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Chapter 1

Introduction

Computational science, as the computer performance develops, has become an essen-

tial approach in the scientific field. Exploitation and improvement in the calculation

method such as algorithm, not only in the development of the computer performance

have progressed continuously. In the filed of condensed matter physics, computational

science, in particularly, first-principles approach has been recognized as a useful tool

of for investigating the electronic state of material. Since explanation of experimen-

tal facts is emphasized, the differences between experiments and theory are not taken

care so much, meaning that computational science had a role to understand the rough

electronic state. This role is also important for computational science but society, in

particular environmental or energy issues that require innovation, expect further results

from computational science, in additional to the description of the experiment.

One of important roles is a highly accurate prediction of physical properties on unin-

vestigated or unidentified materials in experience, and it is necessary to perform a quan-

titative predictions rather than qualitative. This is because the investigation of these

substances by first-principles approach is very useful to material development, leading

to material design. There are many developments of high-performance materials using

a complex substance in recent years, and the importance of theoretical calculation is in-

creasing year by year because these crystals and molecules have complicated structures

which could not be obtained in detail in experiment. For such purposes, some methods

that can predict physics quantity in reasonable computational cost are highly desirable.

However, in general, computational cost increases for increasing computational accuracy,

requiring a reduced computational system size. For example, configuration interaction

method which is one of the most accurate method to solve Schrödinger equation, could
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handle relatively small molecules.

Density functional theory (DFT) approach, in fact, Kohn and Sham approach based

on DFT, has been proposed by the researchers of K. Hohenberg, W. Kohn, and L. J.

Sham, is one of promising methods achieving many successes[5, 6]. And it can also

treat relatively large system size compared with the other electronic state calculations.

The calculations of more than 1000 atoms were already carried out using highly massive

parallel computing although the system size depends on the calculation methods or

conditions, namely basis set, number of Kohn-Sham orbitals, handling of core electrons,

magnetism, and relativistic effect, etc. Since the calculations of 1000-order atoms can

handle the relatively complex molecular and crystal, DFT approach seems to be suitable

for materials design. Of course, computable system size should be increase and some

algorithms, such as the linear-scaling or order-N schemes (N is number of Kohn-Sham

orbitals), are ready for practical use [7]. The detail of DFT and Kohn-Sham approach

will be reviewed in Chapter 2.

However it is known to general DFT approach have some problems for accuracy,

for example, band gap underestimation and disregard of van der Waals (vdW) force

are well known problem. In particular vdW force is important to predict the crystal

and molecular structure in weakly bound systems e.g.: layered material, protein system,

neutral molecule systems. vdW force is famous interaction, and we already know that

vdW potential (Vdisp), at a distance r from the atom on appropriate distance, can be

written as

Vdisp = −C6

r6
, (1.1)

where C6 is vdW coefficient which is parameter depending on atomic or molecular

species. But it is not as simple as it seem because the origin is interaction between

instantaneously induce dipoles caused by quantum fluctuation and C6 coefficient exactly

depends on electronic state. These facts indicate that vdW force should be estimated

by electron electronic state calculation.

Since DFT is an exact theory for a ground state, all of the problems for accuracy

in ground state which lies in an approximation of exchange-correlation energy func-

tional that describes the quantum-mechanical effect. Exchange energy is obtained from
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Hartree-Fock theory and correlation energy is defined as all of the leftover effects. vdW

force is classified in correlation effect because it is quantum effect, not exchange. Local

density approximation (LDA) or generalized gradient approximation (GGA) are used

for approximation of exchange-correlation energy and these approaches having a lot of

success despite the rough approximation. LDA exchange-correlation energy is as follows:

ELDA
xc =

∫
drnεxc(n), (1.2)

where n is electron density and εxc is free electron exchange-correlation energy on density

n. In the GGA, εxc is estimated from electron density and its gradient. Therefore

nonlocal effect, like vdW force, can not be taken into account in LDA/GGA. For the

material design, this problem must be solved.

M. Dion et al. have proposed vdW-DF approach and introduced nonempirical and

nonlocal correlation energy functional to describe nonlocal electron correlation effect

such as the vdW force.[8] They had succeeded the development of nonlocal correlation

kernel depending on electron charge density by using some approximations. The detail

of vdW-DF is reviewed in Chapter 3. We introduced the method to our DFT code, and

show some applications in Chapter 6.

Applications of vdW-DF remain with in nonmagnetic systems. The extension of its

approach to the magnetism is important in increasing the range of applications of the

DFT, supporting material design. For example, the interface between magnetic surface

and organic molecules is investigated as a candidate of organic-spintronics devices [9].

Therefore, we proposed the extension for spin polarized system named vdW-DF-SGC

explained in Chapter 5 and some applications will be described in Chapter 6. In Chapter

7, we will show that the possibility for improvement of vdW-DF-SGC method in oxygen

systems.

Since vdW-DF approach employs GGA exchange functional, the error of exchange

energy is not be corrected the vdW-DF approach. Sometimes electron correlation effect,

such as on-site Coulomb play an important role in magnetic system. Therefore we will

also introduce GW approximation reviewed in Chapter 4 as more accurate electronic

state calculation. This method need to be investigated, and is helpful to improve the

vdW-DF approach.
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Chapter 2

Overview of first-principles

calculation based on density

function theory

In this chapter, the basic theory on the first-principles calculation method of density

functional theory will be reviewed [10, 11]. Consequently, the difficulty of local density

approximation or generalized gradient approximation will be described.

2.1 Density functional theory

As it is well known that density functional theory (DFT) approach is one of fully promis-

ing methods has been achieving a lot of successes in not only solid material physics.

Owing to the expansion of the computational sources, it has been applied to not only

solid material but also to cluster system such as a protein.

2.2 Hohenberg and Kohn theorem

Density functional theory is based on Hohenberg and Kohn theorem [5]. Here we consider

the system has the electron potential of ions written as follows:

vext =
∑
RI

vI(r − RI). (2.1)

Assuming that there is no degeneracy on the ground state, it can be determined on

uniquely by using the external potential. There is a one-to-one correspondence between
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the one-electron density and the external potential vext. If the external potential which

provide a one-electron density of the ground state is determined uniquely, the ground

state of the system will be uniquely determined by the one-electron density.

P. Hohenberg and W. Kohn demonstrate that the external potential vext can be

determined on uniquely for given electron density. Here we assumed the existence of vext

with respect to given one particle electron density (v representation). This assumption

is specious, but it is unproven. Therefore, a weaker constraint (N representation) of one

particle electron density that can be constructed by antisymmetric wave function ψn

was considered;

n(r) = N

∫
dξ1dx2 · · · dxn|ψn(x1, x2, · · · , xn)|2. (2.2)

where x is composite index for position r and spin coordinate ζ. N representation

is weaker construction than v representation. If the v representation is realized, the

external potential vext with respect to ground state electron density n(r) can be exist,

and the ground state wave function can be determined. Therefore N representation

is satisfied. However there is no uniquely for wave function that can express the one

particle electron density n(r). Now we consider the antisymmetric wave function ψn
min

satisfied with the following conditions.

• Give the electron density n(r)

• Give the minimum expected value of sum of the kinetic and electron-electron in-

teraction Vee

The expected value of sum of kinetic and electron-electron interaction by using ψn
min

F [n] = 〈ψn
min|T+Vee |ψn

min〉 is functional of electron density, because ψn
min is determined

by the electron density n. Since F is functional of n(r), it is independent on external

potential (independent on material). Hohenberg and Kohn’s theorem by using F [n] is

as follows:

• Variational principle for the energy functional on ground state : the energy func-

tional depending one particle electron density n(r) satisfied with N-representation
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defined as follows:

E[n] =

∫
drvext(r)n(r) + F [n] (2.3)

Then ground state energy of this system EGS is lower limit of E[n].

• The possibility of one electron density representation : the ground state energy

EGS can be given by the following formula as a functional of one particle electron

density nGS;

EGS =

∫
drvext(r)nGS(r) + F [nGS]. (2.4)

The main message of this theorem is the existence of one particle electron density and

universal functional F [n] that can give the total energy on the ground state. In other

words, the total energy on ground state can be estimated by electron density n(r) without

solving the many body Schrödinger equation.

2.3 Kohn-Sham method

Hohenberg and Kohn’s theorem showed theoretical framework. However this theorem

does not provide the F , we should defined F function for obtaining the total energy[6].

W. Kohn and L. J. Sham had suggested the functional formula of F as follows:

F [n] = Ts[n] +
1

2

∫∫
drdr′n(r)n(r

′)

|r − r′| + Exc[n]. (2.5)

The first term on right hand side is kinetic energy with respect to ideal non interacting

system having electron density n, second term is classical coulomb interaction called

Hartree energy, and third term is exchange correlation energy that contains all quantum

effect. By introducing of non-interacting virtual system (Kohn-Sham auxiliary system)

having electron density n, many body problem can be replaced to an effective one particle
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problem. Therefore Kohn-Sham auxiliary system satisfied with the following formula;

[
−1

2
∇2 + v(r)

]
ψi(r) = εiψi(r), (2.6)

n(r) =
∑
i

|ψi(r)|2. (2.7)

where v is effective one particle potential and summation of index i go until the number

of electrons. The kinetic energy can be defined as

Ts[n] = −1

2

∑
i

∫
drψ∗

i (r)∇2ψi(r). (2.8)

It can be also written as

Ts[n] =
∑
i

εi −
∫
drv(r)n(r). (2.9)

Therefore the total energy depending on electron density n is written as

E[n] =
∑
i

εi −
∫
drv(r)n(r) +

∫
drvext(r)n(r) +

1

2

∫∫
drdr′n(r)n(r

′)

|r − r′| + Exc, (2.10)

where v(r) can be estimated from variational equation on the total energy with respect

to electron density. Now we consider n is the grand state electron density (δE[n] = 0).

δE[n] =

∫
drδv(r)n(r)−

∫
drδn(r)v(r)−

∫
drδv(r)n(r)

+

∫
drδn(r)

[
vext(r) +

∫
dr′ n(r

′)

|r − r′| +
δExc[n]

δn(r)

]
(2.11)

The following formula is used.

∑
i

δεi =

∫
drδv(r)n(r) (2.12)

By using the condition on conservation of the number of electrons written
∫
drδn(r) = 0,

we can get v as follows:

v(r) = vext(r) +
∫
dr′ n(r

′)

|r − r′| +
δExc[n]

δn(r) (2.13)
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The second and third terms of right hand side is Hartree potential and exchange cor-

relation potential, respectively. Exchange correlation potential is driven by functional

differential of exchange correlation energy.

[
−1

2
∇2 + vext(r) +

∫
dr′ n(r

′)

|r − r′| +
δExc[n]

δn(r)

]
ψi(r) = εψi(r) (2.14)

This is called Kohn-Sham equation. This is nonlinear equation and should be solved on

self-consistent filed. Since there is no approximation on this derivation, if we can know

the exact formula of Exc, this equation gave the exact one particle electron density and

the total energy on ground state.

2.4 Local density approximation

The exchange correlation energy includes all quantum effect, indicating that it is im-

portant to describe it for the investigation of quantum effect e.g: magnetism, electron

correlation. If this energy is neglected, we can not get the reasonable physical quantity

such as crystal or molecule structure, binding energy, chemical reaction, even if it has

small energy order compared with total energy. We should employ the some approxi-

mation for exchange correlation energy, because the computable exact formulation for

correlation energy function can not be founded. For the exchange term, Hartree Fock

exchange, however it is exact exchange formula, require a high computational resources

and it is not suitable for solid material. Therefore a much simplified formula for the ex-

change correlation energy which called local density approximation (LDA) is employed

for a long time. The LDA exchange correlation energy functional can be written as

Exc =

∫
drεxc(n(r))n(r). (2.15)

Here εxc = εx+εc, which is introduced from free electron model, is one electron exchange

and correlation energy. εc can be used some approximated formula because the exact

formula of it can not be discovered [12].

The more reasonable approximation ”generalized gradient approximation (GGA)”

which is more mainstream than LDA has been proposed. The difference between LDA

and GGA is the way of estimation for εxc. Is is function of the electron density on



Chapter 2. Overview of first-principles calculation based on density function theory 9

LDA, but GGA requires not only the density but also its gradient. The GGA exchange

correction energy is

Exc =

∫
drεxc(n(r), |∇n(r)|)n(r). (2.16)

The potential of GGA (vxc)can be estimated by

δExc =
Ω

Ngrid

∑
j

dfxc
dn(rj)

δn =
Ω

Ngrid

∑
j

vxc(rj)δn (2.17)

vxc(rj) =
∂fxc
∂n(rj)

+
∑
k

∂fxc
∂∇n(rk)

· d∇n(rk)
dn(rj)

, . (2.18)

where fxc = nεxc, Ω is the volume of the unit cell and Ngrid is the number of FFT grids.

Here we can use the following formula.

∇n(r) =
∑
G
iGn(G)eiG·r =

1

Ngrid

∑
G,j

iGn(rj)eiG·(r−rj). (2.19)

Finally, the GGA potential is computed by the following formula.

vxc(rj) =
∂fxc
∂n(rj)

+
∑
G,k

iG · ∂fxc
∂∇n(rk)

eiG·(rk−rj)

=
∂fxc
∂n(rj)

−
∑
G
eiG·rj iG ·

(
1

Ngrid

∑
k

∇n(rk)
|∇n(rk)|

∂fxc
∂|∇n(rk)|

e−iG·rk

)
. (2.20)

For expression deformation, White and Bird method is employed[13]. Using Fourier

transformation, the density gradient can be calculated easily and in high accuracy. The

function of εxc(n, |∇n|) is proposed by many researchers [14, 15, 16, 17]. Roughly speak-

ing, these GGA functionals give similar results about electronic, molecular, and crystal

structures.

2.5 Adiabatic connection and exchange-correlation hole

The correlation energy contains both electron-electron interaction and correction to KS

kinetic energy. However it can be described by the interaction among electron by using

adiabatic connection [18]. In this concept, Hamiltonians is function of λ which can

control the strength of electron interaction.
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The system becomes non-interacting on λ = 0 case, on the other hand it becomes

real system on λ = 1.

H(λ) = T + Vext + λ
1

2

∑
i 6=j

1

|ri − rj |
(2.21)

where T is the kinetic energy operator and Vext is the external potential ( Vext =∑
i v(ri)). In any λ, it has been promised that the external potential V [n, λ], that gives

the ground state density n(r) with respect to Hamiltonian H̃(λ) define by following

formula, is exist according to Hohenberg and Kohn’s theorem.

H̃(λ) = H(λ) + V [n, λ]. (2.22)

There is no electron interaction on λ = 0. The V [n, λ = 0] is difference between Kohn-

Sham potential Vs and external potential Vext, on the other hand V [n, λ = 1] vanishes

on λ = 1. The total energy of H̃(λ) is written as

E(λ) = 〈ψ(λ)| H̃(λ) |ψ(λ)〉 = 〈H̃(λ)〉λ (2.23)

where |ψ(λ)〉 are eigenstates with respect to H̃(λ). The E(λ) can be written as

E(λ) = E(0) +

∫ λ

0
dλ′
〈
dV [n, λ′]

dλ′

〉
λ′
+

∫ λ

0

dλ′

λ′
Eint(λ

′). (2.24)

where

Eint(λ) =

〈
λ

2

∑
i 6=j

1

|ri − rj |

〉
λ

(2.25)

The V [n, λ] is one particle potential, V [n, λ] =
∑

i V [n, λ; ri]. Hence

∫ 1

0
dλ

〈
dV [n, λ]

dλ

〉
λ

=

∫ λ

0
dλ

∫
drdV [n, λ; r]

dλ
n(r)

=−
∫
drV [n, 0; r]n(r) = −〈Vs〉+ 〈Vext〉 . (2.26)
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The integration with respect to λ can be calculated the electron density which is in-

dependence from λ. Using E(0) = 〈Ts〉 + 〈Vs〉(the total energy on λ = 0 state can be

estimated by electron density, because it is Kohn-Sham’s auxiliary system.), we get the

following formula;

E(1) = 〈Ts〉+ 〈Vext〉+
∫ 1

0

dλ

λ
Eint(λ). (2.27)

Comparing with energy function on Kohn-Sham approach, exchange correlation energy

can be written as

Exc =

∫ 1

0

dλ

λ
Eint(λ)−

1

2

∫
drdr′n(r)n(r

′)

|r − r′| . (2.28)

Note that it is described by electron interaction, but it contains the correction of the

Kohn-Sham kinetic energy. Although the above exchange correlation energy is exact

formula except adiabatic connection, it is just rewriting of the formula and can not be

compute on numerically. That formula can be also written by density operator. The

density operator formula is n̂(r) =
∑

i δ(r−ri), and n(r) = 〈ψ(λ)| n̂(r) |ψ(λ)〉 = 〈n̂(r)〉λ.

We obtain

∫
drdr′ 〈n̂(r)n̂(r

′)〉λ
|r − r′|

=

∫
drdr′ 1

|r − r′|

∑
i 6=j

〈δ(r − ri)δ(r′ − rj)〉λ +
∑
i

〈δ(r − ri)δ(r′ − ri)〉λ


=

〈∑
i 6=j

1

|ri − rj |

〉
λ

+

∫
drdr′

〈∑
i

δ(r − ri)
〉

λ

δ(r − r′)
|r − r′|

=
2

λ
Eint(λ) +

∫
drdr′ δ(r − r′)n(r)

|r − r′| . (2.29)

Eint(λ) =
1

2

∫
drdr′Pλ(r, r′)

|r − r′| (2.30)
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We also defined pair density P as follows:

Pλ(r, r′) = 〈n̂(r)n̂(r′)〉λ − n(r)δ(r − r′)

= N(N − 1)

∫
dr3dr4 · · · drN |ψλ(r, r′, r3, · · · , rN )|. (2.31)

Then another operator is difference from the average of electron density n̄(r) = n̂(r) −

n(r) is defined. Using these formulas, we obtain the exchange correlation

Exc[n] =
1

2

∫
drdr′ 1

|r − r′|

∫ 1

0
dλ[〈n̄(r)n̄(r′)〉λ − δ(r − r′)n(r)]. (2.32)

The pair distribution function gλ(r, r′) can be defined as follows:

〈n̄(r)n̄(r′)〉λ − δ(r − r′)n(r) = Pλ(r, r′)− n(r, r′) = n(r)n(r′)[gλ(r, r′)− 1]. (2.33)

The relation between gλ and Pλ is

gλ(r, r′) =
Pλ(r, r′)
n(r)n(r′) . (2.34)

We obtain the following formulas:

Exc[n] =
1

2

∫
drdr′n(r)nxc(r, r′)

|r − r′| (2.35)

and

nxc(r, r′) = n(r′)
(∫ 1

0
dλgλ(r, r′)− 1

)
. (2.36)

The nxc(r, r′) is exchange-correlation hole, which has sum rule as well as the exchange

hole on Hartree-Fock approximation. The rule is can be written as

∫
dr′nxc(r, r′) = −1. (2.37)
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That is demonstrated in the following formula.

∫
dr′nxc(r, r′) =

∫ 1

0
dλ

∫
dr′ 1

n(r)Pλ(r, r′)−N

=

∫ 1

0
dλ(N − 1)−N = −1, (2.38)

where we use the following formula;

n(r) = 1

N − 1

∫
dr′Pλ(r, r′). (2.39)

The exchange-correlation hole eliminate the electron around itself. We need some ap-

proximation for pair potential, because it is difficult to obtain it in real system. In the

local density functional approximation (LDA) , nxc(r, r′) approximated as free electron

exchange correlation with respect to density on n(r) and pair distribution function is

obtained. Finally we can get LDA formula as follows:

nLDA
xc = n(r)[gh(|r − r′|;n(r))− 1]. (2.40)

2.6 Response function

We introduce the response function to represent the exchange correction energy formula

in the linear response theorem.

vext(r, t) =

 vext(r) t ≤ t0

vext(r) + δvext(r, t) t ≥ t0

(2.41)

The external potential is zero at t ≤ t0. The vext(r) is external potential from atom

and it is non-perturbative system. This system has potential δvext(r, t) at t = t0. The

electron density n0(r) at t ≤ t0 obey Kohn-Sham equation;

[
−1

2
∇2 + vext +

∫
dr n(r′)

|r − r′| + vxc(r)
]
ψj(r) = εjψj(r). (2.42)

The electron density n(r, t) at t > t0 can be expanded by function of δvext(r, t);

δn(r, t) = n(r, t)− n0(r) = n1(r, t) + n2(r, t) + · · · (2.43)
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The over 2nd order expansion can be neglected in the concept of linear response n1(r, t).

Since the n1(r, t) is linear function of δvext, it can be written as

δn(r, t) =
∫
dt′
∫
dr′χ(r, t, r′, t′)δvext(r′, t′). (2.44)

where χ is response function. The functional derivative formula is as follows:

χ(r, t, r′, t′) = δn[vext](r, t)
δvext(r′, t′)

. (2.45)

By the substitution t0 = 0 that dose not lost the generality, the perturbated Hamiltonian

δĤ(t) can be written as

δĤ = eηt
N∑
i=1

δvext(ri, t) (2.46)

where η is the positive small amount, which plays a role for introducing of perturbation

on slowly. Thus eηt → 0 on t → −∞ and eηt → 1 on t → 0. Introducing the electron

density operator n̂(r) =
∑

i δ(r − ri), δĤ can be written as

δĤ(t) =

∫
dr
∫
dω

2π
e−iω̃tδvext(r, ω)n̂(r) (2.47)

where ω̃ = ω + iη. Using the jth eigenstate |Ψ0
j 〉 and eigenvalue E0

j on the non pertur-

bated Hamiltonian H0 (H0 |Ψ0
j 〉 = E0

j |Ψ0
j 〉),|Ψ(t)〉 that is eigenstate at t is represented

as follows by 1st order perturbation,

|Ψ(t)〉 =e−iE0
0 t |Ψ0

0〉+
∑
j 6=0

aj(t)e
−iE0

j t |Ψ0
j 〉 (2.48)

aj(t) =− i

∫ t

−∞
dt′eiω0jt

′ 〈Ψ0
j | δĤ(t) |Ψ0

0〉

=−
∫
dr′
∫
dω

2π
δvext(r′, ω) 〈Ψ0

j | δĤ(t) |Ψ0
0〉
ei(ω0j−ω̃)t

ω0j − ω̃
, (2.49)

where ω0j = E0
j −E0

0 . The induced electron charge density by the perturbation δn(r, t)

is estimated from;

δn(r, t) = 〈Ψ(t)| n̂(r) |Ψ(t)〉 − 〈Ψ0
0| n̂(r) |Ψ0

0〉 . (2.50)
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Taking first order of aj(t), the formula of δn can be written as

δn(r, t) =
∑
j 6=0

[
aj(t) 〈Ψ0

0| n̂(r) |Ψ0
j 〉 e−iω0jt + a∗j (t) 〈Ψ0

j | n̂(r) |Ψ0
0〉 eiω0jt

]
=−

∫
dr′
∫
dω

2π
δvext(r′, ω)e−iω̃t∑

j 6=0

〈Ψ0
j | n̂(r′) |Ψ0

0〉 〈Ψ0
0| n̂(r) |Ψ0

j 〉
ω0j − ω̃

+
〈Ψ0

0| n̂(r′) |Ψ0
j 〉 〈Ψ0

j | n̂(r) |Ψ0
0〉

ω0j + ω̃

 (2.51)

Comparing the definition of response function, the response function is

χ(r, r′, ω) = −
∑
j 6=0

〈Ψ0
j | n̂(r′) |Ψ0

0〉 〈Ψ0
0| n̂(r) |Ψ0

j 〉
ω0j − ω̃

+
〈Ψ0

0| n̂(r′) |Ψ0
j 〉 〈Ψ0

j | n̂(r) |Ψ0
0〉

ω0j + ω̃
. (2.52)

The many body wave function Ψ(r1, · · · , rN ) can be divided to one particle orbital in

non interacting system;

Ψ(r1, · · · , rN ) = ψ1(r1) · · ·ψN (rN ) (2.53)

The 〈Ψ0
j | n̂(r′) |Ψ0

0〉 are estimated from Eq. 2.53 To get excitation jth state, we should

consider just one electron excitation because n̂(r) is one electron operator. When occu-

pied state n(n ≤ N) excite to mth (m > N) state, we get the following formula:

∑
k

〈ψ1, · · · , ψn, · · · , ψN | δ(r − rk) |ψ1, · · · , ψm, · · · , ψN 〉

=
∑
k

∫
dr1 · · · drNδ(r − rk)ψ∗

1(r1)ψ1(r1) · · ·ψ∗
n(ri)ψm(ri) · · ·ψ∗

N (rN )ψN (rN )

=ψ∗
n(r)ψm(r). (2.54)

The summation of jth exited state is sum of occupied and unoccupied states. Using

ω0j = E0
j − E0

0 = εm − εn, the χ can be written as

χ(r, r′, ω) = −
occ.∑
n

unocc.∑
m

ψ∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)
εm − εn − ω̃

+
ψ∗
n(r′)ψm(r′)ψ∗

m(r)ψn(r)
εm − εn + ω̃

. (2.55)
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It can be also written as

χ(r, r′, ω) =
∑
i,j

(fi − fj)
ψ∗
i (r′)ψj(r′)ψi(r)ψ∗

j (r)
ω̃ − (εi − εj)

. (2.56)

where fi, fj is distribution function which has one (zero) value in occupied (unoccupied)

state. When ψ and ε are Kohn-Sham eigenfunctions and eigenvalues, respectively, it

called Kohn-Sham response function, because the non-interacting system is same with

Kohn-Sham auxiliary system (χλ=0 = χ0 = χKS). We introduce other formulation for

response function. It can be written as follows using linear response theory framework:

δn(r, ω) =
∫
dr′χ(r, r′, ω)δφext(r′, ω). (2.57)

For simplify, we use short formula δn = χδφext. χ is described the change of electron

density δn when the external potential change to φext + δφext. The charge of electron

density cause a change of total potential. To describe it, we also introduce response

function χ̃ as follows:

δn = χ̃δφ. (2.58)

Then the relation between χ and χ̃ is as follows:

χδφext =χ̃δφ

=χ̃(δφext + δφind)

=χ̃(δφext + V δn)

=χ̃(δφext + V χδφext) (2.59)

→ χ = χ̃+ χ̃V χ. (2.60)

The induced electron density by the external electronic field related to electronic

polarization moment P ( δn = −∇ · P). It also can be written as P = ε−1
4π δE because

induced electronic filed is written as δE = −∇δφ. Therefore we obtain

δn = −∇ ·
(
ε− 1

4π
δE
)

= ∇r′ ·
(
ε− 1

4π
∇r

)
δφ. (2.61)
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Using above relation, the χ̃ using by dielectric function can be written as follows:

χ̃ = ∇r′ ·
ε− 1

4π
∇r. (2.62)

These formulations can extend to adiabatic connection framework that have a parameter

λ which adjust the strength of interactions.

δnλ = χ0δφ
λ
eff (2.63)

According to Kohn-Sham approach, this effective potential can be written as

δφλeff = δφext + (Vλ + fλxc)δn
λ. (2.64)

Although the response function on the some λ state have interacting electron in the

system, it can be estimated by Kohn-Sham response function owing to the replacement of

λ state to Kohn-Sham auxiliary system. Note that there is difference between many body

wave function and Kohn-Sham wave function even if non-interacting system, however,

response function can be estimated using same formula, because the these wave function

gave same charge density. Finally we get

χλ = χ0(Vλ + fλxc)χλ. (2.65)

This formula can be rewriting using following formulas;

χλ = χ̃λ + χ̃λVλχλ (2.66)

χ̃λ = χ0 + χ̃0f
λ
xcχ̃λ (2.67)

2.7 Exchange correction energy formula

There is no computable strict formula for exchange correction energy, however we can

make the formula by using fluctuation dissipation theorem. This approach can give a

starting point for an approximation of exchange correction energy even if it is impossible
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to be solved. To get exchange-correlation formula, we start from the following formulas:

∫ ∞

0
dωχ(r, r′, iω) + χ(r′, r, iω)

= −
∑
j 6=0

∫ ∞

0
dω(〈Ψ0

j | n̂(r′) |Ψ0
0〉 〈Ψ0

0| n̂(r) |Ψ0
j 〉+ 〈Ψ0

0| n̂(r′) |Ψ0
j 〉 〈Ψ0

j | n̂(r) |Ψ0
0〉)

×
(

1

ω0j − iω
+

1

ω0j + iω

)
= −π(〈Ψ0

0| n̂(r′)n̂(r) |Ψ0
0〉+ 〈Ψ0

0| n̂(r)n̂(r′) |Ψ0
0〉) + 2πn(r)n(r′). (2.68)

The above integration with respect to ω could be performed using the following formula:

∫ ∞

0
dω

1

ω0j − iω
+

1

ω0j + iω
=

∫ ∞

0
dω

2ω0j

ω2
0j + ω2

= π,
∑
j 6=0

|Ψ0
j 〉 〈Ψ0

j | = 1− |Ψ0
0〉 〈Ψ0

0|

(2.69)

Therefore, exchange-correction energy formula using response function can be written

as

Exc =− 1

2

∫ 1

0

dλ

λ

∫
drdr′ λ

|r − r′|

∫ ∞

0

dω

π
χλ(r, r′, iω)−

1

2

∫
drdr′n(r)δ(r − r′)

|r − r′|

=−
∫ 1

0

dλ

λ

∫ ∞

0

dω

2π
Tr[χλVλ]− Eself, (2.70)

where the Eself is defined as follows:

Eself =
1

2

∫
drdr′n(r)δ(r − r′)

|r − r′| . (2.71)

Exactly, λ = 0 part expresses exchange energy as follows:

− 1

2π

∫
drdr′

∫ ∞

0
dωχλ=0(r, r′, iω)−

1

2

∫
drdr′n(r)δ(r − r′)

|r − r′| . (2.72)
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The first term and second term are as follows:

− 1

2π

occ.∑
n

unocc.∑
m

∫
drdr′ψ

∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)
|r − r′|

∫ ∞

0
dω

(
2ωnm

ω2
nm + ω2

)

=
1

2

occ.∑
n

unocc.∑
m

∫
drdr′ψ

∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)
|r − r′| (2.73)

−1

2

∫
drdr′n(r)δ(r − r′)

|r − r′| =
1

2

occ.∑
n

∑
m

∫
drdr′ψ

∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)
|r − r′| . (2.74)

Regarding second term, the integrity condition for wave function (
∑

m ψ
∗
m(r′)ψm(r) =

δ(r − r′)) and the definition of electron density (n(r) =
∑occ.

n ψ∗
n(r)ψn(r)) are used.

Therefore λ = 0 part becomes same with the exchange energy formula as follows:

−1

2

occ.∑
n

occ.∑
m

∫
drdr′ψ

∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)
|r − r′| (2.75)

On the other hand, the non-zero λ part express correlation energy.

2.8 Recent trends of DFT

We showed that density functional approach is exact theory, but we should employ some

approximations for the exchange-correlation functional. Although using Hartree-Fock

exchange seems better, this attempt does not work well in solid materials because the

screened effect which reduced exchange interaction could not be taken into account. And

a computational cost of the Hartree-Fock approximation is much larger than LDA/GGA.

These are the reasons why LDA/GGA are used for solid materials even if nonlocal ef-

fect, such as vdW interaction, can not be taken into account. To solve this problem,

various methods have been developed and applied, such as random phase approximation

(RPA), semi-empirical approach (DFT-D), and nonlocal correlation approach [19, 20,

21, 22]. The RPA approach has high computational cost and semi-empirical approach

used empirical parameter depending on materials, indicating that these methods are

not suitable for material design. Therefore we focus on nonlocal correlation approach

(vdW-DF) in Chap. 3.
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Chapter 3

Overview of van der Waals

density functional

According to literatures, van der Waals force is defined as interactive or repulsive force

between atoms, ions, and molecules that is caused by permanent dipoles and instan-

taneously induce dipoles in the wide sense. In this thesis, van der Waals (vdW) force

indicates the later one which is called London dispersion force. Although vdW force is

quantum and nonlocal effect, LDA/GGA method can not described its effect. Therefore

I should introduce nonlocal correlation energy formula to describe vdW force. vdW-DF

method, which can calculate non empirical nonlocal correlation energy by using electron

density, has been proposed by Dion et al. In this chapter, I review vdW-DF approach.

3.1 Nonlocal correlation energy

A starting point to obtain the nonlocal correlation energy on vdW-DF method is ex-

change correlation formula using response function;

Exc = −
∫ ∞

0

dλ

λ

∫ ∞

0

dω

2π
Tr[χλVλ]− Eself (3.1)

where Vλ = λ
|r−r′| . The response functions with respect to chaining of electron density

are already introduced;

χλ = χ̃λ + χ̃λVλχλ, (3.2)

χ̃λ = χ0 + χ0f
λ
xcχλ. (3.3)
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They use an approximation (χ̃λ ' χ̃λ=1) that is called full potential approximation

(FPA), owing to overcoming the difficulty of λ dependency of the response function.

χλ = (1− λχ̃λ=1V )−1χ̃λ=1 (3.4)

The FPA can is correct for description of long-range interaction. Therefore another

approximation (χ̃λ ' χ̃λ=0) which is random phase approximation is carried out in

general. However that problem is well overcome on vdW-DF approach. Using FPA, the

λ integration can be solved analytically.

∫ 1

0
dλ(1− λχ̃λ=1V )−1 =

[
ln(1− λχ̃λ=1V )

]1
0
(χ̃λ=1V )−1 = − ln(1− χ̃λ=1V )(χ̃λ=1V )−1

(3.5)

The exchange-correlation energy on FPA can be written as:

EFPA
xc =

∫ ∞

0

dω

2π
Tr[ln(1− χ̃λ=1V )]− Eself

=

∫ ∞

0

dω

2π
Tr
[
ln
(
1−∇ · ε

4π
∇V +

1

4π
∇2V

)]
− Eself

=

∫ ∞

0

dω

2π
Tr
[
ln
(
∇ · ε∇−V

4π

)]
− Eself (3.6)

Here V = 4π/r and ∇2V = −4π are used. The definition of nonlocal correlation energy

Enl
c is an energy difference between FPA exchange-correlation energy and homogeneous

electron gas (HEG) its.

Enl
c = EFPA

xc − EFPA
xc (HEG) (3.7)

This treatment overcomes the uncertainly problem of FPA correction energy in short-

range because this error is canceled by taking the energy difference from homogeneous

electron gas model. Note that homogeneous electron gas system does not have nonlocal

correlation effect. Here, the second term which is FPA exchange-correlation energy on

homogeneous electron gas model can be written as follows:

EFPA
xc (HEG) =

∫ ∞

0

dω

2π
Tr[ln ελ=1]− Eself (3.8)
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The nonlocal correlation energy is written as

Enl
c =

∫ ∞

0

dω

2π
Tr
[
ln(1 + ε−1(∇ · ε− ε∇·)∇−V

4π

]
(3.9)

=

∫ ∞

0

dω

2π
Tr
[
ln
(
1−

(
1− 1

ε

)
− χ̃

ε
V

)]
. (3.10)

The density dielectric function ε is depended on one particle wave function. The relation

between dielectric and polarization function is written as follows approximately:

S = 1− 1

ε
. (3.11)

The nonlocal correlation energy can be expanded by polarization function S and I used

until second term,

Enl
c '

∫ ∞

0

dω

2π
Tr
[
S2 −

(
∇ · S∇−V

4π

)]
(3.12)

Then they derived an approximate expression for S and carried out the integral for ω.

After that nonlocal correlation energy formula can be written as

Enl
c =

1

2

∫∫
dr1dr2n(r1)φ(n(r1), n(r2))n(r2) (3.13)

where the expression of nonlocal correlation kernel function is

φ(r1, r2) =
2

π2

∫ ∞

0
daa2

∫ ∞

0
dbb2W (a, b)T (ν(a), ν(b), ν ′(a), ν ′(b)) (3.14)

T (w, x, y, z) =
1

2

[
1

w + z
+

1

y + z

] [
1

(w + y)(x+ z)
+

1

(w + z)(y + x)

]
(3.15)

W (a, b) =
2

a3b3
[(3− a2)b cos b sin a+ (3− b2)a cos a sin b

+ (a2 + b2 − 3) sin a sin b− 3ab cos a cos b]. (3.16)

Here ν(y) = y2

2h(y/d) , ν
′(y) = y2

2h(y/d′) , h(y) = 1 − e−4πy2/9. The double integration of a

and b correspond to the trace calculation.
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3.2 Order N log N method for vdW-DF

The exchange-correlation energy in vdW-DF is given[8] by

Exc = Ex + Eloc
c + Enl

c , (3.17)

where Ex, Eloc
c and Enl

c are exchange energy, short-range local correlation energy, and

nonlocal correlation energy, respectively. Enl
c is expressed as a double integral of the

nonlocal interaction kernel φ(q1, q2, r12)[8] over spatial coordinate r1 and r2 as

Enl
c =

1

2

∫∫
n(r1)φ(q1, q2, r12)n(r2)dr1dr2, (3.18)

where r12 = |r1 − r2|, q1 = q0(r1), q2 = q0(r2), and q0(r) is a function of the charge

density n(r) and its gradient |∇n(r)|. Román-Pérez and Soler (RPS)[23] proposed an

efficient method to evaluate Enl
c , as the direct computation of the double integral in

Eq. (3.18) is extremely time consuming. In the RPS scheme, the vdW kernel φ is

expanded in terms of interpolating function pα(q), which satisfies pα(qβ) = δαβ, so that

φ is a fixed value at a given qβ point, allowing the use of the fast Fourier transform

(FFT) in the evaluation of Enl
c . However, φ has a divergence when qα, qβ → 0, which

makes the interpolation near the origin difficult, and thus, RPS replaced φ with the soft

form and employed LDA-like approximation to Enl
c near the origin. Alternatively, Wu

and Gygi (WG)[24] proposed a simplified implementation to avoid the divergence in φ

as follows. The nonlocal interaction kernel, multiplied by q1 and q2, is expanded as

q1q2φ(q1, q2, r12) '
∑
αβ

qαpα(q1)qβpβ(q2)φαβ(r12), (3.19)

so that the divergence at qα, qβ → 0 can be avoided. Introducing the function ηα(r) =

qαn(r)pα(q0(r))/q0(r), the nonlocal correlation is calculated in the reciprocal space as

Enl
c =

1

2

∑
αβ

∫∫
ηα(r1)ηβ(r2)φαβ(r12)dr1dr2

=
Ω

2

∑
G

∑
αβ

η∗α(G)ηβ(G)φαβ(G), (3.20)
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where G is reciprocal lattice vector G = |G|, ηα(G) and φαβ(G) are the Fourier compo-

nents of ηα(r) and φαβ(r12), respectively, and Ω is the volume of unit cell. The Fourier

component φαβ(G) is calculated as

φαβ(G) =
1

q3α
Fαβ

(
G

qα

)
, (3.21)

where

Fαβ(k) =
4π

k

∫ ∞

0
uφ

(
u,
qβ
qα
u

)
sin(ku)du. (3.22)

This is procedure of our vdW-DF. The kernel table φ(D, δ) is make preparations in ad-

vance and, φαβ(G) is etimated in DFT code. Note that the G = 0 term in Eq. (3.20) van-

ishes when α = β. The nonlocal correlation potential within the White-Bird algorithm[13]

is given by

vnl
c (ri) =

δEnl
c

δn(ri)

' N

Ω

dEnl
c

dn(ri)

=
∑
α

uα(ri)∂ηα(ri)
∂n(ri)

+
∑
j

uα(rj)
∂ηα(rj)
∂∇n(rj)

∂∇n(rj)
∂n(ri)


=
∑
α

uα(ri)∂ηα(ri)
∂n(ri)

−
∑
G
eiG·riiG ·

 1

Ngrid

∑
j

uα(rj)
∇n(rj)
|∇n(rj)|

∂ηα(rj)
∂|∇n(rj)|

e−iG·rj


(3.23)

where

uα(ri) =
Ω

N

∑
βj

φαβ(rij)ηβ(rj) =
∑
βG

φαβ(G)ηβ(G)eiG·ri , (3.24)
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with N being the number of the FFT grid. In our formulation, an additional contribution

to the pressure tensor Πk`, (k, ` = x, y, z) is calculated as

(Πnl
c )k` =− 1

Ω

∑
m

∂Enl
c

∂hkm
(ht)m` (3.25)

=− 1

Ω
Enl

c δk`

− 1

N

∑
m

∑
j

∑
α

uα(rj)
∂ηα(rj)
∂n(rj)

∂n(rj)
∂hkm

(ht)m`

+
1

N

∑
j

∑
α

uα(rj)
∂ηα(rj)
∂|∇n(rj)|

(∇n(rj))k(∇n(rj))`
|∇n(rj)|

− 1

N

∑
m

∑
j

∑
α

uα(rj)
∂ηα(rj)
∂|∇n(rj)|

∇n(rj)
|∇n(rj)|

·
∑
G

∂n(G)

∂hkm
(ht)m`(iG)eiG·rj

+
1

2

∑
αβ

∑
G
η∗α(G)ηβ(G)

∂φαβ(G)

∂|G|
GkG`

|G|
, (3.26)

where the matrix h = (a1,a2,a3) is a set of primitive lattice vectors ak (k = 1, 2, 3) and

ht is the inverse of h.

3.3 Fourier component of the kernel function φαβ(G)

In the present implementation, the Fourier components of the kernel function φαβ(G)

are calculated from the tabulated data for φ(d1, d2) (d1φ(d1, d2) in the case of WG

implementation) using Eq. (3.21). The typical functions of φαβ(G) are presented in

Fig. 3.1. For the small qα’s, φαα(G) deviates slightly from zero at G = 0 in the

present computation, which may cause a numerical error. However, the error in the

absolute value of Enl
c associated with the deviation is typically ∼0.5 meV in fcc argon

and negligible in the estimation of the cohesive energies.

3.4 rVV10 with the Wu-Gygi implementation

The rVV10 functional has been proposed[25] to implement the VV10 functional[26]

with the efficient RPS algorithm.[23] I note that very recently the original VV10 is

implemented using the WG scheme by Corsetti et al.[27] Here, I briefly describe our

implementation of rVV10 with the algorithm proposed by WG.[24] The rVV10 nonlocal
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components are shown.
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correlation functional is given by

Enl
c =

1

2

∫∫
n(r1)
k3/2(r1)

φrVV10(q̃1, q̃2, r12)
n(r2)
k3/2(r2)

dr1dr2, (3.27)

where φrVV10(q̃1, q̃2, r12) is the rVV10 nonlocal correlation kernel,[25] q̃1 = q̃(r1), q̃2 =

q̃(r2) and k(n(r)) = 3πb(n/9π)1/6/2. q̃i is defined as q̃(ri) = ω0(n(ri), |∇n(ri)|)/k(n(ri))

with ω0 defined in Ref. [26]. The parameter b is an adjustable parameter, which is

determined by fitting on a training set (see Refs. [26, 25] for detail). By expanding the

nonlocal correlation kernel in the same manner as Eq. (3.19), the nonlocal correlation

energy is written as

Enl
c =

Ω

2

∑
G

∑
αβ

η̃∗α(G)η̃β(G)φrVV10
αβ (G), (3.28)

where η̃α(G) is the Fourier component of η̃α(r), which is defined by

η̃α(r) = qαn(r)pα(q̃(r))/k3/2(r)q̃(r), (3.29)

and the Fourier transform of the nonlocal correlation kernel φrVV10 is given by

φrVV10
αβ (G) =

1

qα3/2
F rVV10
αβ

(
G

√
qα

)
, (3.30)

F rVV10
αβ (k) =

4π

k

∫ ∞

0
u sin(ku)φrVV10

(
u,

√
qβ
qα
u

)
du. (3.31)

The nonlocal correlation potential is calculated in the same way with vdW-DF.

3.5 Technicalities

I have implemented vdW-DF into our in-house DFT code,[28, 29, 30] which uses a plane-

wave basis set and ultrasoft pseudopotentials.[31, 32] In the construction of the pseudopo-

tentials, I neglected the nonlocal correlation (Enl
c ) and employed the semilocal exchange

and correlation functionals, which are consistent with the solid state calculation. For

instance, pseudopotential constructed using the refit Perdew Wang (PW86R)[33, 34]

exchange and the LDA correlation was used in vdW-DF2 calculation. Use of the

pseudopotential generated using the semilocal exchange correlation functional has been
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justified.[35, 36] In the present vdW-DF calculations, I have used relatively large energy

cutoffs for wave functions and electron density in the plane wave expansions, compared

with those used in the LDA or GGA, to achieve the convergence of the pressure tensor,

because the vdW forces are very weak, and potential energy surface is very sluggish.

In the present work, I employed the Perdew-Zunger exchange-correlation for LDA [37] ,

and the PBE functional for GGA[14].

For the vdW-DF calculations, I employed the following functionals; the original vdW-

DF with the revPBE[38] exchange and LDA correlation, second version of the vdW-

DF (vdW-DF2), which uses PW86R[34] exchange, vdW-DF paired with the Cooper’s

(C09)[39] exchange (vdW-DFC09x),vdW-DF2 paired with C09 exchange (vdW-DF2C09x),

vdW-DF2 paired with revised b86[36] exchange (rev-vdW-DF2). I also implemented the

revised Vydrov-Van Voorhis functional (rVV10)[26, 25] with the WG[24] implementation

, which uses the PW86R exchange, PBE correlation, and the nonlocal correlation. The

functional is designed to give accurate C6 coefficients and to vanish in the uniform

electron gas limit.

To evaluate φ in the vicinity of qα = 0, I use a linear mesh up to q = qm with N lin

grid points, and the logarithmic mesh is used from qm to qc with N log grid points, where

qc is the cutoff for the q-mesh. I use qc = 8 a.u., qm = 0.01 a.u., N lin = 3, N log = 28,

except for rVV10, in which qc = 3 a.u., qm = 0.005 a.u. are used. I confirmed that

the cutoff qc is sufficiently large, by monitoring the distribution of q0 and the nonlocal

correlation energy as a function of q0 function.
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Chapter 4

Overview of GW method

We have some choices for exchange and local correlation energy functional on vdW-DF

because this method just defines a nonlocal correlation energy except these function-

als. Some combinations of exchange and local correlation energy functions have been

suggested, and some researchers modified these functionals to be suitable for nonlocal

correlation energy functionals. Almost methods use LDA/GGA exchange and local cor-

relation energy, as it is well known, these treatment can not describe some electron

correlation effect including an error of exchange energy. It is important to access more

accurate electronic state than LDA/GGA and vdW-DF, for analyzing results obtained

by those functionals and improving vdW-DF approach. Although there are some meth-

ods to access electron correlation effect, gw approximation based on many-body theory

is one of promising methods for solid state physics. In this chapter we overview GW

method, some problems, and beyond GW method.

4.1 1shot-GW method

GW method is based on many-body problem and quasi-particle equation is given by

[
−1

2
∇2 + Vion(r) + V H(r)

]
ψi(r, ω) +

∫
dr′Σxc(r, r′;ω) = Eiψi(r, ω), (4.1)

where Vion is electronic potential from the ions, V H is electrostatic potential (Hartree

potential). The many-body effect is described by through the self-energy Σxc. It is

nonlinear equation because self-energy is nonlocal function and depends on eigen value

of quasi-particle. According to Hedin theorem, there are some equations among the

green function G, three point vertex function Γ, screened exchange W , and polarization
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function Π and self-energy Σxc [40]. Since Γ is approximated as delta function by the

GW approximation, self energy can be written as;

Σxc(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω − ω′)W (r, r′, ω′)e−iδω′

. (4.2)

Here green function is given by

G(r, r′, ω) =
∑
i

ψi(r)ψ∗
i (r′)

ω − εi ± iδ
. (4.3)

The relation between W and Π is W = v + v
1−vΠvΠ, and polarization function is Π =

−iG × G. In general, GW approximation indicates one-shot GW method. In this

method, G is made from LDA or GGA wave functions and eigenvalues. The G, Π,

W , and σxc can be calculated in order. Quasi-particle eigenvalues using self energy are

estimated from following formula:

Ei = εi + Zi [〈ψi|Σxc(εi)− Vxc|ψi〉] . (4.4)

Here Zn is renormalized factor and as follows:

Zn =

[
1− 〈ψn|

∂

∂ω
Σxc(r, r′, εn)|ψn〉

]−1

. (4.5)

Many researchers reported that GW approach gave more reasonable band gap on insu-

lators.

4.2 Beyond GW method

As we showed in the last section, one shot GW approach is based on perturbation theory.

For one shot GW approach is a good approximation, it is necessary that the perturbation

is not large. Therefore if LDA/GGA results apart from the actual electron state, e.g:

NiO, one shot GW approach does not work well. Although we can consider the different

starting point for perturbation approach, such as LDA+U approach, to overcome this

problem, the result of one shot GW much depends on an initial condition. Therefore

the self consistent approach should be required, and self-consistent GW approach is

performed. The attempt is expected to legitimate way, but it gives wrong band gap.
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The neglecting of Γ function is said to be a cause of it, indicating that Γ should be must

accurately calculated.

The Hedin theorem gives

Σxc(x1, x2) =
i

2π

∫
dx3x4G(x1, x3 + δ)W (x1, x4)Γ(x3, x2, x4), (4.6)

as self energy. For successful of the self-consistent GW , the self energy would be calcu-

lated as GWΓ. However computational cost of Γ is huge, applicable systems are limited,

for example a few atoms in unit cell.

4.3 QSGW approach

To overcome one shot GW problem, other self-consistent scheme that called quasi-

particle self-consistent GW (QSGW ) has been proposed by T. Kotani and Mark van

Schilfgaarde [2]. One particle effective exchange correlation potential produced by Σxc

is as follows:

V xc =
1

2

∑
ij

|ψi〉<[Σxc(εi)]ij + <[Σxc(εj)]ij 〈ψj | (4.7)

LDA/GGA DFT calculation performed using this effective correlation potential, after

that self energy are calculated in the same way with GW approximation. By continuing

the cycle, we can get self-consistent results for effective exchange correlation potential.

Although the procedure of making effective potential is not clear for theoretical back-

ground, QSGW gave more reasonable band gap compared with one shot GW approach.

We refer the previous results for GW and QSGW from [1, 2] on Fig. 4.1. Figure 4.1

shows that one shot GW approach can improve band gap from LDA results, but still

underestimated. On the other hand, QSGW approach reproduces experimental band

gap, even though it tends to overestimate the band gap.
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Figure 4.1: The comparison of band gap between experimental and
theoretical values. Left figure shows LDA and one shot GW results and

right figure shows QSGW results.[1, 2]
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Chapter 5

Extension of vdW-DF

Since the vdW interaction is not directly related to the spin polarization, a truly spin

polarized version of vdW-DF has not yet been developed, except for the one proposed

by Vydrov and Van Voorhis.[41] Thus, the application of vdW-DFs to magnetic systems

is quite limited. We have proposed a practical approach to magnetic system within

the framework of vdW-DF, in which spin polarization dependent gradient correction

is added to the local correlation energy and potential, instead of developing the spin

polarized version of the nonlocal correlation [42, 43].

5.1 vdW-DF-SGC

In the original vdW-DF, LDA was employed for the short-range local correlation en-

ergy, to avoid double counting of the contribution from |∇n| contained in Enl
c .[8] For

simplify, the exchange and local correction energy functionals can be expanded to spin

polarization;

Exc[n↑, n↓] = EGGA
x [n↑, n↓, |∇n↑|, |∇n↓|] + ELDA

c [n↑, n↓] + Enl
c [n, |∇n|]. (5.1)

Here n↑ and n↓ is up and down electron density, respectively. In a spin polarized system,

spin-polarization dependent gradient correction should be included in the correlation

energy and potential, but such a contribution is missing in the nonlocal correlation, as it

is mostly formulated for the spin unpolarized system. In this senses, we have proposed

how to extent to the spin system as follows:

Eloc
c = ELSDA

c [n↑, n↓] + ∆Ec[n, ζ], (5.2)
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where

∆Ec[n, ζ] = EGGA
c [n↑, n↓]− EGGA

c [n/2, n/2]

=

∫
n {H(rs, ζ, t)−H(rs, 0, t)} dr, (5.3)

H, rs, ζ and t are the gradient contribution, Seitz radius (n = 3/4πr3s), the rel-

ative spin polarization, and the dimensionless density gradient proportional to |∇n|,

respectively. The
∫
drn(r)[H(rs, ζ, t)−H(rs, ζ = 0, t)] which is spin dependent gradient

correction did not be considered in simple expansion. We use the functional form for H

proposed by Perdew, Burke and Ernzerhof (PBE).[14] The present functional reduces to

the original one in the absence of spin polarization. Note that SGC is not necessary for

rVV10, because PBE-GGA correlation is used for the local correlation.

5.2 svdW-DF

The other extension of vdW-DF to spin polarized system (svdW-DF) has been proposed

by T. Thonhauser et al.[44]. They applied svdW-DF to some magnetic molecule and the

system of magnetic surface and molecule. However they did not compare between svdW-

DF and vdW-DF version which has been expanded to spin polarized on exchange and

local correction. Comparing with vdW-DF-SGC is also important to check the accuracy

and give useful information to improve exchange-correction functional. Therefore we

also implemented svdW-DF to our DFT code. In this section, we review the svdW-DF

and derive energy, potential, and pressure formula using order N log N method which is

proposed by Jun Wu and Fraccois Gygi to reduced the huge computational cost caused

by double integral in real space. The nonlocal correlation energy in the Jun Wu and

Francois Gygi method is written as follows:

Enl
c =

1

2

∑
αβ

∫∫
drdr′ηα(r)ηβ(r′)φαβ(|r − r′|) (5.4)

where

ηα(r) =
qαn(r)pα(q0(r))

q0(r)
(5.5)
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Originally, q0(n) function is composed by unspin polarized one particle exchange and

correlation energy part as follows

q0(r) = q0x[n] + q0c[n], (5.6)

q0x[n] = −
(
1− Zab

9
s2
)

4π

3
εLDA

x =

(
1− Zab

9
s2
)
kF, (5.7)

q0c[n] = −4π

3
εLDA

c (n). (5.8)

The q0(n) function which is related with wave number depends on charge density in

vdW-DF method, but it was extended to function of spin density n↑, n↓ in svdW-DF.

Considering the spin scaling relation, the q0 function depending on spin density is written

as follows:

q0(r) = q̃0x[n↑, n↓] + q̃0c[n↑, n↓], (5.9)

q̃0x[n↑, n↓] =
n↑
n
q0x[2n↑] +

n↓
n
q0x[2n↓], (5.10)

q̃0c[n↑, n↓] = −4π

3
εLDA

c (n, ζ). (5.11)

The nonlocal potential depending on spin density can be written as

vnl
c↑(r) '

Ω

Ngrid

dEnl
c

dn↑(r)
=
∑
α

(
uα(r)

∂ηα(r)
∂n↑(r)

+
∑

r′
uα(r′)

∂ηα(r′)
∂∇n↑(r′)

∂∇n↑(r′)
∂n↑(r)

)
. (5.12)

where uα(r) =
∑

β

∫
dr′η(r′)φαβ(|r− r′|) is same with vdW-DF case. Since the nonlocal

kernel function is same with vdW-DF, however q0 function depends on spin density. In

the svdW-DF approach, it is easy to expand to Wu and Gygi’s order N log N method.

We show the detail formulations for implementation. The spin dependent parts are

calculated as follows:

dq0(r)
dn↑

=
n↓
n2

(q0x[2n↑]− q0x[2n↓]) +
2n↑
n

dq0x[n]

dn
|n=2n↑ , (5.13)

dq0(r)
dn↓

=
n↑
n2

(q0x[2n↓]− q0x[2n↑]) +
2n↓
n

dq0x[n]

dn
|n=2n↓ . (5.14)
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Here

dq0x[n]

dn
=

(
1− Zab

9
s2
)
dkF
dn

=

(
1− Zab

9
s2
)
kF
3n

(5.15)

and

dq0(r)
d∇n↑

=
∇n↑
|∇n↑|

dq0
d|∇n↑|

=
∇n↑
|∇n↑|

n↑
n

dq0x[2n↑]

d|∇n↑|
= −Zab

9

∇n↑
2kF↑n↑

1

n
. (5.16)

About the pressure tensor, it is almost some with vdW-DF case.

(Πnl
c )k` =− 1

Ω
Enl

c δk`

− 1

N

∑
m

∑
j

∑
α

∑
σ

uα(rj)
∂ηα(rj)
∂nσ(rj)

∂nσ(rj)
∂hkm

(ht)m`

+
1

N

∑
j

∑
α

∑
σ

uα(rj)
∂ηα(rj)

∂|∇nσ(rj)|
(∇nσ(rj))k(∇nσ(rj))`

|∇nσ(rj)|

− 1

N

∑
m

∑
j

∑
α

∑
σ

uα(rj)
∂ηα(rj)

∂|∇nσ(rj)|
∇nσ(rj)
|∇nσ(rj)|

·
∑
G

∂nσ(G)

∂hkm
(ht)m`(iG)eiG·rj

+
1

2

∑
αβ

∑
G
η∗α(G)ηβ(G)

∂φαβ(G)

∂|G|
GkG`

|G|
, (5.17)

Comparing with vdW-DF, spin index σ is used in some parts. Since svdW-DF use same

kernel function with vdW-DF, the last term is same with vdW-DF.
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Chapter 6

Application of vdW-DF and spin

dependent vdW-DF

We will show the application of vdW-DF and spin dependent vdW-DF (vdW-DF-SGC

and svdW-DF). We demonstrate the usefulness of the nonlocal correaltion approach

using relatively simple systems e.g.: nobel gas solid, molecular complex and molecular

solid. The Results for crystal systems are summaried in [43] and oxygen molecular

systems results are reported [42, 45].

6.1 Oxygen Molecule

We show the oxygen molecule results. We performed Γ point calculation which has 20×

20×20 Å3 cubic unit cell using several echange-correlation functional. The energy cutoffs

of 40 and 350 Ry were used for wave function and electron density, respectively. Table 6.1

shows the calculated properties of an oxygen molecule with several functionals. The

calculated equilibrium bond length (b), binding energy (Emol
b ) , and vibration frequency

(ω) are comparable to the experimental values. Interestingly, the data obtained with

vdW-DFs shows that introduction of SGC, lowers the binding energy by 0.23 eV. Emol
b

obtained using vdW-DF-SGC is much smaller than that obtained using PBE, and in

better agreement with the experimental value, but b is overestimated. vdW-DFs with

the C09 exchange tend to decrease b, leading to better agreement with the experimental

value than PBE and vdW-DFs with the revPBE exchange, but overestimate Emol
b signif-

icantly. Nevertheless, Emol
b ’s obtained using PBE and vdW-DFs with the C09 exchange

are in reasonably good agreement.
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Table 6.1: Properties of oxygen molecule: equilibrium bond lengths (b),
binding energies (Emol

b ), vibrational frequencies (ω), and HOMO-LUMO
energy gaps (∆εH−L).

energy functional b (Å) Emol
b (eV) ω(THz) ∆εH−L (eV)

PBE 1.221 6.03 44.7 2.38
vdW-DF 1.233 5.50 45.7 2.26
vdW-DF-SGC 1.232 5.27 45.6 2.37
vdW-DFC09x 1.214 6.49 48.4 2.22
vdW-DFC09x-SGC 1.214 6.26 48.3 2.33
vdW-DF2C09x 1.215 6.37 48.3 2.22
vdW-DF2C09x-SGC 1.215 6.14 48.3 2.33
Exp. 1.207a 5.12a 47.39a

a Ref. [47]
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Figure 6.1: Binding energy and atomic force of oxygen molecule as func-
tions of bond length. vdW-DF2C09x -SGC was used for the calculations.

Figure 6.1 shows binding energy and atomic force as functions of bond length for the

oxygen molecule calculated using vdW-DF2C09x-SGC. The equilibrium bond length is

estimated to be 1.215 Å from the energy minimum. This differs by less than 1× 10−3 Å

from the bond length determined from the atomic force. The vdW-DF approach does not

drastically change the equilibrium bond length, binding energy, vibration frequency, or

the energy gap between the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) levels, compared with results of GGA (PBE).

Our data is in line with the fact that the XC functional of vdW-DFs has a predictive

power for small molecules similar to GGA.[46]



Chapter 6. Application of vdW-DF and spin dependent vdW-DF 39

−120

−100

−80

−60

−40

−20

 0

 20

 40

 2  2.5  3  3.5  4  4.5  5  5.5

0.0
0.2
0.4
0.6
0.8
1.0

B
in

di
ng

 e
ne

rg
y 

[m
eV

]

m
. m

. [
µ

B
]

Separation [Å]

PBE 
vdW−DF

vdW−DF−SGC
vdW−DFC09x

vdW−DFC09x−SGC
vdW−DF2C09x

vdW−DF2C09x−SGC
CASSCF

Experiment

Magnetic moment O

Figure 6.2: Intermolecular interaction energy as a function of the
separation between oxygen molecules at the antiferromagnetic parallel-
molecule configuration (see the inset for the configuration), together with
the results from experiment and quantum chemistry calculation. The
atomic magnetic moment (m.m.) is also reported in the upper part of the

panel.

6.2 H-type Pair of oxygen molecules

The intermolecular interaction potential was evaluated in the parallel (H-type) molec-

ular configuration with several functionals. In the calculation, the bond length in each

molecule was fixed to its respective ground-state value listed in Table 6.1. Figure 6.2

shows the binding energy as a function of the distance between centers of molecules (d).

The reference total energy was set to that of the molecular pair at d larger than 6.4

Å. This energy differs by only 0.5 meV from twice the total energy minimum of single

molecule. The properties of the binding energy curve are shown in Table 6.2. The equi-

librium distance and binding energy were determined by fitting the binding energy curve

around the minimum to a third-order polynomial.

The potential curves from the original vdW-DF show a lower energy than those with

SGC and a strong repulsive feature at distances smaller than 3.5 Å. This repulsive in-

teraction with SGC makes the equilibrium distance larger, especially in vdW-DF2C09x .

The repulsive force is attributed to the intermolecular magnetic interaction. At approx-

imately 2.15 Å such a repulsive nature becomes weak in accordance with the decrease in
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Figure 6.3: Magnetic interaction energies with respect to the inter-
molecular distance and the intermolecular interaction energies of the an-
tiferro (AF)- and ferro (F)-magnetic coupling oxygen molecules are also

shown.

magnetic moment (see upper part of Fig. 6.2, which is generally common among func-

tionals), resulting in an energy minimum or dip in the potential curves. Note that the

repulsive potential, which appears at less than 2 Å, is mainly of nonmagnetic origin.

With the original vdW-DF with SGC, the minimum is observed at 3.20 Å, with

vdW-DFC09x-SGC at 2.16 Å, and with vdW-DF2C09x-SGC at 3.44 Å. The first and last

functionals almost reproduce the distance obtained in the previous work, which employs

the quantum chemistry method or experimental measurement: 3.1 Å, 3.23 Å (CASSCF),[48,

49] and 3.5 Å, 3.56 Å (experiment).[50, 3] Concerning the binding energy of the O2 pair

(EO4
b ), the value calculated using vdW-DF2C09x-SGC (12.9 meV) is in good agreement

with experimental values; 9 meV,[50] 17.1 meV.[3] The value obtained using vdW-DF-

SGC (48.0 meV) is similar to the result by CASSCF (40.4 meV), as indicated by the

feature of equilibrium distance. These agreements with the more elaborate method or

the recent experiment imply that vdW-DF-SGC and vdW-DF2C09x-SGC predict a de-

sirable potential for describing the electronic structures of larger systems, such as (O2)4

cluster and solid oxygen.

The magnetic interaction energy between molecules may be given by the energy dif-

ference ∆Emag between ferro (F)- and antiferro (AF)-magnetic coupling pairs: ∆Emag =



Chapter 6. Application of vdW-DF and spin dependent vdW-DF 41

EF−EAF, where EF and EAF are the total energies for the F and AF states, respectively.

Figure 6.3 shows ∆Emag as a function of the separation d obtained using vdW-DF2C09x .

∆Emag obtained using PBE is also shown for comparison. The functional dependence

of the magnetic interaction within vdW-DF was found to be small (not shown). ∆Emag

emerges at 4.1 Å and increases by 24 meV at 3.2 Å. Such a magnetic energy scale is

comparable to the binding energy of the O2 pair, implying that the energy minimum

in the potential curve (vdW-DF-SGC or vdW-DF2C09x-SGC) is determined not only by

the balance between the Pauli repulsion and the vdW attraction, but also by an inter-

molecular magnetic interaction. Note that the ∆Emag’s obtained using vdW-DF2C09x

and PBE are almost identical. Because PBE lacks a long-range vdW attraction, the re-

sult suggests that our present approach (vdW-DF with SGC) describes the short-range

magnetic interaction as accurate as PBE.

The tail of the interaction energy curve is characterized by the function −C6/d
6.

The coefficient C6 obtained by fitting the calculated data (Table 6.2) varies from 47 to

121 eVÅ6 in vdW-DFs. The values in the data are dispersive, but decrease in order of

publication year of the functionals. These values are comparable to or larger than those

of Ar (37 eV Å6) and N2 (47 eV Å6) dimers.[8, 51] We note that C6 coefficients should

be identical when the same nonlocal correlation functional is used, because, in the vdW

asymptote, C6 does not depend on exchange or short-range correlation energy, but on

charge density and q0 function.[8, 41] Thus, the difference between the C6 coefficients (for

e.g., difference in those obtained with vdW-DF and vdW-DFC09x) may be attributed to

the use of a small simulation cell, and the differences (within 27 eVÅ6) should be regarded

as numerical errors. As for the Lennard-Jones potential, the hard-core diameter σ0 of

the intermolecular distance where the potential energy vanishes is worth investigating.

As indicated in Table 6.2, σ0’s with vdW-DFs are equal to or less than 2.6 Å. The largest

value is in agreement with those from theoretical calculations (2.7 Å, 3.0 Å)[49, 52] while

the smaller value at approximately 2 Å offers a picture of smaller particles in the gas

phase.
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Table 6.2: Features of the intermolecular potential energy curve for
vdW functionals (vdW-DF, vdW-DFC09x , vdW-DF2C09x) and those with
gradient correction (-SGC): equilibrium distances (d), binding ener-
gies (EO4

b ), C6 coefficients, and hard-core diameters (σ0). For compar-
ison, the data of PBE, CASSCF and experimental measurement are also

listed.

energy functional d (Å) EO4
b (meV) C6 (eVÅ6) σ0(Å)

PBE 2.77 24.6 22 2.20
vdW-DF 3.18 50.3 108 2.49
vdW-DF-SGC 3.20 48.0 121 2.56
vdW-DFC09x 2.13 128.3 95 1.93
vdW-DFC09x-SGC 2.16 78.5 94 1.98
vdW-DF2C09x 2.16 45.5 47 2.02
vdW-DF2C09x-SGC 3.44 12.9 48 2.20
CASSCF 3.1a 24.4a

3.23b 40.4b 2.7b
Exp. 3.5c 9c

3.56d 17.1d

a Ref. [48], b

Ref. [49], c Ref. [50], d Ref. [3]

6.3 T, X, and S type pair of oxygen molecules

Figure 6.4 shows binding energy curves of T-type and X-type configurations in ferro-

magnetic and antiferromagnetic states. In these configurations, the two methods gave

almost the same equilibrium distance for the respective configurations, however PBE

gave a weak binding energy compared with vdW-DF-SGC. This is because the PBE

does not contain any explicit contribution of vdW interaction. The experimental values,

equilibrium distance and binding energy, are 3.74Å, 16 meV in T-type and, are 3.63

Å and 15.3 meV in X-type [3]. These experimental values were placed between those

of PBE and vdW-DF-SGC. Compared with experiment, the calculated results indicate

that the nonlocal correlation energy may be overestimated.

Figure 6.5 shows binding energy curves in antiferromagnetic states. Because of ki-

netic super exchange, antiferromagnetic states are more stable at almost all the con-

figurations than the respective ferromagnetic states. As reducing θ from 90 degree,

decreasing the distance of the atoms belonging the other molecules, it tends to increase

the equilibrium distance in either GGA and vdW-DF-SGC. However at θ = 90 case (H-

type), the distance was much reduced in GGA, as described in the previous study[42].
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state[3].

To understand such behavior, we check the components of total energy. The total en-

ergy (Etot) consists of Kohn-Sham kinetic energy (Tks =
∑

i〈φi| −
1
2∇

2|φi〉, where φi is

Kohn-Sham wave function), electrostatic energy (Ees), local and nonlocal part energies

which co me from pseudopotential (Eloc, Enl), and exchange correlation energy (Exc).

Figure 6.6 shows each energy component in H-type configuration using PBE and vdW-

DF-SGC. In the figure, vdW-DF-SGC has an attractive exchange correlation energy, on

the other hand, GGA has a repulsive exchange correlation energy. This means that the

origin of attractive potential is different between GGA and vdW-DF-SGC. Note that

some energy components showed large differences between the two methods. As shown

in Fig. 6.5, the attractive potential of vdW-DF-SGC between molecules mainly comes

from exchange correlation energy.

Next, we computed magnetic interaction J defined by the energy difference between

antiferromagnetic and ferromagnetic states (J = EF − EAF, where EF and EAF are

the total energies of ferromagnetic and antiferromagnetic states, respectively). Figure

6.7 shows J as a function of d with using vdW-DF-SGC. As the angle θ reduces from

90 degree, the value of J reduces and, then increases. This characteristic feature may

be related with an S-type structural configuration. Moreover, there are some structural

parameters at which the ferromagnetic state is more stable than the antiferromagnetic
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Figure 6.5: Binding energy curves for S-type configuration as a function
of the distance connecting the centers of molecules for several configura-

tions of θ with using (a) PBE and (b) vdW-DF-SGC.

state in a range of d (θ = 60 − 70 degree). In the turning point of magnetic stability

around θ = 70 degree, it was found that the distance dependence of J became very

weak even at the intermolecular distances longer than d = 2.7 Å. This is very interesting

because such a structural configuration possibly passes with an tiny energy barrier at a

magnetic configuration change.

As shown in Fig. 6.8, we present J as a functions of θ at d = 3.3 using vdW-DF-

SGC. To check the accuracy of vdW-DF-SGC approach, our result is compared with the

Bartolomei’s result of RCCSD(T) method [4]. Both curves have a very similar behavior

with respect to θ except for scale of interaction energy. Our results on J are about 5

times larger than those of RCCSD(T). The J may be proportional to −t2/∆E, where
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Figure 6.6: Components of the total energy as a function of the distance
connecting the center of molecules at θ = 90 (H-type) with using PBE

(a) and vdW-DF-SGC (b).

t and ∆E are the transfer integral and the energy gap between spin-up and spin-down

states just above and below the Fermi level. Since the GGA underestimates the energy

gap in insulating or molecular system, J may be overestimated in our method. Note

that, in Fig. 6.8, because there is no contribution of exchange energy at d = 3.3, the

vdW-DF-SGC and PBE gave an identical result.

When the |J | becomes zero, the transformation between antiferromagnetic and ferro-

magnetic states of the molecular pair occurs without any large energy change at moder-

ate finite temperatures. There are interesting features in Fig 6.8; at θ = 20, 65 degrees.

The first angle corresponds to a similar value that is found in the neighboring pair

of molecules when the solid oxygen transforms from α-phase to δ-phase, during which
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Figure 6.7: Magnetic interaction J as a function of the distance between
molecules in S-type configuration with using vdW-DF-SGC.

the pair of spin configuration changes from antiferromagnetic coupling to ferromagnetic

one[53]. The second angle may be interesting in a relation with meta-magnetic transfor-

mation under a high magnetic field. As pointed out in the experiment [54], the external

field may induce a structural change in which the antiferromagnetic parallel pair (H-

type) of molecules deforms to a S-type one. The structural deformation to the second

angle mentioned above can much promote the induced magnetization by the external

field.

6.4 Fcc and hcp argons

We begin with solid argon in the face centered cubic (fcc) and the hexagonal closed

pack (hcp) structures, as a typical vdW bonded solid. It is known that at the ambient

pressure, argon in the fcc structure is the most stable, while that in the hcp structure is

metastable. For both phases, we optimized lattice parameters using several vdW-DFs as

well as LDA and GGA. The energy cutoffs of 60 and 500 Ry were used for wave function

and electron density, respectively. A 14× 14× 14 (8× 8× 8) MP special k-point set was

used for the fcc (hcp) phase. The optimized lattice constant and cohesive energy for fcc

argon are summarized in Table 6.3, along with CCSD(T) and experimental values. The

lattice constant obtained using LDA (PBE) is underestimated (overestimated), while

those with vdW-DFs are improved except for vdW-DF2C09x, and most of the vdW-DFs
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improve the cohesive energy. Our results for fcc argon are in good agreement with the

recent results by Tran and Hutter.[55]

The results for the hcp argon are summarized in Table 6.4. The difference between

the cohesive energies for the fcc and hcp phases are very small (at most 2 meV/atom)

and these phases are almost degenerated. The lattice parameters for the hcp structure

satisfy the ideal ratio afcc ∼
√
2ahcp, chcp/ahcp = 1.633, where afcc, ahcp, and chcp are the

lattice constant for the fcc structure, in-plane lattice constant for the hcp structure, and

out-of-plane-lattice constant for the hcp structure, respectively. The deviations of afcc

from the ideal value is 0.15 Å with PBE, 0.36 Å with vdW-DF2C09x, and 0.03 Å with

other functionals. Our result indicates that these two phases are almost identical, and

cannot reproduce the experimentally observed stable fcc phase at an ambient pressure.

This apparent discrepancy may be solved by introducing an entropic effect from phonon.

Indeed, Ishikawa et al.[60] performed the lattice dynamics calculations and successfully

predict the stable fcc argon by taking into account the entropic contributions.

In order to perform the expansion of Eq. (3.19), an appropriate cutoff qc and mesh

for q0 function (qα) are needed. To determine qc and qα, we investigated distribution

of the q0 function by sampling the values on each FFT grid point. The distribution

D(q0) was calculated as a histogram; counting the number of samples while satisfying
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Table 6.3: Optimized lattice parameter (afcc), equilibrium volume (V0),
and cohesive energy (∆Ecoh) for solid argon in the fcc structure, obtained
using different density functionals. The CCSD(T), ACFDT-RPA using

PBE orbitals, and experimental values are also listed for comparison.

Functional afcc V0 ∆Ecoh
(Å) (Å3/atom) (meV/atom)

LDA 4.97 30.61 135
PBE 6.04 55.03 14
vdW-DF 5.53 42.34 142
vdW-DF2 5.29 37.05 116
vdW-DFC09x 5.34 38.06 105
vdW-DF2C09x 6.32 63.06 21
rVV10 5.20 35.20 99
rVV10a 5.17 34.55 117
CCSD(T)b 5.251 36.196 87.9
ACFDT-RPAc 5.3 37.22 83
Expt. 5.311d 37.451d 80.1e

a Ref. [55]. b Ref. [56]. c Ref. [20]. d Ref. [57]. e Ref. [58].

qα ≤ q0(r) < qα+1. In Fig. 6.9, D(q0)’s for the vdW-DF and vdW-DF2 are plotted for

different lattice parameters. Furthermore, we analyzed the contribution of the nonlocal

correlation energy from each qα value, by defining

Enl
c =

∑
α

εnl
c (α),

εnl
c (α) =

Ω

2

∑
G

|ηα(G)|2φαα(G) + 2
∑

β(<α)

Re(η∗α(G)ηβ(G))φαβ(G)

 , (6.1)

where εnl
c (α) is positive value. εnl

c (α)’s for fcc argon with vdW-DF and vdW-DF2 are

shown in Fig. 6.9. There is almost no contribution of the nonlocal correlation energy

at the smallest qα, although the samples of D(qα) exit there. Note that the samples

at the smallest qα comes from the diluted electron density nearly zero. In the case of

a = 5.29 Å, εnl
c (α)’s have a peak at q = 2.4 and are damped rapidly as qα increases.

In the case of a = 10.58 Å, the shrunken electron cloud around atomic cores causes the

distributions of D(qα) at the larger qα’s(> 5). However there is no energy contribution

from the term of Enl
c . This is presumably because that the vdW interaction is both

canceled out in the atom and fully damped at the atomic distances. From the above

result, it is confirmed that the qα mesh defined in the present work covers the energy
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Table 6.4: Optimized lattice parameters (ahcp and chcp), equilibrium
volume (V0), and cohesive energy (∆Econ) for the hcp argon.

Functional ahcp chcp/ahcp V0 ∆Ecoh
(Å) (Å3/atom) (meV/atom)

LDA 3.51 1.633 30.45 135
PBE 4.16 1.633 50.92 13
vdW-DF 3.89 1.633 41.63 142
vdW-DF2 3.74 1.636 37.08 116
vdW-DFC09x 3.80 1.632 38.75 105
vdW-DF2C09x 4.19 1.632 52.81 20
rVV10 3.66 1.633 34.70 99
Expt.a 3.8 1.63 39

a Ref. [59].

range in the system.

6.5 Graphite

Graphite consists of two-dimensional carbon allotrope, graphene, and graphene layers are

bound in the out-of-plane direction with the weak vdW interaction. Graphite has been

studied extensively both experimentally and theoretically, and is often used to assess the

accuracy of a new method for weak interaction, as benchmark calculations with highly

accurate electronic structure method such as QMC[22] and ACFDT-RPA.[61]

In our calculation, the Brillouin zone was sampled using an 8 × 8 × 4 MP k-point

set, and plane wave cutoffs of 80 and 480 Ry were used for wave functions and electron

density, respectively. We fully optimized the lattice parameters according to the calcu-

lated internal pressure, and the binding energy was determined from the difference of

the total energy at the equilibrium and that at the interlayer distance larger than 13 Å.

In Table 6.5, optimized lattice parameters and binding energies obtained using different

exchange-correlation functionals are summarized.

In accordance with the literature, LDA gives lattice parameters, which are in good

agreement with the experiment, while GGA yields a much larger out-of-plane lattice

parameter (c) and negligible binding energy, suggesting that the latter cannot predict

the binding of graphite. The binding energy obtained with LDA is smaller than that

from the experiment and highly accurate theoretical method. In general, our vdW-

DF results are in good agreement with the previous studies, which employs different
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Figure 6.9: Distributions of q0 function (solid curves) and εnl
c (α) (dotted

curves) for fcc argon calculated with the vdW-DF (upper panel) and vdW-
DF2 (lower panel). The red-empty and blue-filled data are for the lattice

parameter a of 5.29 Å and 10.58 Å, respectively.

vdW-DFs.[39, 66, 67, 68, 69, 63] The vdW-DF and vdW-DF2 predict the binding energy

(∆Eb), in good agreement with experiment. They also improve the description of struc-

tural properties, but the equilibrium volumes (V0) are overestimated. V0 is improved

by the use of vdW-DFC09x and rVV10, but they overestimate ∆Eb. We note that our

∆Eb obtained using rVV10 is almost twice as large as that reported by the original

authors.[25] At present, the origin of the discrepancy is yet to be clarified, but similar

larger values (∼70 meV/atom) were obtained using different implementations[70, 71]

of rVV10 and different potentials. On the other hand, vdW-DF2C09x predicts lattice

parameters and binding energy in good agreement with experiment, in line with the

previous study.[67]

6.6 Trigonal selenium

Trigonal selenium is formed by the bundle of one-dimensional covalently bonded atomic

chiral chains. As already shown in the previous works,[74, 75, 76] the gradient correction

to LDA improves the description of selenium, but still less satisfactory, presumably

because of the lack of the vdW interaction between the chiral chains in GGA. Bučko et
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Table 6.5: In-plane lattice constant (a), out-of-plane lattice constant
(c), equilibrium volume (V0), and the binding energy ∆Eb for graphite.
The numbers parentheses were obtained using the experimental value.

Functional a c V0 ∆Eb
(Å) (Å) (Å3/atom) (meV/atom)

LDA 2.45 6.69 8.71 24
PBE 2.47 8.76 11.61 2
vdW-DF 2.49 7.18 9.61 55
vdW-DF2 2.48 7.05 9.41 53
vdW-DFC09x 2.47 6.50 8.60 76
vdW-DF2C09x 2.47 6.58 8.71 56
rVV10 2.48 6.76 8.93 68
rVV10a 2.46 6.72 8.80 39
VV10b (2.46) 6.777 (8.88) 71
vdW-DF-cxc 2.46 6.43 8.54 66
QMCd (2.46) 6.852 (8.98) 56±5
ACFDT-RPAe (2.46) 6.68 (8.75) 48
Expt. 2.46f 6.70f 8.80f 52 ±5g

a Ref. [25]. b Ref. [62]. c Ref. [63]. d Ref. [22]. e Ref. [61]. f Ref. [64]. g Ref. [65].

al.[76] demonstrate by using the semi-empirical dispersion correction, that the structural

parameters are significantly improved, and the agreement with the experiment becomes

much better. Here we use vdW-DF to address the importance of the vdW interaction.

The trigonal selenium belongs either to P3121 or P3221 space group and has three

atoms per unit cell (see Fig. 6.10). The atomic position in the cell can be described by

the internal parameter x, which scales the distance from the screw axis to the atomic

position. The structure of the trigonal selenium is also characterized by the shortest

Se-Se distance in the same chain (`1) and the shortest Se-Se distance in different chains

(`2). We used a 8 × 8 × 4 MP k-point set, and plane wave cutoffs of 60 and 500 Ry

for wave functions and electron density, respectively. The binding energy was calculated

from the difference between the total energies of solid in the equilibrium and the isolated

chain.

Calculated structural parameters and binding energy are summarized in Table 6.6.

In general, the lattice constant along the chiral chain (c) is overestimated by all the

functionals used in this study, while accuracy for the lattice constant a varies. LDA

significantly underestimated a, while PBE significantly improves the description of a,

in good agreement with previous studies. Both vdW-DF and vdW-DF2 overestimates
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Figure 6.10: Trigonal structure of selenium.

a and c, while the use of the C09 exchange (vdW-DFC09x and vdW-DF2C09x) leads to

the underestimation of a. On the other hand, while c is slightly overestimated, rVV10

provides a balanced description of both the lattice constants. It is found from our results

that there is a correlation between calculated a and c: if a is overestimated, the error in

c tends to be smaller. Thus, in order to obtain accurate structural parameters for the

trigonal selenium, it is very important to describe both covalent and vdW interactions

accurately, suggesting that this material can be a good benchmark system for a vdW

inclusive functional.

6.7 Dry ice

The solid form of carbon dioxide is called dry ice. Carbon dioxide has no dipole moment,

and thus, the attractive vdW forces play an important role in the condensation. We

chose this material as a representative application of our vdW-DF implementation to

non-magnetic molecular crystals.

The crystalline dry ice has a cubic symmetry with the space group of Pa3 (see

Fig. 6.11 for the structure). Plane wave cutoffs of 160 and 960 Ry were used for wave

functions and electron densities, respectively. An 8× 8× 8 MP k-point set was used for
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Table 6.6: Optimized lattice parameters (a and c), equilibrium volume
(V0), internal parameter (x), shortest Se-Se distance in a chain (`1), short-
est Se-Se distance in different chains (`2), and binding energy (∆Eb) for

trigonal selenium.

Functional a c V0 x `1 `2 ∆Eb
(Å) (Å) (Å3/atom) (Å) (Å) (meV/atom)

LDA 3.89 5.04 21.94 0.2540 2.40 3.06 395
PBE 4.51 4.97 29.16 0.2148 2.36 3.58 55
vdW-DF 4.70 5.04 32.15 0.2091 2.39 3.74 189
vdW-DF2 4.57 5.12 30.81 0.2177 2.42 3.62 228
vdW-DFC09x 3.96 5.11 23.08 0.2521 2.43 3.11 429
vdW-DF2C09x 3.99 5.10 23.42 0.2497 2.42 3.14 330
rVV10 4.24 5.11 26.54 0.2348 2.42 3.35 320
Expt. 4.366a 4.954a 27.261a 0.225b 2.373a 3.436a

a Ref. [72]. b Ref. [73].

Brillouin zone sampling.

Optimized structural parameters and binding energy for the dry ice are given in Table

6.7, along with the MP2[77] and experimental (150K)[78] results. Our PBE equilibrium

volume is in good agreement with the theoretical value obtained by Bonev et al.[80] (52.9

Å3/CO2) using the same functional. On the other hand, both the equilibrium volume

and the binding energy obtained using vdW-DFs are in better agreement with the highly

accurate MP2 and experimental (150K) results, suggesting the improvement over LDA

and PBE. The maximum deviation of the equilibrium volume obtained using vdW-DF is

9.1 %, with respect to the low temperature experiment. The above results suggest that

PBE overestimates the equilibrium volume because of the lack of the dispersion forces,

and more accurate description of structure and energetics of dry ice is made possible

by considering the dispersion forces with vdW-DF. Regarding the severe underestima-

tion of the binding energy with vdW-DF2C09x, it has been found[81] from a systematic

assessment using the S22 dataset that although it predicts reasonable inter-molecular

separation (distance), the functional severely underestimates the binding energy, because

the C09 exchange is too repulsive at a relatively large density gradient relevant to the

intermolecular region. This result implies that vdW-DF2C09x is inaccurate to describe

the intermolecular vdW interaction.
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Figure 6.11: The cubic Pa3 structure of dry ice (solid CO2).

Table 6.7: Equilibrium lattice parameter (a), volume (V0), C-O bond
length `b, and binding energy (∆Eb) for the dry ice.

Functional a V0 `b ∆Eb
(Å) (Å3/CO2) (Å) (meV/CO2)

LDA 5.28 36.88 1.165 370
PBE 6.04 55.11 1.175 103
vdW-DF 5.77 47.94 1.180 364
vdW-DF2 5.61 44.04 1.178 346
vdW-DFC09x 5.53 42.17 1.176 339
vdW-DF2C09x 5.79 48.42 1.176 155
rVV10 5.51 41.72 1.179 328
MP2a 5.46 40.69 1.17 290
Expt. 5.62 b 44.38b 1.155b 288c

a Ref. [77]. b Ref. [78]. c Ref. [79].

6.8 Solid oxygen in the α phase

The α-O2 has an antiferromagnetic ground state with the crystal structure of the C2/m

space group, as shown in Fig. 6.12. There are four lattice parameters, a, b, c, and

β, and the internal parameters of `b (bond length of O2 molecule) and θ (tilted angle

of molecular axis). The molecular axis is almost perpendicular to the ab-plane, and

slightly tilted within the ac-plane. The angle of θ was reported to be ∼3 degree in the

experiment.[82]. In the calculation, we used plane wave cutoffs of 160 and 960 Ry for

wave functions and electron density, respectively, and an 8× 8× 8 MP k-point set was

used for the Brillouin zone sampling. During the structural optimization, the molecular
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Figure 6.12: Crystal structure of the solid oxygen in α phase. The
arrows on molecules represent the magnetic moment.

axis was fixed in the direction perpendicular to ab-plane, but the residual forces on atom

were small, typically less than 0.001 eV/Å.

In Table 6.8, we report the structural parameters and binding energies obtained us-

ing different functionals. As expected, LDA severely underestimates the equilibrium

volume by 42.8%, while PBE overestimates it, but the error is marginal (10.6%). How-

ever, this unexpectedly small error is because of the error cancellation of the errors in

a (−15.0%) and b (14.6 %). The error in c is surprisingly small, but the trend in the

lattice parameters with PBE is not systematic. On the other hand, all the vdW-DFs

underestimate a and c, whereas b is overestimated, and as a result, the equilibrium vol-

umes are consistently underestimated. The angle β is also consistently underestimated.

Among vdW-DFs, original vdW-DF by Dion et al. predicts most accurate structural pa-

rameters, and inclusion of SGC further improves the structural parameters, which are in

good agreement with the experiment, suggesting the importance of the spin polarization

dependent gradient correction to the local correlation.

The nearest neighbor distance between O2 molecules (`mol ≡
√
a2 + b2/2) is a very

important quantity in the α-O2, as it strongly correlates with the antiferromagnetic inter-

action between O2 molecules. We found that `mol is underestimated by LDA and PBE,

but is increased using vdW-DF-SGC to the distance 3.05 Å toward the experimental

value (3.20 Å). We also note that there is a correlation between β and c with vdW-DF,

i.e., the smaller c is, the smaller β is. As discussed in the previous works,[42, 83] the dis-

tance between magnetic molecules is determined by a subtle balance between magnetic
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Table 6.8: Optimized lattice parameters (a, b, c, and β), nearest neigh-
bor distance (`mol ≡

√
a2 + b2/2), equilibrium volume (V0), bond length

(`b), magnetic moment (Ma) on oxygen atom, binding energy of molecule
(∆Eb). Experimental values are shown for comparison.

Functional a b c β `mol V0 `b Ma ∆Eb

(Å) (Å) (Å) (deg) (Å) (Å3) (Å) (µB) (meV)
LDA 3.29 3.28 4.05 113.9 2.32 19.93 1.202 0.30 552
PBE 4.59 3.93 5.05 122.1 3.02 38.54 1.218 0.66 41
vdW-DF 4.68 3.68 4.70 125.2 2.98 33.05 1.231 0.66 221
vdW-DF-SGC 4.94 3.57 4.91 128.4 3.05 33.85 1.231 0.66 213
vdW-DF2 3.83 3.85 4.29 118.6 2.72 27.75 1.235 0.60 225
vdW-DF2-SGC 3.91 3.88 4.30 119.0 2.76 28.56 1.235 0.62 209
vdW-DFC09x 3.52 3.46 4.15 114.8 2.47 22.90 1.215 0.47 285
vdW-DFC09x-SGC 3.59 3.47 4.17 115.4 2.50 23.51 1.215 0.50 255
vdW-DF2C09x 3.66 3.56 4.34 115.1 2.55 25.51 1.216 0.52 95
vdW-DF2C09x-SGC 3.79 3.62 4.36 115.8 2.62 26.92 1.217 0.57 71
rVV10 3.71 3.62 4.18 117.2 2.59 24.94 1.225 0.56 240
Expt.a 5.403 3.429 5.086 132.3 3.200 34.85 1.29

a Ref. [82].

Table 6.9: Magnetic energy for α-O2 (∆Emag).

Functional ∆Emag

(meV)
PBE 95
vdW-DF 118
vdW-DF-SGC 87
vdW-DF2 304
vdW-DF2-SGC 251

and vdW interactions. In the solid state, not only the balance between magnetic and

vdW interactions within the ab-plane, but also that between ab-planes (out of the plane

direction) plays the decisive role: an complicated interplay amang the antiferromagnetic,

ferromagnetic, and vdW interactions in the three-dimension determines the structure of

α-O2. The molecules in the ab-plane can be considered to form a triangle configuration.

In the experimental structure, this configuration is very similar to an equilateral triangle,

where the antiferromagneitc interaction between the neighboring molecules could desta-

bilize the magnetic structure or distort the triangle to reduce the magnetic frustration.

Based on this consideration and the knowledge acquired in the previous study[42], the

underestimation of the nearest neighbor distance (`mol) in vdW-DF may be ascribed to
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the overestimation of antiferromagnetic interaction between molecules with respect to

the ferromagnetic one. Thus, in order to improve the description of α-O2, it is necessary

to develop more accurate exchange and correlation functionals, which predict balanced

description of antiferromagnetic and ferromagnetic interactions.

Magnetic interaction J is proportional to −t2/∆E, where t and ∆E are the transfer

integral and the energy gap between spin-up and spin-down states just above and below

the Fermi level. The antiferromagnetic states is over-stabilized as a result of underesti-

mation of ∆E (overestimation of |t| as well), because GGA is known to underestimate

the energy gap for insulating and molecular systems. In order to capture a trend in

the functionals on the magnetic interaction, we calculated the magnetic energy, defined

by the energy difference between the ferromagnetic (F) and the antiferromagnetic(AF)

states at the same AF crystal structure (∆Emag = EF −EAF). The results obtained us-

ing PBE, vdW-DF, and vdW-DF2 (with and without SGC) are summarized in Table 6.9.

It is found that vdW-DF and vdW-DF-SGC, which predict more accurate structural pa-

rameter, yield small ∆Emag, while the other vdW-DFs tend to give much larger values,

supporting the above consideration.

6.9 Solid oxygen in the δ phase

The δ phase of solid oxygen appears in high pressure and low temperature state on

solid oxygen. Recently, it was found that β phase has three type of magnetic structures

depending on temperature, namely, LTC (low temperature commensurate), HTC (high

temperature commensurate) and ITC (intermediate commensurate) phase [84]. Analysis

based on first principle calculation is important to investigate the origin of these phase

transitions. Figure 6.13 shows crystal and magnetic structure on the LTC and HTC

phase. The LTC and HTC phase has A−A−A and A−B −A stacking structure on c

axis, however the ITC phase has 1× 1× 2 unit cell and A−A−B −B −A stacking.

We investigated optimized crystal structure using LDA, GGA(PBE) and vdW-DF-

SGC. Since vdW-DF-SGC gave a better crystal structure on the α phase, it functional

is used on the δ phase analysis. The revPBE exchange functional which is employed

on vdW-DF and vdW-DF-SGC tend to describe a repulsive interaction compared with

other GGA functional. We used a 8 × 8 × 4 MP k-point set, and plane wave cutoffs
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Figure 6.13: Crystal structure of the solid oxygen δ phase. Right (Left)
figure shows LTC (HTC) phase. The arrows on molecules represent the

magnetic moment.

Table 6.10: Optimized lattice parameters (a, b, c) on the solid oxygen
δ phase at 6.2GPa.

Functional a b c V0
(Å) (Å) (Å) (Å3)

LDA 3.21 3.18 6.86 17.47
PBE 3.61 3.33 7.11 21.38
vdW-DF-SGC 3.93 3.23 7.08 22.47
Exp. [53] 4.33 3.06 6.83 22.62

of 160 and 960 Ry for wave functions and electron density, respectively. The magnetic

structure is assumed as the LTC phase.

Optimized lattice parameters at 6.2GPa are shown in Table 6.10. Figure 6.14 shows

pressure dependency of equilibrium volume using vdW-DF-SGC. LDA underestimated

lattice constant and volume as well as the α phase. GGA(PBE) also underestimated

volume even though it overestimate the α phase volume, however the layer distance

is overestimated owing to the neglect of vdW force. vdW-DF-SGC volume is good

agreement with the experiment value, and that error is less than 1%.

According to Fig. 6.14 vdW-DF-SGC was expected to describe accurate crystal

structure on the δ phase. We carried out calculation for the HTC phase using several

functionals. Computational conditions were same with LTC calculation. The Table 6.11

shows energy difference between the LTC and HTC phase. The LTC phase should be

stabilized than the HTC phase because our calculation did not consider the temperature
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Figure 6.14: Pressure dependency of crystal volume on the δ (LTC)
phase.

Table 6.11: Energy difference between the LTC and HTC phase.

Optimization Optimization ∆E = EHTC − ELTC

intermolecular distances lattice constant (meV/molecule)
PBE (ecalj) No No -4

PBE No No -3.6
vdW-DF-SGC No No -3.8
vdW-DF-SGC Yes No -1.0

effect. However we found that DFT calculation indicated the HTC phase has lower

energy than LTC phase. The reason of this discrepancy is poor description for magnetic

interaction. The difference between the LTC and HTC phase is magnetic orientation

in the interlayer e.g.: A − B − A layer stacking is LTC and A − A − A layer stacking

is the HTC phase. The interlayer atomic configuration can be represented as S-type

molecular configuration at θ = 20 in Fig. 6.4. Figure 6.7 indicate that vdW-DF-

SGC method is poor at describing magnetic interaction, especially J around θ = 20 is

much overestimated. Therefore antiferromagnetic interaction has been overemphasized,

stabilizing the HTC phase.
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change of SGC term at the displacement of molecular distance in the ferromagnetic pair,

whereas for the antiferromagnetic pair the repulsive behavior appeared from the SGC

term, as discussed below. Thus, we propose to introduce αGC to optimize SGC term

to reduce the difference between ferromagnetic and antiferromagnetic states, as one of

improving methods. Note that the present functional is reduced to the original vdW-DF

in the absence of spin polarization.

As another way, we propose to scale the relative spin polarization in order to optimize

the antiferromagnetic interaction as follows:

ζ → αζζ. (7.3)

where αζ is scaling factor of ζ. This scale may be related with the fact that the averaged

sub-lattice magnetic moment in antiferromagnetic systems is reduced from the elemental

saturated value. In both the local correlation energy functional and SGC term, ζ is used

as an argument of spin scaling function (SSF) φ(ζ) = [(1 − ζ)2/3 + (1 + ζ)2/3]/2 which

was derived within the random-phase-approximation [88]. As a consequence, scaled ζ is

equivalent to what scales the SSF. Note that αζ does not exceed unity. In both of the

parametrizations (αGC and αζ), we expect a negligible change in the potential energy

curve for ferromagnetic pairs since the dependence of correlation energy functional is

investigated, but not of exchange energy functional. Indeed, as reported later in the

next section, there is no dependence on αGC and αζ in the potential energy curve.

In this work, we have examined effects of these two scaling parameters in H-type

oxygen molecular dimer and solid oxygen at ambient pressure. We used plane wave

basis set and ultrasoft pseudopotential [31, 32]. For exchange and local correlation

energy functions, Ex and ELSDA
c , we used the versions of revPBE and PW92, respectively

[38, 17]. In the pseudopotential construction, we neglected the nonlocal correlation (Enl
c )

and employed the semilocal exchange and correlation functionals. This treatment has

been justified, because the nonlocal correlation vanishes in spherical atomic calculation

[89]. To compute the nonlocal correlation energy efficiently, we used an order N log N

method [23, 24]. In the method, we used the cutoff of 8 a.u. for the wave number q0 and

31 q0 values (qα), which were constructed by a logarithmic mesh except near qα = 0[43].

We have already confirmed a reliability of these parameters in the previous study[43].
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The kinetic energy cutoffs of 40 Ry and 350 Ry were used for the wave functions and

charge density, respectively, in the H-type cluster calculation. We used large energy

cutoffs for the plane wave basis (160 Ry and 960 Ry) in the crystal calculation to achieve

the convergence in the pressure tensor, since the potential energy surface is very sluggish

in the solid oxygen. We optimized the lattice parameters of solid oxygen to converge

within a pressure of 0.05 GPa. The cubic box with a dimension of 10.6 Å was used in

the cluster calculation. In the cluster calculations, optimized bond length of the isolated

molecule was used (1.232 Å), which is slightly larger than the experimental value (1.207

Å [47]).

First, we have investigated the scaling parameters αGC and αζ in the H-type oxygen

molecular dimer. Figure 7.1 shows the αGC dependence of the binding energy as a

function of the distance between centers of molecules (d) for both antiferromagnetic and

ferromagnetic states. Using the original vdW-DF-SGC (αGC = αζ = 1), the potential

energy curve of antiferromagnetic pair has the equilibrium distance of 3.20 Å and the

binding energy of 45 meV. The equilibrium distance agrees well with the accurate data

from the quantum chemistry approaches but the binding energy is larger [49, 4]. For

ferromagnetic pair, the potential energy curves have a slightly large equilibrium distance

with a slightly high binding energy, compared with the quantum chemistry approaches

[49, 4]. As implied in the previous study [43], the antiferromagnetic state is destabilized

and the equilibrium distance becomes larger as αGC is increased, whereas the interaction

energy curve for the ferromagnetic state is unchanged. Thus, the αGC plays a role to tune

the stability of the antiferromagnetic state only. Figure 7.1 also shows the magnetization

of oxygen atom. By increasing αGC, atomic magnetic moment decreases, implying that

the wave function extends more to the intermolecular region.

Figure 7.2 shows the magnetic coupling constant J , defined by the energy difference

between ferromagnetic and antiferromagnetic states; J = EF−EAF. The figure indicates

a stability of antiferromagnetic state in a wide range of αGC’s and d’s. The strength of

J decreases as increasing αGC or d and becomes comparable to those estimated in the

methods of quantum chemistry (CASSCF, RCCSD(T))[49, 4] when αGC = 8 and d = 3.3

Å. Unlike the quantum chemistry approaches, there is a region where the ferromagnetic

state is more stable (negative J) at the larger αGC’s (αGC = 8, 12) and larger d’s in

the present frame work of vdW-DF-SGC. Such ferromagnetic stability can come from
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a direct exchange interaction between the orbitals on the molecules. However, these

interactions should be very small at d ∼ 4 Å.

Figure 7.3 shows the dependence of the binding energy curve on αζ for antiferromag-

netic and ferromagnetic states. As αζ decreases, energy difference between antiferro-

magnetic and ferromagnetic states decreases. In this case the equilibrium distance does

not change, but the repulsive nature of potential curves becomes strong. As shown in

Fig. 7.3, the magnetic moment slightly increases when the antiferromagnetic state is

destabilized. This is an opposite trend, compared with the case of αGC.

Since magnetic energy of the electron correlation is estimated as a local relative spin

polarization in Eq.(7.1), it is unable to distinguish stability between antiferromagnetic

and ferromagnetic states by the local spin density. Nevertheless once the difference of

spin densities in magnetic states is generated through self-consistent field calculations,

the system can converge to the respective magnetic state.

Next, we have applied vdW-DF-SGC with αGC and αζ to the solid oxygen at ambient

pressure. The crystal structure belongs to a C2/m (monoclinic) space group and its

magnetic unit cell contains two molecules with an antiferromagnetic coupling [90]. The

molecular axis has been known to tilt from the z-direction perpendicular to ab plane by

a few degrees within the ac-plane. This effect is tiny and is negligible for the present

work. In Table 7.1, we report optimized structural parameters, crystal binding energy,

and magnetic energy for typical sets of scaling parameters αGC and αζ . We have found

that by applying αGC, the lattice parameters are improved as compared with the previous

theoretical result[43]. For example, by setting αGC = 4 and αζ = 1, we obtain the nearest

neighbor distance between molecules of 3.14 Å, which is larger than that of 3.05 Å with

αGC = 1 and αζ = 1. The effects on αζ appeared also in the lattice parameter a, but the

detail trend depends largely on αGC; when αGC = 2 (αGC = 4), a increased (decreased).

However, the overall effect of αζ is not as large as that of αGC.

The lattice parameter a is in excellent agreement with the experiment, when αGC = 8

and αζ = 1. However, other lattice parameters deviate from the experimental values. In

our optimization about αGC and αζ , the potential curves of ferromagnetic molecular pair

do not change. This may limit a region of searching space for exchange and correlation

energy functionals. In the previous works [36], the weak repulsive nature was realized

by optimizing the exchange functional, whereas the original functional shows a stronger
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Figure 7.1: Binding energy (∆E) curves for the oxygen molecular dimer
in the H-Type configuration as a function of the distance connecting the
center of molecules (d) for several αGC’s and αζ = 1. The left and right
panels show antiferromagnetic and ferromagnetic cases, respectively. The

atomic magnetic moments (MO) are shown on the upper parts.

repulsive nature at short distances [8]. The potential energy of ferromagnetic dimer

is also important in determining the structural parameters in solid oxygen as well as

those of antiferromagnetic dimer. Because there are ferromagnetic molecular pairs at

the next nearest neighbors within ab plane, the structural details might depend on

the ferromagnetic potentials of molecular pairs. Another importance in ferromagnetic

potential of molecular pair may be related with the phase transition to δ phase at the

high pressure, at which the nearest neighbor magnetic coupling between molecules of

neighboring ab planes is changed from antiferromagnetic to ferromagnetic one [91].

The binding and magnetic energies, as expected from the results of H-type molecular

dimer, were reduced as αGC increases. In particular, the magnetic energy at αGC = 8

and αζ = 1 becomes about one-fourth (21 meV) of that at αGC = αζ = 1. This energy

is consistent with the magnetic interaction energy of oxygen molecule (2 µB) under the

large experimental magnetic field (∼ 200 T)[54]; 23 meV. Structural properties at high

magnetic fields are under consideration by taking into account a giant magneto-volume

effect in solid oxygen [92].
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Figure 7.3: Binding energy (∆E) curves for the oxygen molecular dimer
in the H-Type configuration and atomic magnetic moment (MO) as a func-
tion of distance of molecules for several αζ ’s and αGC = 1. The left and
right panels show antiferromagnetic and ferromagnetic cases, respectively.

Table 7.1: Optimized lattice parameters (a, b, c, and β), equilibrium
volume (V0), binding energy of molecule (∆E), and magnetic energy per
molecule (∆Emag) for solid oxygen at ambient pressure. Experimental

values are also shown for comparison.

αGC αζ a b c β V0 ∆E ∆Emag Ref.
(Å) (Å) (Å) (deg) (Å3) (meV) (meV)

0.0 1.0 4.68 3.68 4.70 125.2 33.05 221 118 [43]
1.0 1.0 4.94 3.57 4.91 128.4 33.84 213 87 [43]
2.0 1.0 5.04 3.59 4.85 127.4 34.86 207 69
2.0 0.7 5.11 3.64 4.86 127.0 36.06 204 57
2.0 0.5 5.14 3.62 4.85 127.5 35.76 204 54
2.0 0.3 5.15 3.62 4.85 127.6 35.74 203 53
4.0 1.0 5.13 3.63 4.94 128.5 36.02 196 51
4.0 0.7 5.09 3.54 4.82 127.0 34.59 198 61
4.0 0.5 5.06 3.54 4.78 126.8 34.27 200 63
8.0 1.0 5.43 3.61 4.57 122.3 37.87 177 21

5.403 3.429 5.086 132.3 34.85 Expt. [82]
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Chapter 8

Prospect

The van der Waals density functional (vdW-DF) approach, although it is called ”van

der Waals” correction, can describe nonlocal effect not only vdW effect in principle. The

important benefit is that it does not require any adjustable parameter which depends

on materials. Originally, vdW effect should depend on electron state owing to essential

quantum effect. In such a reason, this approach is clearly different from some vdW

correction methods using semi-empirical parameters. Therefore it is suitable for mate-

rial design, analysis of phase transition, etc. We demonstrated that the vdW-DF-SGC

method is a useful tool for studying weakly-bound magnetic systems.

It is well recognized that the density functional approach is serviceable method for

material analyzing and designing. This is true regardless of spin-polarized and non-

polarized systems. For non-polarized systems, many researches reported their works

using non-empirical vdW force approach. This fact suggests that there are a lot of

materials which had never been investigated owing to the lack of vdW force. As similar

to non-polarized cases, the spin dependent vdW-DF approach can accelerate the research

of weakly-bound systems such as organic-spintronics materials. We belive that spin

dependent vdW-DF methods will be applied to the materials in these fields.

We found a new problem in the solid oxygen δ-phase. The problem was that even

using vdW-DF-SGC approach to , the LTC phase could not be stabilized compared with

the HTC phase. Although this problem comes down to the description of pair potential

for antiferromagnetic and ferromagnetic states, we found that the LDA/GGA and vdW-

DF approaches much overestimate the magnetic interaction owing to an underestimation

of electronic excitation energy. Solving this problem, a more accurate spin dependent

van der Waals functional approach is truly desirable.
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The most important core of nonlocal correlation approach is, of course, the shape

of kernel function. By some improvement of the kernel function, which seems to be the

most straight-forward improvement approach, computational accuracy should increase.

The kernel function depends on charge density in vdW-DF approach, but it should also

depend on spin polarization. For example, nonlocal correlation energy will be written

as

Enl
c [n, ζ] =

1

2

∫
drdr′n(r)φ(r, r′, n(r), n(r′), ζ(r), ζ(r′))n(r′), (8.1)

where ζ is spin polarization function defined as ζ(r) = (n↑(r)− n↓(r))/(n↑(r) + n↓(r)).

It is functional of density and spin polarization, not spin density, because correlation

energy is essentially quantum effect except the exchange effect. This expression describe

not only charge density fluctuation but also spin density fluctuation effect. The vdW-

DF-SGC or svdW-DF may be one of approximations, being implied from Eq. 8.1.

Since the vdW force is smaller than the energy order that had been treated with

conventional LDA/GGA, the subtle differences in the exchange or correlation energy

functional and error of weak energy estimation are remarkably appear in the weakly

bound material. We found that magnetic interaction is comparable with the vdW force

and sometimes it is overestimated. The problem related with underestimation of band

gap should be corrected by improving the exchange-correlation energy functional. For

example, it is reported that this problem can be partly improved by self-interaction

correlation [93].

Some exchange functionals have been proposed and the accuracy of these functionals

has been investigated [35, 36, 39]. And the combination of exchange and correlation

energy are also investigated because correlation energy using exchange functional esti-

mated by charge density, not wave functions, should have a correction term to cancel the

error of exchange energy. However, we found that the choice of functionals sometimes

generates a large difference for the optimized structural parameters in crystal or molecu-

lar system. Although currently we should force to use a suitable functional for materials,

universal approach is desirable for treating complex materials. As one possibility, non-

local functional approach can be applied not only correlation but also exchange energy.
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Then nonlocal exchange-correlation functional will be as follows:

Enl
x =

1

2

∑
σσ′

∫
drdr′nσ(r)φσσ′(r, r′, nσ(r), nσ′(r′))nσ′(r′). (8.2)

If kernel function is much smooth, the orderN logN method can be applied for calculating

Eq. 8.2. This is just expansion from LDA or GGA and it may solve the band gap

problem. Since nonlocal correction approach is better than local density approximation,

it will be a common approach instead of LDA/GGA.
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Chapter 9

Conclusion

We had implemented the nonlocal correlation functional approach (vdW-DFs, rVV10)

on plane wave basis DFT code, and the order N logN method was applied to reduce

computational cost on nonlocal correlation energy. In order to test the vdW-DF energy,

force, and stress implemented in our program code, we performed the calculations of

solid argon in fcc and hcp phases, graphite, trigonal selenium, dry ice, in which the

vdW interaction is supposed to be important. We could demonstrate that the nonlocal

correlation approach is a useful technique to overcome the lacking of vdW force problem

on local density approach.

We had proposed an extension (vdW-DF-SGC) to the spin polarized systems. We

have investigated oxygen molecules and solid oxygen in the α-phase and δ-phase with

the antiferromagnetic configuration by using the several variants of vdW-DF and the

correction scheme for magnetic systems proposed. We have found that the vdW-DF

shows overall improvement in the structure and energy of these materials over LDA and

GGA and it is in good agreement with the previous studies available. In the case of anti-

ferromagnetic solid oxygen, we have found that vdW-DFs consistently underestimate the

lattice parameters, and the original vdW-DF by Dion et al. with our spin polarization

dependent gradient correction scheme (vdW-DF-SGC) provides most accurate structural

parameters among other functionals. We found that influence of spin by semi-local cor-

relation effect plays an important role on antiferromagnetic state, involving the diluted

and spread electron density on antiferromagnetic caused by lacking of Pauli exchange

repulsion. We point out the competing nature of ferromagnetic, antiferromagnetic, and

vdW interactions in the solid oxygen and balanced description of these interactions is

decisively important for more accurate prediction of the structural properties of solid
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oxygen.

We have introduced the scaling parameters αGC and αζ to improve the description

of the magnetic interaction in spin-polarized systems. It was found that our treatment

reduces both binding energy and magnetic energy in the solid oxygen, indicating that

the energy functional improves the description of spin-polarized vdW systems. The

new approach developed in this work has adjustable parameters, and further investiga-

tion on the correlation energy functional may reveal applicability and limitation for an

application range on real material.

We also investigated relation between vdW-DF-SGC and svdW-DF. The ideas in

them are different between each other, but we found that there is no contradiction

results in both techniques as a result. Although the svdW-DF correction from vdW-

DF is still unclear in theoretically, our results indicate that it contains semilocal spin

dependent gradient correction effects.
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Appendix B

Electronic structure in the

interface of ferroelectric and

ferromagnetic materials

Recently, ferroelectric tunnel junctions are a focus of attention because the polar direc-

tion that can control electronic states in ferroelectric materials may be serviceable for

application in electronic devices. The direction of spontaneous polarization of ferroelec-

tric materials can be utilized to hold the digital bit information. Suck kind of nonvolatile

device is expected owing to reducing power consumption

We pay attention to ZnO which is well-known as ferroelectric material. We investi-

gated an interface between ferroelectric and ferromagnetic material, respectively. Pt3Co

and the ZnO are used for ferromagnetic material and ferroelectric material. For simplic-

ity, we put Co and 3 Pt atoms on the ZnO surface that is terminated at oxygen atom

and the 1 × 1 unit cell (inplane lattice constant is fixed as ZnO bulk value) is used for

the dimensional translational periodicity. We used 24× 24× 1 k-points and 30 Ryd and

300 Ryd for wave function and density energy cutoff.

The computational models are shown in Fig.B.1. P+ and P− states indicate the

direction of polarization. We considered three kinds of interface and found that the

type B and C having similar atomic configuration, is more stable than the type A 1.4

eV on both of the polarization states. As evidenced by the Fig. B.1, the difference

of these three structures is stacking order of Pt 3ML and Co 1ML on interface oxygen

atom, namely, ABC, BCA and CAB stacking. The type B and C have same relative

position of Co atom from interface oxygen atom and difference is the relative position of
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Figure B.1: Slab structures on Pt3Co/ZnO. Top and bottom figures
show side and top view from interface oxygen atom, respectively.

the second nearest neighbor oxygen atom with respect to the configuration of metallic

layer. Since it seems to have no effect on the interface electronic state in these two types,

and the difference between the total energies is very small (1 meV and 10 meV on P+

and P− state, respectively), we focused the type B configuration in further analysis of

electronic structures.
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Figure B.2: Hartree potential and valence electron density.

Figure B.2 shows Hartree potential and valence electron density averaged over xy-

plane and vertical dash lines indicate positions on some atoms (z = 0 is set to interface

oxygen atom). We confirmed the gradient of Hartree potential in the ZnO film, indicating

that existence of spontaneous polarization. According to Fig. B.2, P− state has a high

potential barrier on the Co and O interface which is caused by vanishing electron density,

indicating that the tunneling resistance implies to increase. By changing the polarization

direction from P+ to P−, interaction between Co/O and Zn becomes weak leading to

get closer on Co/O interface
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