifying winter precipitation accurately. 

The need to increase solid precipitation measurement accuracy in all weather 

conditions remains challenging despite current state-of-the-art methodologies 

improvement. This is mostly due to high error in data acquisition during windy 

conditions (not all particles are being caught by measurement devices).[21] 
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Development algorithms for determining particle size distributions with 

remote sensors such as polarimetric radar. 

Solid precipitation type distributions derived from a 2 dimensional video dis-

drometer might be used to find mutual relationships between particle size 

distribution parameters and to verify the polarimetric radar accuracy in hydromete-

or type identification.[3] This makes ground based observations a useful tool for 

improving and checking the data acquired from radars. In this sense, the develop-

ment of accurate and computationally easy algorithms is a challenging issue.  

 

1.4 Thesis organization 

The thesis consists of 5 chapters, including the current introduction chapter cover-

ing the background concepts, introducing the main research objectives, 

contributions and organization. 

The remaining chapters are as follows: 

Chapter 2 reviews state-of-the-art snow classification methods that contribute to 

nearly same objectives. Some of the main problems of research in this field are 

being addressed.   

Chapter 3 introduces the proposed novel approach using fractal related features to 

enhance the accuracy of solid precipitation classification. Main methods and 

algorithms used in the study are also described in this chapter. 

Chapter 4 shows and discusses the obtained experimental results and  

Chapter 5 summarizes the thesis giving conclusion of achievements and discusses 

the future works vector. 
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Chapter 2 

Related Works and Objectives 

In this chapter, the review of the state-of-the-art snow classification methods is 
presented. It gives an overview of the previous works along comparison with the 
current thesis. It is followed by the common problems in the research field of solid 
precipitation classification and objective discussion.  

 

2.1 Snow classification methods overview 

Modern meteorological studies make use of the top-level devices and approaches 

not only to quantitatively evaluate the precipitation amount but to gain additional 

information about precipitation particles. This data may then be used to interpret 

images obtained from radars and enhance the understanding of particle microphys-

ics, cloud formation processes and so on. 

Liquid precipitation consists of raindrops only and can be easily distinguished 

from solid precipitation. In case of solid precipitation, it may be split into a variety 

of classes, depending on the particle parameters. The task to classify solid precipi-

tation particles is still being an open problem and widely discussed in communities 

related to weather monitoring in countries with cold winter season. 

Among the variety of works and studies related to this issue, we consider the 

following 2 papers to be the closest and most recent works in the field of snow 

classification: 

1. Nurzynska, K., Kubo, M. and Muramoto, K. (2010) 2D Feature Space for 

Snow Particle Classification into Snowflake and Graupel. IEICE Transac-

tions on Information and Systems, E93-D, 12, 3344-3351. [16] 
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2. Grazioli, J., Tuia, D., Monhart, S., Schneebeli, M., Raupach, T. and Berne, 

A. (2014) Hydrometeor classification from two-dimensional video dis-

drometer data. Atmospheric Measurement Techniques, 7, 2869-2882. [22] 

First one is the previous work of the Bioinformatics Laboratory of Kanazawa 

University. In that study a deep analysis of feature importance, classifier differ-

ences and data flow impact had been conducted. Major attention is dedicated to the 

feature selection and gaining highest accuracy possible using pairs of features and 

different classifiers and data flow organization. The used optical device was a CCD 

video camera, which had been taking 1280×960 grayscale images. Using rich 

information of these high-resolution grayscale images, it achieved high accuracy 

(over 90%) of particle-by-particle classification into snowflake and graupel. 

 

Figure 2.1   Overview of CCD video camera system used in previous research. 
(From original paper by Nurzynska, K., Kubo, M. and Muramoto, K.) 

 

Among the weak points one can mention that since the equipment set requires 

large space comparable by size to a small room (2m ×4m), portability and ap-

plicability are rather low. In addition, it is a hand-made facility and not easy to 

adjust and use.  

Comparing to that work the current study uses different equipment - 2DVD 

instead of a CCD video camera - and makes use of different features; explicitly 

using the fractal related ones. While on the other hand some features such as 
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brightness and Hu moment of the 1st order are unavailable due to the black and 

white source image.  

Moreover, the classifiers selected to be used in the previous study were Ma-

halanobis Minimum Distance and k-Nearest Neighborhood. As classifiers 

algorithms used in the two studies differ it makes hard to estimate and compare the 

overall method results accuracy.  

Our study aims to get a higher accuracy rate based on a set of features gained 

from low resolution black and white imagery.   

In the second paper the authors used 2DVD to determine the dominant type of 

precipitation observed in a time interval. While using same equipment, the feature 

sets of the studies are different as the aims of the former are to select the main 

precipitation type rather than to get a full overview of the precipitation process. 

Conversely saying, it does not perform particle-by-particle classification which is 

the main basis of our study. 

 

2.2 Thesis organization 

Problems that arise during the whole research process are being described in order 

of this thesis process workflow (Figure 2.2) and are related to each particular step 

or method.  

 
Figure 2.2   Overview of data processing flow. 
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Briefly, one can consider two main groups of problem – those arising during 

the data acquisition and the problems concerning data processing. Both groups are 

derived from limitations of hardware and methodology respectively.   

Illumination  

In order to obtain a high resolution precipitation particle image all the measur-

ing volume should be properly enlightened. Good image-plane illuminance 

becomes critical as the exposure time may not be increased (shutter speed should 

be fast in order to operate online) and the tradeoff between these two variables to 

obtain needed photometric exposure is impossible. 

The need of a good illumination system providing sufficient light was taken 

into account in both researches according to the used optical devices. In this sense 

line-scan cameras are more compact than CCD video cameras though provide less 

detailed information about particle shape. 

Dealing with strong wind 

One of the most challenging problems is to deal with the strong wind during 

the experiment. Box-shaped shields protecting the optical devices cause problems 

to snowfall particles evenly reach the entrance slit or hole to the measuring volume 

in the case of strong horizontal shift during precipitation. 

The construction characteristics and included software of 2DVD are decreas-

ing the influence of wind to the acquiring data still cannot deal with wind after a 

certain velocity threshold. This problem seems to be hard to deal with.      

Manual annotation 

Solid precipitation takes different forms depending geographic location and 

many other factors influencing snow formation mechanisms. Classification into 

snow and graupel adopted in this study and the previous work by Nurzynska et al. 

is appropriate for Kanazawa city (36.544°N, 136.705°E). In case of the work of 

Grazioli et al. the discrimination of 8 hydrometeor classes was used (small-

particle-like, dendrite-like, column-like, graupel-like, rimed particle-like, aggre-

gate-like, melting-snow-like, and rain). 
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Manual annotation requires an utter knowledge of solid precipitation types not 

only theoretical but applied to the location of interest as the production of a reliable 

training set significantly decreases the accuracy errors in further classification 

process. Such specialists are a rarity and our research team is lucky to have one in 

the person of Professor Mamoru Kubo.  

Feature selection 

One of the most challenging problems concerning the improvement in accura-

cy is which features to use. As it is seen from the results evaluation a large variety 

of shape related features do not provide efficient information for the classification 

purpose. Vise verse, some features that are not intuitively apparent may drastically 

contribute to it.  That makes essential the need of finding new features and check-

ing the existing. 

The work by Nurzynska et al. focuses on pair wise feature analysis explicitly 

checking features classification value.  In the study by Grazioli et al. most features 

are also those shape related which are used in remote sensing and new feature 

derivation for accuracy maximizing was not the ultimate goal [22]. In  our work we 

are making use of the fractal properties and trying to estimate their contribution.  

Classifier selection 

Currently existing classifier algorithms are rather numerous and may show dif-

ferent results depending on the datasets. The investigation of the best of them for 

the use on the snowfall dataset is nontrivial and might be a separate topic.  Nurzyn-

ska et al. study showed performance difference based on the different classifiers. 

Our research and the study by Grazioli et al. are using SVM due to its popularity, 

applicability and high-performance. The search of optimal classifier was not 

included in these research outlines and remains a case study.  

 

2.3 Objectives 

Speaking of the state-of-the-art projects and research studies related to solid 

precipitation classification one can see that their main objectives vary mostly 

depending on the area of practical contribution as this research area is tightly 
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connected to further real-world implementation enhancing current meteorological 

systems. 

Dealing with these common problems that were mentioned in the previous 

subsection is subject of this kind of studies and this particular one. Achieving 

success in solving these complex tasks along with individual additional ones, leads 

to the proper solution of the prescribed objective. 

The evaluation of the two works results shows that the particle-by-particle 

classification using the fractal-related shape describing features allows enhancing 

the classification accuracy at least by 4.5% confirming the objective of this thesis. 
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Chapter 3 

Materials and Methods 

In this chapter, various information about observation, data, algorithm, etc. used 
in this study is presented.  

 

3.1 System and condition of observation 

We have observed snowfall event from 1250 JST to 1300 JST in January 26, 2011 

at Kanazawa University. The data of 16,010 snow particles were recorded by the 

2DVD (Figure 3.1). Figure 3.2 shows MTSAT-2 satellite image at 1200 JST 26 

January 2011 and the location of observation point. The air temperature was about 

0˚C through the event duration. 

3.2 Preparation of data for analysis and classification 

3.2.1 Particle images and basic features 

Figure 3.3 illustrates examples of particle image data recognized and generated by 

2DVD. Since 2DVD scans two line images at once from two orthogonally oriented 

cameras (A and B), two different images are obtained for each particle.  

In Figure 3.3, it can be seen that a graupel is round-shaped as an approximate 

ellipse, and in contrast, a snowflake has a complex shape. As to the size of a 

particle, graupels are relatively smaller than snowflakes. These features meet 

intuitive criteria in human’s discrimination of snowflake and graupel. The latter 

feature was frequently used in previous studies since it is easier to observe.  

In addition to shape and size, it is possible to obtain various features of a parti-

cle by using 2DVD.The list of features used in this study is shown in Table 3.1. 
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Figure 3.1   Photograph of 2DVD sensor unit covered with snow. 
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Figure 3.2   MTSAT-2 satellite image at 1200 JST 26 January 2011  

(from http://weather.is.kochi-u.ac.jp/). The 2DVD is installed at Kanazawa University and the 

location of observation point is indicated by a red circle. (36.544°N, 136.705°E). 

  



 

17 

 

 image by camera A image by camera B 

snowflake 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

snowflake-

like 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

intermediate 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

graupel-like 

 
 
 
 
 

 

 
 
 
 
 

 

graupel 

 
 
 
 
 

 

 
 
 
 
 

 

Figure 3.3   Particle images taken by 2DVD. 
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Table3.1   Features for Analysis and Classification. 

Feature type Feature name 
Camera-independent 
features 

equivolumetric_diameter[mm], volume[mm3], vertical_fall_velocity[m/s], height_of_one_line[mm] 

Camera-specific features 

height[mm]_A, height[mm]_B, number_of_lines_A, number_of_lines_B, pixelwidth[mm]_A, pix-
elwidth[mm]_B, width[pixel]_A, width[pixel]_B, height[pixel]_A, height[pixel]_B, total_pixels_A, 
total_pixels_B, area[mm2]_A, area[mm2]_B, perimeter[mm]_A, perimeter[mm]_B, box_count_1_A, 
box_count_1_B, box_count_2_A, box_count_2_B, box_count_4_A, box_count_4_B, box_count_8_A, 
box_count_8_B, fractal_1_2_A, fractal_1_2_B, fractal_2_4_A, fractal_2_4_B, fractal_1_4_A, frac-
tal_1_4_B, fractal_4_8_A, fractal_4_8_B, fractal_2_8_A, fractal_2_8_B 

Camera-independent  
features (max and min) 
converted from camera-
specific features (A and B) 

height[mm]_max, height[mm]_min, number_of_lines_max, number_of_lines_min, pixelwidth[mm]_max, 
pixelwidth[mm]_min, width[pixel]_max, width[pixel]_min, height[pixel]_max, height[pixel]_min, to-
tal_pixels_max, total_pixels_min, area[mm2]_max, area[mm2]_min, perimeter[mm]_max, 
perimeter[mm]_min, box_count_1_max, box_count_1_min, box_count_2_max, box_count_2_min, 
box_count_4_max, box_count_4_min, box_count_8_max, box_count_8_min, fractal_1_2_max, frac-
tal_1_2_min, fractal_2_4_max, fractal_2_4_min, fractal_1_4_max, fractal_1_4_min, fractal_4_8_max, 
fractal_4_8_min, fractal_2_8_max, fractal_2_8_min 

Other features (not used in 
analysis and classification) 

time 
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The 2DVD software computes the volume and equivolumetric diameter based 

on three-dimensional shape reconstructed from two orthogonal projections. The 

particle shadows in the upper light sheet are matched with particle shadows in the 

lower sheet, and the software obtains the vertical fall velocity and height quantiza-

tion (height_of_one_line) from the falling time through the planes separated 6.2 

mm vertically at the line-scan rate of 34.1 kHz. The number of lines scanned by 

each camera is the height of the particle. The light sheet of 10 cm is mapped onto 

512 pixels in the line-scan camera, and the horizontal resolution of pixel (pix-

elwidth) is about 0.2 mm. The longest scan line is the particle width. The area of 

each particle was computed by multiplying total number of pixels (total_pixels), 

height_of_one_line and pixelwidth. We got the boundary of particle shape and 

computed the particle perimeter. 

Camera-specific features are important since they contain various information 

obtained by 2DVD. However, it is not sufficient to use them directly in the analy-

sis and classification. When we use machine learning algorithms listed in section 

3.3, the same type of features obtained by cameras A and B (e.g. perimeter[mm]_A 

and perimeter[mm]_B) are also treated as simply different and independent ones. 

To overcome this problem, we added extra features that are the result of integrating 

camera-specific features by calculating maximum and minimum values (Figure 

3.4). For example, if perimeter[mm]_A > perimeter[mm]_B, then perime-

ter[mm]_max = perimeter[mm]_A and perimeter[mm]_min = perimeter[mm]_B. 

In a sense, it is a sorting operation of values from two cameras and if a feature is 

mainly characterized by large (small) values of it, the integrated feature of its 

maximum (minimum) will have strong power in the analysis and classification of 

particles.  

Figure 3.4   Integration of camera-specific features into max and min values. 

width[pixel]_A width[pixel]_B  width[pixel]_min width[pixel]_max 
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3.2.2 Fractal-related features 

Perimeter is a feature that reflects two different characteristics of particle, that is, 

size and complexity of shape. In this study, we introduced fractal-related features 

also related to complexity of shape.  

Fractal geometry provides a mathematical model for many complex objects 

with property of self-similarity found in nature[23][24][25].  Fractal dimension is a 

useful feature for shape classification. The snowflake formation modeled by fractal 

dimension, was proposed for improvement estimates of snowfall retrieval by radar 

remote sensing [26][27]. This study uses the box-counting method, which is one of 

the frequently used techniques to estimate the fractal dimension also known as 

Minkowski dimension [28][29][30]. First, the smallest number of box shaped 

elements covering the particle boundary is counted (Figure 3.5). Next, the obtained 

amount of covering elements is log-log plotted versus the reciprocal of the element 

size (Figure 3.6). Finally, the box dimension estimate is taken from the monoton-

ically rising linear slope.  
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(a) 

 

(b) 

Figure 3.5   Example of covering results from the box-counting method. (a) Snowflake by 

camera A; raw image by 2DVD (leftmost), boundary covered by boxes of size 1, 2, 4, and 8. 

(b) Snowflake by camera B. 
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Figure 3.6   The log-log plot of the box-counting method. 

 

3.2.3 Human annotation 

Total number of particles in our dataset is 16,010, that is, it consists of 16,010 

feature vectors with the features listed in Table 3.1. To conduct meaningful analy-

sis and evaluation of classification performance, we randomly sampled 1,600 

feature vectors and annotated them manually. Before annotation, five categories 

were prepared: snowflake, snowflake-like, intermediate, graupel-like, and graupel. 

Additionally, if one of two images for a particle matched one of the following rules, 

it was automatically annotated as warning and filtered out before random sampling 

since it can be regarded as outlier or erroneous data.  

 

• equivolumetric_diameter[mm] is less than 0.2. 

• vertical_fall_velocity[m/s] is greater than 4. 
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• width[pixel] / height[pixel] is less than 1/3 or greater than 3. 

• The horizontal position of the particle in the raw image is left-end and 

over 50% of left edge of the particle image is occupied by black pixel 

(i.e. it is strongly suspected that the particle passed by the left end of a 

camera and whole image of it was not taken by 2DVD).  

 

The numbers of annotated samples are shown in Table 3.2. According to these 

annotations, the datasets shown in Table 3.3 are used for analysis and classification 

in chapter 4.  

 

Table 3.2   The number of samples after annotation. 

Annotation The number of particles 
snowflake 559 
snowflake-like 111 
intermediate 39 
graupel-like 144 
graupel 747 
warning 2,118 
not annotated 12,292 

 

 

Table 3.3   Datasets according to annotation. 

Dataset Annotation The number of particles 

whole 
snowflake, snowflake-like, interme-
diate, graupel-like, graupel, warning, 
not annotated 

16,010 

no-warning 
snowflake, snowflake-like, interme-
diate, graupel-like, graupel, not 
annotated 

13,892 

warning-only warning  2,118 

5-classes 
snowflake, snowflake-like, interme-
diate, graupel-like, graupel 

 1,600 

2-classes snowflake, graupel 1,306 
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3.3 Algorithms 

In this section, the algorithms we used for analysis and classification are being 

described. 

3.3.1 Normalization 

A feature vector consists of two or more feature values for features. However, it is 

problematic to use the original values for machine learning because in general, 

value distribution can differ from feature to feature. Therefore, it is popular to 

normalize the original values of feature vectors so that all the features have the 

same average and variance. In this study, we normalized our dataset with average = 

0 and variance = 1 for each feature before the analysis and classification.  

 

3.3.2 Pearson’s correlation coefficient 

To see the direct and pairwise relationship between every pair of features, we 

calculated Pearson’s correlation coefficient. If its value is near to 1, two features 

are quite similar. It is one of the most basic feature analysis methods. In addition, it 

is known that, removing one of two similar and redundant features may lead to 

better performance of classification, regression, clustering, etc.  

 

3.3.3 Principal component analysis (PCA) 

Among various unsupervised learning algorithms, PCA might be the most popular 

one[31][32]. Based on the calculation of features’ linear combination that maxim-

izes the variance, PCA converts the original feature space into the space of 

principal components (PCs). After PCA, all the PCs are ordered as PC1, PC2, … 

and it is believed that PC1 is the strongest feature for characterizing the feature 

vectors, PC2 is secondly strong, and so on. Due to this effect of PCA, it is broadly 

used for different purposes. As the basic analysis of original features, coefficient of 

each feature in the linear combination formula for some important PCs like PC1 is 

evaluated. In this study, it may reflect the importance of the feature to characterize 

and classify snowflakes and graupels.  
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3.3.4 Support vector machine (SVM) 

SVM was first developed by Vladimir Vapnik [33]. Due to its applicability and 

high-performance, it is one of the most popular machine learning algorithms 

today.[34][35] Among various variants and implementations of SVM, we used 

ksvm function implemented in kernlab package for R. Regarding the choice of 

kernel, the default one (Radial Basis Function kernel, also known as Gaussian 

kernel) was adopted. A hyper-parameter “sigma” for this kernel is being automati-

cally optimized by ksvm.  

 

3.3.5 Cross-validation 

To evaluate the performance of predicting the class label (i.e. snowflake or grau-

pel) of unseen samples (i.e. unseen particles), it is popular to conduct cross-

validation. In this study, we adopted 10-fold cross-validation that randomly divides 

given dataset into 10 and perform learning and prediction 10 times by changing 

10% of dataset for test (rest of 90% is used for training). One problem about this 

kind of cross-validation is that the evaluated performance is affected by the result 

of random division and different performances are achieved in every evaluation. 

To solve this problem, we repeated 10-fold cross-validation 100 times and aver-

aged the accuracy.  
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Chapter 4 

Experimental Results and Discussion 

In this chapter, four different types of particle analyses are conducted. Experi-
mental results proved that our system is highly accurate and can be a powerful 
tool for meteorological analysis. 

 

4.1 Feature analysis by Pearson’s correlation coefficient 

Figure 4.1 illustrates the result of correlation analysis on all feature pairs. It can be 

summarized as follows:  

• Box-count features (i.e. features about the number of boxes) are high-

ly similar to each other. In contrast, fractal features are dissimilar to 

each other.  

• Some of other features are similar to each other (i.e. height and pe-

rimeter features). It indicates that redundant features like box-count 

may exist also in these other features.  

• About the difference between camera-specific features ((b), (c), and 

(d)) and camera-independent features ((e), (f), and (g)) calculated 

from them, fractal features (d) and (g) showed clear difference. In 

other words, calculation of max and min was meaningful at least for 

fractals.  
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Figure 4.1   Correlation analysis of features. Green (red) color corresponds to high (low) value. (a) Camera-independent features, (b) Camera-specific 

features, (c) box-count features, (d) fractal features, (e)(f)(g) max and min of (b)(c)(d). 
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4.2 Feature analysis by PCA 

Figures 4.2-4.4 illustrate the similarity among the principal components 1-3 in four 

datasets (except “warning-only”). In each figure, features are sorted in descending 

order of principal component of whole dataset. Top 10 important features in each 

dataset and PC are shown in Tables 4.1-4.3. From these figures and tables, it can 

be clearly seen that:  

 

• PC1s of these datasets are similar to each other (Figure 4.2). Most of 

the important features in PC1 are occupied by box-count features 

(Table 4.1).  

• PC2 of the dataset “whole” is quite dissimilar to others (Figure 4.3) 

and the difference is caused by the inclusion of “warning-only”. In 

other words, after filtering errors, PC2 is more or less the same in 

each dataset. About top 10 features of PC1 of “warning-only” (Table 

4.1), it is convincing that most of them are occupied by size-related 

features (height, perimeter, area, etc.) because many of the particles in 

this dataset were removed from “whole” dataset due to their strange 

size. About PC2s of the datasets “no-warning”, “5-classes”, and “2-

classes”, some of the fractal features occupy top 4 important features 

(Table 4.2).  

• In Figure 4.4, PC3s of the datasets “5-classes” and “2-classes” are 

quite dissimilar (correlation between them is -0.97). Since in “2-

classes”, ambiguous particles annotated as “snowflake-like”, “inter-

mediate”, or “graupel-like” are removed from “5-classes”, it can be 

interpreted that PC3 of “5-classes” is highly affected by the character-

istics of such ambiguous particles.  
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Figure 4.2   PC1 of the datasets except “warning-only”. 

 

 

Figure 4.3   PC2 of the datasets except “warning-only”. 
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Figure 4.4   PC3 of the datasets except “warning-only”. 
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Table 4.1   Top 10 features in descending order of PC1 values. 

rank whole no-warning 5-classes 2-classes warning-only 
1 box_count_4_min box_count_4_min total_pixels_B total_pixels_B height[mm]_min 
2 box_count_8_max box_count_8_min total_pixels_max total_pixels_max height[mm]_B 
3 box_count_4_max box_count_8_max total_pixels_min total_pixels_min height[mm]_max 
4 box_count_4_B box_count_8_B total_pixels_A total_pixels_A height[mm]_A 
5 box_count_4_A box_count_4_B width[pixel]_B width[pixel]_B perimeter[mm]_min 
6 box_count_2_min box_count_4_max box_count_8_B box_count_8_B perimeter[mm]_B 
7 box_count_8_min box_count_8_A box_count_8_min box_count_8_min perimeter[mm]_A 
8 box_count_8_A box_count_2_min box_count_4_B width[pixel]_max perimeter[mm]_max 
9 box_count_8_B box_count_4_A width[pixel]_max box_count_8_max area[mm2]_max 
10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min 
10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min 
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Table 4.2   Top 10 features in descending order of PC2 values. 

rank whole no-warning 5-classes 2-classes warning-only 
1 height[mm]_B fractal_4_8_min fractal_4_8_min fractal_4_8_min pixelwidth[mm]_min 
2 height[mm]_min fractal_4_8_B fractal_4_8_B fractal_4_8_B pixelwidth[mm]_B 
3 height[mm]_max fractal_4_8_A fractal_4_8_A fractal_4_8_max pixelwidth[mm]_max 
4 height[mm]_A fractal_4_8_max fractal_4_8_max fractal_4_8_A pixelwidth[mm]_A 
5 perimeter[mm]_min fractal_2_8_min width[pixel]_min width[pixel]_min fractal_1_2_max 
6 perimeter[mm]_B fractal_2_8_B width[pixel]_A width[pixel]_A fractal_1_2_min 

7 perimeter[mm]_A fractal_2_8_max 
equivolumetric_ 
diameter[mm] 

equivolumetric_ 
diameter[mm] 

fractal_1_2_B 

8 perimeter[mm]_max fractal_2_8_A 
vertical_fall_ 
velocity[m/s] 

vertical_fall_ 
velocity[m/s] 

fractal_1_2_A 

9 area[mm2]_max width[pixel]_min 
height_of_one_ 
line[mm] 

width[pixel]_B height_of_one_line[mm] 

10 area[mm2]_B width[pixel]_A width[pixel]_B 
height_of_one_ 
line[mm] 

fractal_1_4_max 
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Table 4.3   Top 10 features in descending order of PC3 values. 

rank whole no-warning 5-classes 2-classes warning-only 
1 fractal_4_8_min fractal_2_8_min width[pixel]_A fractal_4_8_min pixelwidth[mm]_min 
2 fractal_4_8_max fractal_2_8_A width[pixel]_min fractal_4_8_max pixelwidth[mm]_B 
3 fractal_4_8_B fractal_2_8_B width[pixel]_max fractal_4_8_A pixelwidth[mm]_A 

4 fractal_4_8_A fractal_2_8_max 
equivolumetric_ 
diameter[mm] 

fractal_4_8_B volume[mm3] 

5 fractal_2_8_min fractal_4_8_max width[pixel]_B fractal_2_8_min width[pixel]_max 
6 fractal_2_8_B fractal_4_8_min box_count_8_A fractal_2_8_max width[pixel]_A 

7 fractal_2_8_max fractal_4_8_A 
height_of_one_ 
line[mm] 

fractal_2_8_B box_count_8_max 

8 fractal_2_8_A fractal_4_8_B 
vertical_fall_ 
velocity[m/s] 

fractal_2_8_A box_count_8_A 

9 height[mm]_max fractal_2_4_min box_count_8_max volume[mm3] total_pixels_max 
10 height[mm]_A fractal_2_4_B fractal_2_4_A total_pixels_B box_count_8_B 
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For visually understanding the sample distribution, we show 3D plots of the 

datasets. In Figures4.5-4.9, it can be seen that the distributions of samples in three 

datasets “no-warning”, “5-classes”, and “2-classes” are almost the same. The 3D 

plots from three angles for “5-classes” show that, snowflake samples have their 

own distribution distinguishable from others. In contrast, samples of other annota-

tions (snowflake-like, intermediate, graupel-like, and graupel) are distributed in the 

plane near to the PC2-PC3. About the L-like distribution of these samples, it is 

caused by the combined use of camera-specific fractal features (fractal_1_2_A, …, 

fractal_2_8_B) and camera-independent fractal features (fractal_1_2_max, …, 

fractal_2_8_min). For example, removal of box-count features does not affect to 

the L-like shape of the distribution, however, removal of camera-specific or 

camera-independent fractal features makes it ambiguous (Figure 4.10 and 4.11). 

Although the meaning of the distribution is still unclear, this result suggests that 

the fractal features could provide more detailed classification of non-snowflake 

particles.  

 

  



 

35 

 

 

 

View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

   

Figure 4.5   3D plots of PC1, PC2, and PC3 in the dataset “all” from three different angles of view. The colors of points (gray, black, blue, green, white, 

yellow, red) indicate the annotations (not annotated, warning, snowflake, snowflake-like, intermediate, graupel-like, graupel), respectively. 
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View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

   

Figure 4.6   3D plots of PC1, PC2, and PC3 in the dataset “no-warning” from three different angles of view. The colors of points (gray, blue, green, white, 

yellow, red) indicate the annotations (not annotated, snowflake, snowflake-like, intermediate, graupel-like, graupel), respectively. 
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View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

   

Figure 4.7   3D plots of PC1, PC2, and PC3 in the dataset “5-classes” from three different angles of view. The colors of points (blue, green, white, yellow, 

red) indicate the annotations (snowflake, snowflake-like, intermediate, graupel-like, graupel), respectively. 
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View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

   

Figure 4.8   3D plots of PC1, PC2, and PC3 in the dataset “2-classes” from three different angles of view. The colors of points (blue, red) indicate the 

annotations (snowflake, graupel), respectively. 
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View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

   

Figure 4.9   3D plots of PC1, PC2, and PC3 in the dataset “warning” from three different angles of view.  
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Figure 4.10   3D plots of the dataset “5-classes” without some features. In left and right panels, camera-specific and camera-independent box-count 

features are removed, respectively. 
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Figure 4.11   3D plots of the dataset “5-classes” without some features. In left and right panels, camera-specific and camera-independent fractal features 

are removed, respectively. 
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4.3 Particle classification by SVM 

As shown in Table 3.1, 72 features are available for training a statistical model to 

classify given samples (particles) into snowflakes and graupels. Using the algo-

rithms described in subsections 3.3.4 and 3.3.5, first we evaluated the accuracy of 

prediction with “2-classes” dataset and all 72 features. The average error of predic-

tion (i.e. 1 - average accuracy) was 0.08263. After converting the 72 features into 

72 PCs by PCA, the average error decreased to 0.07191.  

Since so many redundant features exist in the 72 features, reduction of feature 

set by feature selection might decrease the average error of prediction. Although 

various algorithms have been proposed for fully-automatic feature selection, in this 

study we initially tried to select a representative feature in each feature group, 

assuming a feature group consisting of all features with common name prefix. For 

example, perimeter[mm]_A, perimeter[mm]_B, perimeter[mm]_max, and perime-

ter[mm]_min belong to the same group. In case of box-count and fractal features, 

numbers in the names were ignored since they are homogenous except the parame-

ters for calculating them. To choose the representative feature in each group, 72 

evaluations were performed using only one specific feature in each evaluation. As 

a result, 14 representative features with the lowest average errors in their groups 

were selected (Table 4.4). Among them, box_count_2_max achieved the best 

performance (0.1055) as a single feature. It is also notable that the suffixes “_max” 

and “_min” frequently appear instead of “_A” and “_B”. It indicates that the 

conversion of camera specific features to camera-independent ones contributed to 

achieve better classification performance.  

Starting from the feature set with all of these 14 features, feature selection by 

backward elimination was performed. It is an iterative feature selection method 

which removes a feature in an iteration. If the size of feature set in the iteration i is 

ni, all subsets with size ni -1 are evaluated, and if the elimination of a feature 

achieved the best improvement of average error, it is removed in the next iteration. 

As a baseline performance before the 1st iteration, the average error 0.0543 

achieved by the feature set with all of these 14 features was used.  
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In this study, four features were removed through 1st to 4th iterations, and the 

process of backward elimination stopped since 5th iteration could not achieve any 

improvement. Using the remaining 10 features, the average error 0.0461 was 

achieved and it was the best performance of classification in this study1. Unlike the 

analysis in section 4.2, this result revealed that fractal features could not contribute 

to the best performance. In other words, they might be useful for more detailed 

characterization of various particles, not for just classifying snowflakes and 

graupels. In contrast, a box-count feature (box_count_2_max) was so important as 

to the classification by only one feature achieved average error 0.1055 that is 

nearly 90% accuracy. It is an interesting finding that, although a box-count feature 

is a by-product of fractal calculation, it is significantly important in the classifica-

tion of snowflakes and graupels.  

  

                                                 
1We conducted t-test on two groups of errors before calculating 0.0465 and 0.0461 in Table 7, but it 

did not show statistically significant difference (p-value = 0.05153). However, at least it was 

confirmed that 0.0484 and 0.0465 were significantly different (p-value = 3.815e-14).  
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Table 4.4   Average errors (i.e. 1 – average accuracy) in the predictions by single feature and multiple features with backward elimination. Before 

backward elimination, average error of prediction by using all 14 features listed in the first column was 0.0543. In each iteration of backward elimina-

tion, if the elimination of a feature decreased (increased) the average error of prediction, it is shown in red (blue) color. The least average error in each 

column is shown in bold face and the corresponding feature is being not used in the succeeding iterations of backward elimination. 

feature 
prediction by 
single feature 

1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration 

box_count_2_max 0.1055  0.0599  0.0543  0.0481  0.0493  0.0463  
total_pixels_max 0.1198  0.0577  0.0538  0.0485  0.0461  removed 
number_of_lines_min 0.1222  0.0549  0.0511  0.0485  0.0480  0.0466  
height[pixel]_min 0.1224  0.0548  0.0513  0.0481  0.0480  0.0467  
perimeter[mm]_ 
max 

0.1274  0.0683  0.0665  0.0626  0.0654  0.0653  

width[pixel]_max 0.1405  0.0564  0.0509  0.0471  0.0479  0.0476  
area[mm2]_max 0.1886  0.0602  0.0574  0.0495  0.0526  0.0522  
height[mm]_min 0.1913  0.0546  0.0531  0.0465  removed removed 
equivolumetric_ 
diameter[mm] 

0.2026  0.0652  0.0622  0.0556  0.0561  0.0573  

volume[mm3] 0.2045  0.0567  0.0506  0.0481  0.0486  0.0469  
fractal_2_8_min 0.2069  0.0520  0.0484  removed removed removed 
pixelwidth[mm]_ 
max 

0.2434  0.0517  removed removed removed removed 

height_of_one_line 
[mm] 

0.3449  0.0557  0.0529  0.0509  0.0504  0.0513  

vertical_fall_ 
velocity[m/s] 

0.4261  0.0556  0.0522  0.0503  0.0499  0.0503  
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4.4 Classification of unlabeled data 

In the previous section, we optimized the set of features and achieved low average 

error (i.e. 0.0461). It means that now we can accurately predict the type of particles 

without annotation. Hereinafter, we define the dataset “unlabeled” by subtracting 

“5-classes” from “no-warning”. The size of this dataset is 12,292.  

Before the prediction, we trained a model for classifying snowflake and grau-

pel using all data in “2-classes” dataset. The set of features is the same as the best 

one optimized in the previous section.  Using this trained model, we predicted the 

type of particles in “unlabeled” dataset. As might be expected, the result was 

similar to the one for “2-classes” (Figure 4.12).   

A key question here is whether our system is useful for analyzing time-varying 

behavior of precipitation. In Figures 4.13-4.21, the result of prediction is shown 

with a time axis which indicates 600 seconds of observation. Among them, Figures 

4.13-4.15 with PC1, PC2, and time clearly illustrated the dynamic change of type 

and amount of particles. For example, we can see that after 320 seconds, the 

variety of snowflakes suddenly increased. In contrast, the variety of graupels 

decreased around 100 seconds and 200 seconds.  

Finally, Figure 4.22 and 4.23show the histograms of snowflakes and graupels. 

We can easily see that both of snowflakes and graupels are suddenly increased 

around 260 seconds. After that, graupels rapidly decreased whereas snowflakes 

kept a level of intensity. Although these figures are based on the result of predic-

tion, they demonstrated that such a fine-grained (i.e. particle-by-particle) 

prediction of particles can be a powerful tool for understanding behavior of snow-

fall and meteorological theories behind it.  
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View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

  
 

Figure 4.12   3D plots of PC1, PC2, and PC3 in the dataset “unlabeled” from three different angles of view. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.13   3D plots of PC1, PC2, and time in the dataset “unlabeled” with the view from PC1-time plane. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.14   3D plots of PC1, PC2, and time in the dataset “unlabeled” with the view from PC2-time plane. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.15   3D plots of PC1, PC2, and time in the dataset “unlabeled” with the view from 

PC1-time plane. The colors of points (blue and red) indicate the predicted class labels 

(snowflake and graupel), respectively. 
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Figure 4.16   3D plots of PC1, PC3, and time in the dataset “unlabeled” with the view from PC1-time plane. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.17   3D plots of PC1, PC3, and time in the dataset “unlabeled” with the view from PC3-time plane. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.18   3D plots of PC1, PC2, and time in the dataset “unlabeled” with the view from 

PC1-time plane. The colors of points (blue and red) indicate the predicted class labels 

(snowflake and graupel), respectively. 
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Figure 4.19   3D plots of PC2, PC3, and time in the dataset “unlabeled” with the view from PC2-time plane. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.20   3D plots of PC2, PC3, and time in the dataset “unlabeled” with the view from PC3-time plane. The colors of points (blue and red) indicate 

the predicted class labels (snowflake and graupel), respectively. 
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Figure 4.21   3D plots of PC1, PC2, and time in the dataset “unlabeled” with the view from 

PC1-time plane. The colors of points (blue and red) indicate the predicted class labels 

(snowflake and graupel), respectively. 
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Figure 4.22   Histogram of predicted snowflakes in “unlabeled” dataset. 
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Figure 4.23   Histogram of predicted graupels in “unlabeled” dataset. 
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Chapter 5 

Conclusion and Future Works 

This final chapter is dedicated to review and summarize the accomplished work 
described in this paper. The closing section is also providing some ideas of future 
work vectors in the aim of improvement and modification.  

 

5.1 Dissertation summary 

Modern meteorological weather monitoring systems aim to enhance the knowledge 

in various research areas. One of them is snowfall formation mechanism. Proper 

on-ground observations are indisputably needed to justify the results of remote 

sensors work. One of the challenging tasks in this matter is to be able to perform 

the classification of solid precipitation into snowflake and graupel. 

The ground-based measurements of snow particles and identification of snow 

type would be useful for deriving radar reflectivity-snow rate relationships. 

In this study, we tried not only to (i) outperform the accuracy of the existing 

analogous classification methods, but to (ii) explicitly use the fractal features 

derived from particle shape and (iii) estimate the value of each feature in the 

contribution to classification. That was a nontrivial task due to the described study 

area problems. Moreover, it had been challenging as recent researches show 

significant advance in adjacent domains. 

We conducted feature analysis and classification of particle data from 2DVD 

through the combined use of various statistical methods including supervised and 

unsupervised machine learning. Experimental results revealed that fractal and box-

count features are useful for the characterization and classification of snowflakes 



 

59 

 

and graupel. The average accuracy of particle-by-particle classification was around 

95.4%, which has not been achieved by previous studies. 

From this result, it can be said that we could develop a system for automatical-

ly monitoring solid precipitation with practically sufficient accuracy of 

discriminating snowflakes and graupel. Additionally, we demonstrated that com-

bining acquisition time information with the results of classification on large 

amount of particles, it becomes possible to conduct time-series analysis of amount 

and type of particles, which contributes to elucidate the mechanism of orographic 

snowfall (phenomena). 

 

5.2 Future works 

In this study, we mainly focused on two types of particles (i.e. snowflake and 

graupel). As an extension of this study, conducting human annotation with not only 

two types but also other detailed types of particles (e.g. dendrite-like, aggregate-

like, melting-snow-like, and other depending on local precipitation particularity), 

makes it possible to quantitatively analyze wide-variety of snowfall in places with 

weather conditions not necessarily similar to those in Kanazawa. This may un-

doubtedly boost the practical applicability of the method yet lies beyond the scope 

of this study.  

We hope that these two future work vectors will result in an even better meth-

od useful in a range of meteorological purposes. 
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