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Abstract 

Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of 

neurosecretory cells in the hypothalamus. Locally released OT can activate OT 

receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca2+) 

concentrations ([Ca2+]i) in self and neighboring neurons in the hypothalamus, resulting 

in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. 

CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by 

elevating [Ca2+]i via Ca2+ mobilization through ryanodine receptors on intracellular Ca2+ 

pools that are sensitive to both Ca2+ and cADPR. In addition, it has recently been 

reported that heat stimulation and hyperthermia enhance [Ca2+]i increases by Ca2+ influx 

probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 

molecules act as Ca2+ signal amplifiers. Thus, OT release is not simply due to 

depolarization–secretion coupling. Both of these molecules play critical roles not only 

during labor and milk ejection in reproductive females, but also during social behavior 

in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in 

that social behavior was impaired by reduction of [Ca2+]i elevation and subsequent OT 

secretion. Evidence for the associations of CD38 with social behavior and psychiatric 

disorder is discussed, especially in subjects with autism spectrum disorder. 

 

Key words: Oxytocin, hypothalamus, social behavior, CD38, TRPM2  



 3 

Introduction 

Oxytocin (OT) and arginine vasopressin (AVP) are nonapeptides that differ in 

two amino acid residues [1]. OT and AVP are synthesized mostly in distinct 

neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) in 

the hypothalamus [2,3]. OT and AVP are secreted into the blood circulation and 

have physiological roles in peripheral organs, such as the uterus, mammary gland, 

and kidney. They induce contraction of uterine and mammary duct smooth 

muscle or diuretic action in the kidney as hormones [4 – 6].  

OT, AVP, and their receptors are present in the brain not only in females 

during specific reproductive periods but also in non-reproductive females and males [6]. 

Accumulating evidence has established that, in addition to classical hormonal functions, 

both peptides play critical roles in social recognition and social behavior in mammals, 

including humans [7 – 20]. This review focuses mainly on OT. The main point is not a 

general functional role of OT in a comprehensive review, but the molecular mechanisms 

of OT secretion into the brain that is critical in the neuronal function of OT in social 

recognition and behavior [4,11,13,21].  

Another reason to focus on the release is that the mechanism contains a very 

important aspect in the physiological science, in that the proposed idea challenges the 

principal rule in physiology of depolarization–secretion coupling [22 – 24]. Furthermore, 

this mechanism seems to have a potential relationship to autism spectrum disorder 

(ASD), a serious developmental disorder, which is a rapidly advancing field in 

neuroscience and psychiatry and is a serious disorder in our society [25 – 28]. There 

have been many reviews regarding the relationship between ASD and OT [29 – 35]. 
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However, there have been few regarding the molecular mechanism of OT release into 

the brain [4], which is the critical step for social recognition and social behavior [26 – 

28]. 

Somato-axodendritic release of oxytocin  

OT is secreted from the nerve terminals of axons of oxytocinergic neurons at the 

perivascular site in the posterior lobe of the pituitary into the circulation [4] (Figure 1). 

Oxytocinergic neurons send their axons to the amygdala and some other limited brain 

regions and secrete OT from the nerve terminals [4,12,15]. It is known that adrenaline 

stimulates oxytocinergic neurons in the SON, which results in local release of OT in the 

brain [5,36]. This release occurs from the cell soma, axons, and dendrites, i.e., 

somato-axodendritic release [37 – 39]. 

Locally released OT causes excitation of OT neurons by activating OT 

receptors expressed in neurons of both the PVN and SON [40 – 43]. OT stimulates OT 

receptors and facilitates OT release from the stimulated neurons. Released OT can 

stimulate OT receptors and elicits release from the same neurons (autocrine) or nearby 

neurons (paracrine) [44] (Figure 2). This OT-induced OT release determines the basal 

brain concentrations and elevated concentrations of OT. The concept of autoregulation, 

OT-induced OT release, can be an extremely efficient way to achieve massive OT 

recruitment during uterine contraction in labor and milk ejection in lactation [5,6,45 – 

47]. Autoregulation, however, is also an essential brain mechanism for social 

recognition in daily life in both genders, as proposed previously [25,27,28]. 
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Oxytocin receptors and cellular signaling  

OT receptors are seven-transmembrane proteins that couple with the Gq/11-type 

GTP-binding protein [48]. Stimulation of OT receptors leads to the production of 

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through the activation of 

phospholipase C (PLC) [48]. This results in activation of Ca2+ mobilization from 

IP3-sensitive Ca2+ pools [49].  

On the other hand, another Ca2+ signal pathway of cyclic ADP-ribose (cADPR) 

[50,51] was identified downstream of OT receptors [11]. cADPR mobilizes Ca2+ 

through cADPR-sensitive Ca2+ pools, in a mechanism referred to as Ca2+-induced Ca2+ 

release. In this process, cADPR play an essential role in mobilizing Ca2+ through Ca2+ 

channels of ryanodine receptors [52 – 56] (Figure 3). The recent review by Leng et al. 

did not mention this cADPR/CD38 hypothesis [4], probably because they described by 

their data based on their finding with thapsigargin [36]. 

It is known that intracellular cADPR concentrations are regulated in many 

different ways, including activation of ADP-ribosyl cyclase or CD38, via 

heterotrimeric GTP-binding proteins, or phosphorylation downstream of the G 

protein-coupled receptor signaling pathways [57 – 59]. Specifically, the activation of 

ADP-ribosyl cyclase or CD38 by cyclic GMP- or cyclic AMP-dependent protein 

kinases has been reported in Aplysia californica, liver cells [60,61], LAK cells [62,63], 

and artery smooth muscle cells [57] (Figure 3).  



 6 

cADPR is a catalytic product of ADP-ribosyl cyclase or ectopic CD38 [50,51,63] 

(Figure 4). cADPR is produced in the extracellular space by the large N-terminal 

portion of CD38 with catalytic activity that may be present in the extracellular space. 

Therefore, it was unclear how extracellular cADPR produced by CD38 acts as an 

intracellular second messenger. It has been reported that cADPR applied 

extracellularly stimulates intracellular ryanodine receptors after internalization by the 

nucleotide-transporting capacity of CD38 in fibroblasts and astrocytes (the nucleotide 

carrier hypothesis of De Flora) [64,65]. Recently, it was reported that the type II 

transmembrane glycoprotein, CD38, may exist in two forms with regard to membrane 

topology [66,67]; the large N-terminal portion with catalytic activity may exist in the 

extracellular space as the type II protein, and this catalytic site may also exist inside 

the cell as the type III form (Figure 4A). In the latter case, the product of CD38, 

cADPR, is produced intracellularly, and acts directly as a second messenger (two 

topology hypothesis of Lee).  

 

Effects of oxytocin on ADP-ribosyl cyclase and intracellular Ca2+ concentrations 

Application of OT stimulates ADP-ribosyl cyclase activity or CD38 in crude membrane 

fractions, when measured by cADPR formation from -NAD+ or by cyclic GDP-ribose 

(cGDPR) production from NGD+ [50,68]. cADPPR or cGDPR production increases in a 

concentration-dependent manner upon exposure to sub-nanomolar concentrations of OT 

[49].  

Subsequently, in isolated hypothalamic neurons, application of 100 pM OT 

results in [Ca2+]i increases: a rapid initial increase and a sustained elevation lasting for 5 
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minutes [69]. OT elicits an initial elevation of the maximum [Ca2+]i, and this phase is 

IP3-dependent. Pretreatment with 8-bromo-cADPR, an antagonist of the 

cADPR-binding site of Ca2+ release channels of ryanodine, inhibits OT-mediated 

sustained [Ca2+]i increases. ADPR and -NAD+ also induce elevation of [Ca2+]i and 

replicate the second phase of sustained [Ca2+]i increases [49,69]. Under Ca2+-free 

conditions, the OT-mediated increase of [Ca2+]i shows little change in either phase, 

suggesting that the two phases of [Ca2+]i elevation in hypothalamic neurons are due to 

Ca2+ mobilization from the intracellular Ca2+ pools [49].   

 

Oxytocin release by extracellular application of cyclic ADP-ribose  

High potassium-induced depolarization produces an increase of up to 8-fold in OT 

secretion from isolated mouse hypothalamic neurons or their axon terminals in the 

posterior pituitary gland, respectively [21]. OT release is enhanced by about 4-fold by 

application of extracellular -NAD+, a precursor of cADPR (refer to Figure 4 in Jin et 

al.) [21]. The increase is blocked completely by 8-bromo-cADPR. To further confirm 

the involvement of cADPR, we examined the effects of extracellular application of 

several -NAD+ metabolites [49,69]. Only cADPR showed a potentiation effect, 

indicating that OT release utilizes the cADPR/ryanodine calcium amplification system 

(Figure 5). 

 

Involvement of TRPM2 channels  

Melastatin-related transient receptor potential channel 2 (TRPM2, previously named 

TRPC7 or LTRPC2) possesses ADPR hydrolase activity and is a Ca2+-permeable cation 

channel. -NAD+, ADPR, and cADPR can activate TRPM2 channels [70]. TRPM2 
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activation by cADPR is promoted at body temperature (> 35C) and is involved in 

insulin secretion in pancreatic  cells [71]. In addition, TRPM2 channels are related to 

receptor functions through cADPR formation [72].  

Extracellularly applied cADPR can activate [Ca2+]i signaling via CD38 or 

TRPM2 channels downstream of OT receptors. [Ca2+]i increases in the model neuron, 

NG108-15 mouse neuroblastoma × rat glioma hybrid cells that possess CD38 [58,73] 

but not OT receptors [74], as in the isolated whole hypothalamus after stimulation with 

extracellularly applied cADPR [69,75]. Interestingly, the same tissues show 

significantly greater increases upon extracellular challenge with cADPR together by 

heating to 40°C from 35°C in the incubation medium (Figure 6). Little or no 

cADPR-mediated [Ca2+]i elevation was observed at 40°C in the absence of extracellular 

Ca2+. Ca2+ influx is expected, probably through non-selective cation TRPM2 channels, 

because elevation of [Ca2+]i is inhibited by the TRPM2 channel inhibitor, 

2-aminoethoxydiphenyl borate (2-APB). Similarly, 8-bromo-cADPR inhibits responses 

to -NAD+ and heat. These results suggest that cADPR contributes to both Ca2+ 

mobilization from internal Ca2+ pools and Ca2+ influx through TRPM2 Ca2+-permeable 

channels from the extracellular space. Such [Ca2+]i increases may result in OT release. 

However, there have been no previous reports regarding heat-induced OT release in the 

hypothalamus.  

 

Contribution of CD38 

In the central nervous system, ADP-ribosyl cyclase activity corresponding to CD38 is 

detected as early as embryonic day 15 in mouse development [76]. In the brain, 

expression levels of CD38 and ADP-ribosyl cyclase activity increase with further 
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development [77]. The role of CD38 in regulation of OT secretion through 

cADPR-mediated intracellular calcium signaling has been clearly demonstrated using 

CD38 knockout mice [11,21,78,79]. The plasma and cerebrospinal fluid OT levels are 

reduced in CD38 knockout mice. Electron microscopic examination exhibited little to 

no release from the nerve endings of oxytocinergic neurons in the pituitary of CD38 

knockout mice (Figure 1). These phenotypes were rescued by simple subcutaneous 

injection of OT as well as brain local re-expression of human CD38, but not mutant 

CD38, by the lentivirus infection method in CD38 knockout mice [21].  

 

Human social behavior and psychiatric disorders 

As CD38 is recognized as being closely related to OT release and social memory in 

mice, we examined the association of single nucleotide polymorphisms (SNPs) in the 

human CD38 gene on ASD [80]. In a series of elegant studies in 323 mothers, fathers, 

and non-parents, Epstein and colleagues reported that risk alleles on CD38 (including 

rs3796863) genes are associated with less parental touch. In contrast, relatively high 

plasma OT levels in subjects with low-risk CD38 alleles predict longer durations of 

parent–infant gaze synchrony. Furthermore, parents that display more touch toward their 

infants were reported to have been well cared for in childhood, to exhibit higher plasma 

to levels, and to have low-risk CD38 alleles [29,30,81]. The mother’s CD38 allele 

predicts parental behavioral synchrony at 1 and 6 months of their first-born infants and 

children’s social reciprocity during interactions with their best friend at 3 years. CD38 

in the OT pathway was shown to be critical for parent–infant attachment and attention 

[82]. A SNP on the CD38 gene, is also associated with social integration and social 

connectedness [83]. 
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Several studies indicated the association of CD38 with ASD [84 – 87]. Ten 

SNPs and mutations of CD38 were examined, and the CD38 SNPs, rs6449197 and 

rs3796863, were shown to be linked with high-functioning ASD in participants in the 

USA but not in Japan. These findings were partially replicated among Israeli subjects 

[29,31,32,87].  

 

Conclusion 

This review discussed how OT is released into the brain. Ca2+ influx through Ca2+ 

channels is not sufficient to trigger OT release. The Ca2+ signal must be amplified by 

Ca2+-induced Ca2+ release through Ca2+ channels of ryanodine receptors type II or III by 

cADPR and some NAD metabolites in the hypothalamus (Figure 7). In addition, Ca2+ 

influx through TRPM2 channels contribute more to increases in [Ca2+]i. This hypothesis 

of depolarization-independent but heat-sensitive Ca2+ signaling for OT release is 

consistent with the previous suggestion of dendritic release of OT without 

depolarization [4,21,39]. 

OT exerts an anxiolytic effect during stress, and stress sometimes induces 

hyperthermia. It is therefore interesting to examine how stress induces hyperthermia, 

which results in subsequent OT release. OT release seems to be important in damping 

the stress-induced disadvantage.  
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 OT is an essential molecule for social memory and social behavior [21,29]. 

Deficiency in social behavior is the core symptom of ASD. Recently, Yamasue and his 

group reported that repetitive intranasal OT administration for 6 weeks improved 

symptoms of the social behavior domain [88]. This result could be due to the delivery of 

OT to the brain by intranasal administration, but there is still little direct evidence 

regarding whether OT is recruited into the brain from the peripheral tissues or organs 

crossing the blood–brain barrier from the blood circulation. Several important questions 

regarding OT secretion into the brain and OT-induced Ca2+ signaling and OT transport 

from the blood to the brain remain to be resolved. 
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Figure legends 

Figure 1. Electron micrographs of the posterior pituitary glands of wild-type (a) 

and CD38 knockout (b) mice. Vesicles are nerve endings close to the vascular space 

(V). Most of the dense core vesicles are oxytocinergic, as determined by 

immunoelectron microscopic examination. The nerve endings of CD38 knockout mice 

contain more vesicles than those of wild-type mice, indicating that vesicles are released 

in the wild-type mice and not secreted in CD38 knockout mice. Bar, 500 nm. (Modified 

from Figure 3 of Ref. 21) 

 

Figure 2. Scheme showing autocrine and paracrine release of oxytocin. OT is 

released from dendrites (dendritic release), from the cell soma (soma release), and from 

axons (axonal release) in the hypothalamus. Hypothalamic oxytocinergic neurons 

express OT receptors (OTR). Released OT binds to OTR. More OT (yellow circle) is 

released by CD38-mediated intracellular calcium amplification (not shown). The 

positive feedback of OT release occurs by OT released from self or nearby cells via 

autocrine and paracrine mechanisms, respectively.  
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Figure 3. Intracellular signaling pathways leading to increased cyclic ADP-ribose 

formation. Phosphorylation (P) of ADP-ribosyl cyclase (pink) is mediated by several 

pathways. Nitric oxide (NO), cyclic GMP (cGMP), and protein kinase G (G-kinase); 

Acetylcholine (ACh), nicotinic ACh receptors (nAChR); voltage-operated Ca2+ channels 

(VOCC), Ca2 and protein kinase A (A-kinase); norepinephrine (NE),  adrenaline 

receptors (AdR). Activation of CD38 by GTP-binding protein (G protein) and various 

types of receptors triggers formation of cADPR. cADPR opens Ca2 release channels of 

ryanodine receptor type II or III (RyR) with another cofactor, Ca2 (not shown). 

Mobilization of Ca2 from microsomes of Ca2 pools increases [Ca2]i, resulted in OT 

release (not shown). 

 

Figure. 4. Membrane topology and enzyme reaction of CD38. CD38 (pink oval) 

usually forms a dimer. -NAD+ binds to the central catalytic site of CD38. The large 

N-terminal part is located in the extracellular space, as the type II transmembrane 

protein or intracellular space as the type III transmembrane protein, according to Lee 

and colleagues [66,67]. CD38 has three enzymic activities. CD38 catalyzes formation of 

cyclic ADP-ribose from -NAD+ by cleaving nicotinamide. cADPR is hydrolyzed to 
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form ADP-ribose. -NAD+ also has NAD+ glycohydrolase activity to form ADP-ribose 

from -NAD+ in one step. The scheme of enzyme activity is modified from Lee [50]. 

 

Figure 5. Oxytocin induced oxytocin release. Oxytocin (OT; yellow circles) 

stimulates oxytocin receptors (OTR). Subsequently, the Gq/11 type G protein and 

phospholipase C (PLC) are activated, resulting in formation of 

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Stimulated protein kinase 

C (PKC) activates CD38 and increases formation of cADPR from -NAD+ inside or 

outside cells. cADPR activates Ca2 influx TRPM2 cation channels. 

2-Aminoethoxydiphenyl borate (2-APB) inhibits TRPM2 channels. IP3 induces 

mobilization of Ca2. TRPM2 mediates Ca2 influx, which also stimulates Ca2 

mobilization through ryanodine receptor Ca2 release channels as a cofactor together 

with cADPR. These Ca2 ions (filled circles) increased by Ca2 amplification mechanisms 

stimulate OXT (yellow) release into the brain, which is an essential step for social 

memory and social behavior. Modified from Higashida et al. [11,27,52,73].  

 

Figure 6. Effects of cyclic ADP-ribose, ADP-ribose, and -NAD+ on heat-induced 

calcium concentration rise. Time course of [Ca2]i changes in Oregon Green-induced 
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anterior hypothalamic neurons. At about 25 s after the beginning of each trace, cells 

were heated from 35°C to 37°C together with 100 M cADPR, ADPR, -NAD+ or 

without nucleotides (heat alone). Symbols indicate changes in [Ca2]i levels, represented 

by the fluorescence intensity at each time point relative to resting intensity at time zero. 

N = 3 – 5 experiments. Mean ± s.e.m. Modified from Liu et al. [69] 

 

Figure 7. Scheme indicating Ca2+ amplification with different ryanodine receptor 

subtypes. Skeletal muscle contraction and heart muscle contraction utilize type I and II 

ryanodine receptors, respectively. Oxytocin release uses type II or III ryanodine 

receptors.  
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