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ABSTRACT 

 

Two peculiar convection patterns—re-oscillation and stable non-centrosymmetric 

convection—are observed when two-dimensional double-diffusive convection in a 

porous enclosure (aspect ratio = 1.5) is analysed numerically. The top and bottom walls 

of the enclosure are insulated; constant and opposing heat and mass fluxes are 

prescribed on the vertical walls. Re-oscillation occurs when the convection pattern 

changes from centrosymmetric to non-centrosymmetric. When the buoyancy ratio, 

which generates re-oscillation convection, is marginally lower, the convection pattern 

changes to stable non-centrosymmetric. These two convection patterns can be observed 

only for limited values of the Rayleigh number, Lewis number, and buoyancy ratio.  
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NOMENCLATURE 

A = aspect ratio    [-] 

D = solute diffusivity    [ｍ2 s–1] 
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f = non-dimensional frequency   [-] 

g = acceleration due to gravity   [m s–2] 

2h = width of the enclosure    [m] 

2H = enclosure height    [m] 

k = permeability    [m2] 

Le = Lewis number    [-] 

N = buoyancy ratio    [-] 

Nu = Nusselt number    [-] 

P = pressure     [-] 

R = Rayleigh number    [-] 

t = non-dimensional time    [-] 

u = non-dimensional velocity vector = (u,v)  [-] 

x = non-dimensional horizontal coordinate [-] 

y = non-dimensional vertical coordinate [-] 

Greek symbols 

α = coefficient of thermal expansion  [K–1] 

β = coefficient of concentration expansion [m3 mol–1] 

ε = porosity     [-] 

φ = non-dimensional temperature  [-] 

κ = thermal diffusivity   [ｍ2 s–1] 

Λc = horizontal concentration gradient prescribed on the side wall [mol m–4] 

ΛT = horizontal temperature gradient prescribed on the side wall [K m–1] 

ν = kinematic viscosity   [ｍ2 s–1] 

θ  = non-dimensional concentration  [-] 

σ = heat capacity ratio   [-] 

 

 

1. INTRODUCTION 

 Various researchers have theoretically and numerically studied double-diffusive 

convection in a fluid-saturated porous enclosure due to the opposing heat and mass 

fluxes on the vertical walls [1-9]. In these studies, the numerical calculations yielded 

oscillatory solutions [7-9]. It was observed that the competition between the heat and 
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mass transfers with different diffusivities played an important role in generating 

oscillations even at low Rayleigh numbers. The convection pattern in a double-diffusive 

porous medium is determined by four non-dimensional parameters: the aspect ratio (A), 

Lewis number (Le), Rayleigh-Darcy number (R), and buoyancy ratio (N). Among the 

four parameters, N is expected to have the most significant effect on the characterization 

of the convection pattern and the oscillation, since N is the ratio of heat intensity to 

mass convection. 

We have been investigating the double-diffusive convection in a fluid-saturated 

porous medium for more than 15 years. In 1994 [7], we observed oscillating convection 

in a double-diffusive porous medium, which, to the best of our knowledge, had not been 

observed before. We observed that oscillating convection occurs when R = 100; Le = 10, 

20, 30, 40; and A = 3, 5, and 10. Further, we observed a monotonous oscillation pattern 

over one cycle. However, the characteristics of the oscillating region are not clear 

because the oscillating region of N was calculated at intervals of ∆N = 0.05. In 2002 [8], 

we investigated the convection pattern only for A = 5; the oscillating region in graphs of 

N vs. Le for varying R were determined at intervals of ∆N = 0.01. In 2007 [9], we found 

three peculiar types of oscillations. We discovered the re-oscillation phenomenon, 

which is one of the most peculiar types of oscillation. This phenomenon occurs when 

the convection pattern changes from centrosymmetric to non-centrosymmetric. Since 

this transition takes a very long time, the re-oscillation typically has a very long period. 

The re-oscillation phenomenon can be observed when A = 2 and 2.5. As A increases, 

complex oscillation can be observed more often. 

In the present research, we analyse the convection patterns only when A = 1.5. If N 

becomes smaller than the value at which re-oscillation is observed, the Nusselt number 

(Nu) changes abruptly with time, and the convection pattern changes from 

centrosymmetric to stable (without oscillation) non-centrosymmetric, which is another 

peculiar convection pattern that we have observed when A = 1.5 for the first time. 

In addition, we numerically study the double-diffusive convection (re-oscillation 

and stable non-centrosymmetric convection) in a fluid-saturated porous enclosure due to 

opposing heat and mass fluxes on the vertical walls. The values of R, Le, and the 

transition time are also investigated. One of the main objectives of the present research 

is to prepare an R-N map of the re-oscillation region and the stable (no oscillation) 
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non-centrosymmetric region.  

 

2. PROBLEM STATEMENTS 

    The geometry used in the mathematical model is shown in Fig. 1. We consider a 

two-dimensional vertical enclosure with an aspect ratio A. This enclosure is filled with a 

homogeneous, fluid-saturated porous medium. The top and bottom walls of the 

enclosure are insulated. Constant heat flux (ΛT) and mass flux (Λc) are prescribed 

through the vertical walls. The following equations give the momentum conservation in 

the Darcy regime with the Boussinesq approximation: 

( ) yNRP eu φθ −−−∇=      (1) 

The equation of continuity is 

0=⋅∇ u       (2) 

The equations for mass and thermal energy conservation are  

θ∇=θ∇⋅+
∂

θ∂
ε 2

t
u      (3) 

and  

φ∇=φ∇⋅+
∂

φ∂
σ 2Le

t
u      (4) 

respectively, where 
( ) ( )( )

( )
liquidpC

solidpC1
liquidpC

ρ

ρε−+ρε

=σ  (5) 

The boundary conditions are 

∂θ

∂

∂φ

∂x x
= − = −1 1, , u = 0 , and 0

x

v
=

∂

∂
at |x |= 1  (6) 

and 
∂θ

∂

∂φ

∂y y
= =0 0, , v = 0 , and 0

y

u
=

∂

∂
at |y| = A   (7) 

The initial conditions are 

0,0 =φ=θ , and 0=u  at t = 0    (8) 

The dimensionless parameters are defined as follows: 

h

H
A = , 

D
Le

κ
= , 

D

hkg
R

2
c

ν

Λβ
= , and 

c

TN
Λβ

Λα
=   (9) 

    Governing equations (Eqs. 1, 2, 3, and 4) are solved numerically by the finite 

difference method using the boundary values (Eqs. 6 and 7) and initial conditions (Eqn. 
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8). The governing equations and the boundary conditions are discretised over a network 

of 202 × 302 grids with uniform spacing. No grid point is set on the physical boundaries 

(|x| = 1 and |y| = A). The first and last grid points are placed at a distance of half a grid 

from the boundaries. The boundary conditions at the walls are applied to these points. 

The numerical scheme used here is second-order accurate in space and first-order 

accurate in time. The matrices obtained from the governing equations are solved under 

the given boundary conditions by the conjugate gradient method. For further details 

regarding this method, please refer to Ref. [7]. 

In the present study, we performed calculations for the following cases: the aspect 

ratio A = 1.5; the Lewis number Le = 10, 20, and 30; and the non-dimensional time is 

less than 400. We studied the types of time-dependent Nu in this case because it is 

difficult to observe a drastic change the time-dependent Nu after t = 400.  

 

 3. RESULTS AND DISCUSSION 

Fig. 2 shows a graph of Nu as a function of time and the flow pattern when R = 500, 

Le = 20, and N = 0.445. Such a pattern was referred to as the ‘re-oscillation case’ in a 

previous study. The re-oscillation case is also observed when A = 1.5. Re-oscillation 

occurs because the convection pattern changes from non-centrosymmetric to 

centrosymmetric. Since this change requires a very long time, the re-oscillation 

typically has a very long period. For further details regarding the re-oscillation case, 

refer to Ref. [9]. In the case of these stream functions, positive values correspond to the 

clockwise flow caused by temperature gradients, while negative values correspond to 

the counter-clockwise flow caused by concentration gradients. The main flow represents 

convection due to temperature gradients, but a few convection cells due to concentration 

gradients can also be observed towards the left and right. The re-oscillation case is 

caused by convection pattern changes from non-centrosymmetric (t = 55.24) to 

centrosymmetric (t = 56.28). The variation of Nu with respect to time is described below. 

When t ≅  10, the concentration diffuses in the entire domain, which brings the system 

to a quasi-stable steady state. However, the system starts readjusting itself to a more 

stable state, and this process continues up to t ≅  30. Eventually, the system attains a 

slowly oscillating state where it is most stable. This is because such oscillations 

continue when t = 400.  
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When the value of N is marginally lower than that in the ‘re-oscillation case’, the 

oscillation disappears but another kind of peculiar convection can be found. Fig. 3 

shows the variations in Nu and the flow pattern when R = 500, Le = 20, and N = 0.430. 

This figure shows that the value of Nu plummets at an early stage and attains a steady 

state temporally. However, Nu settles at another steady state subsequently. The 

convection pattern changes from centrosymmetric (t = 50) to non-centrosymmetric (t = 

150). Hence, the results show that the system remains stable even when the convection 

pattern becomes non-centrosymmetric. Such a ‘stable non-centrosymmetric case’ is 

observed in the present calculation at A = 1.5, for the first time. 

When N becomes considerably smaller, a centrosymmetric steady-state convection 

pattern can be observed. Fig. 4 has been plotted for the following values: R = 500, Le = 

20, (a) N = 0.410 and (b) N = 0.400. When N = 0.40 (in Fig.4 (b)), a completely 

counter-clockwise convection pattern is obtained because of concentration differences. 

The flow speed is sluggish over the entire area when the convection due to 

concentration differences is the main flow. At this point, Nu becomes nearly equal to 1. 

On the other hand, the main convection flow is directed clockwise (Fig. 4(a)) due to 

temperature differences. However, the convection due to the concentration differences is 

dominant near the right and left side walls and the flow speed is weak, as shown in the 

figure. In addition, the chaotic oscillation and the ‘sudden steady state case’ observed in 

the former study were absent [9]. 

The two peculiar convection patterns, re-oscillation and stable non-centrosymmetric 

convection, occur because the convection pattern changes from the quasi-stable steady 

state to the real steady state, as shown in Figs. 2 and 3. We then investigated the relation 

between N and the time until Nu changes drastically. Figs. 5(a) and (b) show Nu as a 

function of time for three values of N during stable non-centrosymmetric convection 

and re-oscillation, respectively. In both cases, the transition time and the value of N are 

inversely proportional to each other. In our research, N is presumed to have a significant 

effect on the oscillation characteristics. In addition, N also has an effect on the transition 

time. 

As the value of N reduces, convection patterns are observed in the following order: 

re-oscillation, stable non-centrosymmetric, temperature dominated, and concentration 

dominated. Fig. 6 shows the parameter range in an R-N map of the convection patterns 
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at (a) Le = 10, (b) Le = 20, and (c) Le = 30, at intervals of ∆N = 0.001. In these three 

figures, the boundary line between temperature dominated and concentration 

dominated convections decreases monotonously as R increases. The boundary line 

between stable non-centrosymmetric and temperature dominated (centrosymmetric) 

convections also decreases monotonously as R increases, but with a comparatively 

smaller gradient. Therefore, the region covered by the concentration dominated 

convection becomes narrow as R increases. On the other hand, the region covered by 

the temperature dominated convection becomes wide. The region covered by the stable 

non-centrosymmetric convection becomes slightly wide when Le = 10; however, it 

remains relatively constant when Le = 20 and 30. Finally, the range of R for which the 

re-oscillation convection exists can be observed. For example, the R ranges from 250 

to 450, 400 to 700, and 550 to 950 for Le values of 10, 20, and 30, respectively. Thus, 

the range of R during re-oscillation widens as Le increases. Above the re-oscillation 

region, various patterns can be observed; for example, oscillation continues from t = 0 

to 400, or stable convection is achieved earlier. Thus, we cannot draw the parameter 

range in an R-N map when N is more than the region of re-oscillation. 

 

4. CONCLUSIONS 

Double diffusion in a porous enclosure has been investigated numerically for the 

case in which the aspect ratio of the enclosure is 1.5. The re-oscillation case, which 

occurs due to the convection pattern changing from centrosymmetric to 

non-centrosymmetric, can be observed. When the buoyancy ratio N is marginally lower 

than that in the re-oscillation case, the Nusselt number Nu maintains a steady state 

temporally and then changes to another steady state. Also, the convection pattern 

changes to stable non-centrosymmetric. The convection pattern is non-centrosymmetric 

due to temperature differences. As N becomes much smaller, a centrosymmetric 

convection pattern can be observed, and the pattern changes from a temperature 

dominated one to a concentration dominated one. Moreover, re-oscillation convection 

and non-centrosymmetric convection can be observed only for limited values of R, Le, 

and N. Because of this reason, re-oscillation convection and non-centrosymmetric 

convection were not discovered in previous researches. In the present study, we were 

able to observe these patterns clearly because we considered very small intervals of ∆N 
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= 0.001 and conducted the tests only when the aspect ratio of the enclosure was 1.5. 

Such tendency of the convection pattern change can be observed when the value of A is 

greater than 1.5. Further, a complex and peculiar convection can be observed when the 

value of A increases. On the basis of the present R-N map, we intend to develop a map 

with a larger aspect ratio. 
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Figure Captions 

Fig. 1 Geometry of the porous enclosure. 

Fig. 2 Nu and contour lines of stream functions for R = 500, Le = 20, and N = 0.445. 

Fig. 3 Nu and contour lines of stream functions for R = 500, Le = 20, and N = 0.430. 

Fig. 4 Nu and contour lines of stream functions for R = 500 and Le = 20 at (a) N = 

0.410 and (b) N = 0.400. 

Fig.5 Nu as a function of time for R = 500 and Le = 20 for (a) the steady 

non-centrosymmetric case and (b) the re-oscillation case. 

Fig.6 The parameter range in an R-N map of the convection patterns at (a) Le = 10, (b) 

Le = 20, and (c) Le = 30. 
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