
Atmospheric behaviors of particulate-bound
polycyclic aromatic hydrocarbons and
nitropolycyclic aromatic hydrocarbons in
Beijing, China from 2004 to 2010

著者 Tang Ning, Suzuki Genki, Morisaki Hiroshi,
Tokuda Takahiro, Yang Xiaoyang, Zhao Lixia,
Lin Jinming, Kameda Takayuki, Toriba Akira,
Hayakawa Kazuichi

journal or
publication title

Atmospheric Environment

volume 152
page range 354-361
year 2017-03-01
URL http://hdl.handle.net/2297/46772

doi: 10.1016/j.atmosenv.2016.12.056

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196728091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 1 - 

Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and 

nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010 

 

Ning Tanga, *, Genki Suzukib, Hiroshi Morisakib, Takahiro Tokudac, Xiaoyang Yangd,  

Lixia Zhaoe, Jinming Linf, Takayuki Kamedag, Akira Toribab, Kazuichi Hayakawaa 

 

a Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, 

Kanazawa 920-1192, Japan 

b Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 

Kakuma-machi, Kanazawa 920-1192, Japan  

c Ishikawa Prefectural Institute of Public Health and Environmental Science, 1-11, 

Taiyogaoka, Kanazawa 920-1154, Japan 

d Atmospheric Chemistry & Aerosol Division, Chinese Research Academy of Environmental 

Sciences, No. 8, Dayangfang, Anwai, Beijing 100012, China 

e State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for 

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 

f Department of Chemistry, Tsinghua University, Beijing 100084, China 

g Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-0011, Japan 

 

* Corresponding authors  

Ning Tang 

phone: +81-76-234-4455  fax: +81-76-234-4455 

E-mail address: n_tang@staff.kanazawa-u.ac.jp 

 

 

mailto:n_tang@staff.kanazawa-u.ac.jp


- 2 - 

Abstract 

Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a 

suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and 

five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were 

determined by HPLC with fluorescence and chemiluminescence detection, respectively. The 

concentrations of PAHs and NPAHs were higher in heating season than in non-heating season 

at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating 

season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 

to 2010. These findings suggest that source control measures implemented by the city of 

Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 

1 in 2010, possibly because of the transport of emissions from windward other areas, such as 

Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different 

sources contributed to Beijing’s air pollution, although coal combustion was the main source 

in the heating season and vehicle emission was the main source in the non-heating season. An 

analysis of physical parameters at Beijing showed that high wind speed can remove 

atmospheric PAHs and NPAHs in the heating season and that high relative humidity can 

remove them in the non-heating season. 

 

 

Keywords: PAHs; NPAHs; Air pollution; Source control measure; Beijing 

 

 

 

 

 



- 3 - 

1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds consisting 

of two or more fused benzene rings, and nitropolycyclic aromatic hydrocarbons (NPAHs) are 

their nitrated derivatives. PAHs and NPAHs are ubiquitous environmental pollutants. 

Atmospheric PAHs and NPAHs mainly originate from imperfect combustion and pyrolysis of 

organic matters, although some NPAHs are formed in the atmosphere via reactions of their 

parent PAHs such as 2-nitropyrene and 2-nitrofluoranthene (Arey et al., 1986; Hayakawa et 

al., 1995; Rogge et al., 1993). PAHs and NPAHs exist in both the gas and particle phases in 

the atmosphere, and their gas/particulate partition depend on factors such as the vapor 

pressure, temperature and the concentration and properties of dust (Araki et al., 2009; Sitaras 

et al., 2004; Yamasaki et al., 1982). In urban areas, PAHs and NPAHs are mainly emitted 

from automobiles, power plants, domestic heating and industrial processes (Gachanja and 

Worsfold, 1993; Kavouras et al., 2001; Tang et al., 2005). Many PAHs and NPAHs have 

carcinogenic and/or mutagenic properties (Ames et al., 1975; Epstein et al., 1979). 

Benzo[a]pyrene (BaP) and 1-nitropyrene (1-NP) are categorized in groups 1 (carcinogenic to 

humans) and 2A (probably carcinogenic to humans), respectively (IARC, 2013). Several 

PAHs also exhibit estrogenic, antiestrogenic, antiandrogenic activities (Kizu et al., 2000) or 

reactive oxygen species producing activity (Motoyama et al., 2009). In addition, prenatal 

exposure to PAHs could impact cognitive development and learning ability (Perera et al., 

2012).  

In recent years the consumption of petroleum and coal has grown considerably in China, 

resulting in serious environmental problems. Our previous studies have reported the following 

results on atmospheric PAHs and NPAHs in three cities in the Northeast China: (1) The mean 

concentrations of PAHs and NPAHs in particulate matter were in the order Fushun > Tieling 

> Shenyang, even though greater amounts of petroleum and coal are consumed in Shenyang 
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(Hattori et al, 2007). (2) Molecular diagnostic ratios of several PAHs and NPAHs showed that 

the major contributors of PAHs and NPAHs were coal combustion systems both in summer 

and winter in Fushun and Tieling and in winter in Shenyang (Hattori et al, 2007). (3) In 

Shenyang, the mean concentrations of PAHs in winter 2007 decreased significantly from the 

concentrations in winter 2002 and the mean concentrations of NPAHs in winter did not 

change markedly between 2001 and 2007. However, both PAH and NPAH concentrations in 

summer increased from 2001 to 2007. These results suggested that motor vehicles have 

become one of the major contributors of atmospheric PAHs and NPAHs in Shenyang in both 

seasons (Tang et al., 2011).  

The major sources of atmospheric PAHs in Beijing have been identified as coal 

combustion systems in winter, long-range transport in spring and motor vehicles in the other 

seasons (Feng et al., 2005; Hayakawa et al., 2007; He et al., 2006; Hou et al., 2006; Huang et 

al., 2006; Jiang et al., 2009; Liu et al., 2007; Wang et al., 2008; Zhang et al., 2009; Zhou et al., 

2005). However, only a few studies have examined atmospheric NPAHs, whose mutagenicity 

is much stronger, in Beijing (Li, et al., 2015; Lin, et al., 2015; Wang et al., 2011). To the best 

of our knowledge, there have been no reports on the characteristics of mid-to-long term 

changes in atmospheric PAHs and NPAHs in Beijing. Therefore, in this study, our objectives 

were to clarify the changes of concentrations, compositions and major contributors of 

atmospheric PAHs and NPAHs in Beijing from 2004 to 2010, and to identify the causes of 

these changes. 

 

2. Experimental 

2.1. Samplings and characteristics of test sites 

Beijing (39°55’N; 116°26’E) is a large city in Asia and is located in the North Temperate 

Zone. The variations of population, gross domestic product (GDP), energy consumptions and 
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numbers of registered cars during our sampling periods are shown in Table 1 (Beijing 

Statistical Information Net: http://www.bjstats.gov.cn/esite/ and Beijing Municipal 

Environmental Monitoring Center: http://www.bjmemc.com.cn). Total suspended particles 

(TSP) were collected at two sites (Fig. 1), using a high-volume air sampler (HV) at a flow rate 

of 1000 L/min (HV-700F, Shibata Sci. Tech., Tokyo, Japan) or an Andersen high-volume air 

sampler (AHV) at a flow rate of 566 L/min (HV-1000R, Shibata Sci. Tech.). Site 1 is located 

in urban area (No. 18 Shuangqing road, Haidian district) and site 2 is located in suburban area 

(Shenshan village, Huairou district). Samplings were carried out at site 1 on Dec. 18 - 31, 

2004, Jan. 21 - Feb. 2, 2008 and Nov. 25 - Dec. 21, 2009 (heating season), and on May 9 - 24, 

2005, Aug. 21 - Sep. 2, 2007 and Aug. 11 - Sep. 1, 2010 (non-heating season); and at site 2 on 

Jan. 20 - 31 (heating season) and Aug. 2 - 16, 2010 (non-heating season). A summary of 

meteorological conditions during the sampling periods is provided in Table 2 (The data of 

average temperature, dew point, wind speed and visibility in Beijing during the sampling 

periods were obtained from National Climatic Data Center, NOAA and average humidity 

were calculated by using the data of average temperature and dew point). AHV was used only 

to collect TSP in five fractions according to their aerodynamic size at site 1 in 2009 and 2010. 

TSP were collected on quartz fiber filters (2500QAT-UP, Pallflex Products, Putnam, CT, U. S. 

A.). HV filters were replaced every day. AHV filters were replaced 2 times in every week (2 

and 5 days) during non-heating season campaign but were replaced every 2 days during 

heating season sampling campaign because the TSP and reactive gases (SO2, NO2 etc.) 

concentrations were higher in winter. Totally 98 samples were obtained. After being dried in a 

desiccator in the dark, the filters were weighed and then stored in a refrigerator (-20˚C) until 

use. 

 

2.2. Chemicals 

http://www.bjstats.gov.cn/esite/
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USEPA 610 PAHs mix including fluoranthene (FR), pyrene (Pyr), benz[a]anthracene 

(BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), BaP, 

benzo[ghi]perylene (BgPe) and indeno[1,2,3-cd]pyrene (IDP) were purchased from Supelco 

Park (Bellefonte, PA, USA). Pyrene-d10 (Pyr-d10) and benzo[a]pyrene-d12 (BaP-d12), internal 

standards for PAHs, were purchased from Wako Pure Chemicals (Osaka, Japan). 1,3-, 1,6-, 

1,8-dinitropyrenes (DNPs), 9-nitroanthracene (9-NA), 1-NP, and 2-fluoro-7-nitrofluorene 

(FNF), internal standard for NPAHs, were purchased from Chiron AS (Trondheim, Norway). 

All other chemicals used were of analytical reagent grade. 

 

2.3. Pretreatment of samples 

A piece of each HV sample containing about 10 mg of TSP and one-fourth of each 

five-layer filter of AHV sample was cut into small (0.5 cm) pieces, which were placed in a 

flask. Both PAHs and NPAHs were extracted ultrasonically twice with benzene/ethanol (3:1, 

v/v) and then the solution was filtered through a filter paper (Advantec, Toyo No. 6, Toyo 

Roshi Kaisha, Ltd., Tokyo, Japan). Internal standards, Pyr-d10, BaP-d12 for PAHs and FNF for 

NPAHs were added to the flask prior to the ultrasonic extraction. The organic solution was 

washed once with 5% (w/v) sodium hydroxide solution, once with 20% (v/v) sulfuric acid 

solution and twice with water for removing acid and base substance. After filtering the 

organic solution with an HLC-DISK membrane (pore size 0.45 µm, Kanto Chemical Co., 

Tokyo, Japan), 100 µL of dimethyl sulfoxide was added and then the organic solution was 

concentrated to 100 µL with rotation evaporator. In the case of HV sample the concentration 

was diluted to 1 mL and in the case of AHV samples the concentration was diluted to 10 mL 

with methanol. And then an aliquot (20 µL for PAHs and 100 µL for NPAHs) of the solution 

was injected into the HPLC systems. Other conditions were the same as in our previous 

reports (Hayakawa et al, 1991; Tang et al., 2005).  
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2.4. HPLC systems for determination of PAHs and NPAHs 

The nine PAHs were determined by using HPLC with fluorescence detection. The PAH 

HPLC system consisted of a reversed-phase column (Inertsil ODS-P, 4.6 i.d. x 250 mm, GL 

Sciences Inc., Tokyo, Japan) with an acetonitrile/water gradient and fluorescence detection. 

The flow rate was 1 mL/min. The time program of the fluorescence detector was set to detect 

at the optimum excitation and emission wavelengths for each PAH. Other conditions were the 

same as in our previous report (Tang et al., 2005).  

The five NPAHs were determined by using HPLC with chemiluminescence detection. The 

HPLC system consisted of two reversed-phase columns (Cosmosil 5C18-MS, 4.6 i.d. x (250 + 

150) mm, Nacalai Tesque, Tokyo, Japan) connected in series with chemiluminescence 

detection. The mobile phase was 10 mM imidazole buffer (pH 7.6)-acetonitrile (1:1, v/v), and 

the chemiluminescence reagent solution was an acetonitrile solution containing 0.02 mM 

bis(2,4,6-trichlorophenly)oxalate and 15 mM hydrogen peroxide. The flow rate was 1 mL/min 

for each solution. Other conditions were the same as in our previous report (Hayakawa et al., 

1991; Tang et al., 2003).  

 

2.5. Quality control and quality assurance 

Quartz fiber filters were used for collecting particulate-bound PAHs and NPAHs. The 

filters were pre-heated at 600°C for 4 hours before using them to lower their PAH and NPAH 

blank values. The filters before and after collecting TSP were measured at the same 

temperature (21.5 ± 1.5˚C) and relative humidity (50 ± 5%) conditions. Field blanks, which 

accompanied samples to the sampling sites, were used to check for background contamination. 

No contamination was found during the transport of blank samples.  

Standard solutions of PAHs and NPAHs were injected into the analysis systems to verify 
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the methods. The calibration curves of all PAHs and NPAHs showed good linearity (r > 

0.995). The relative standard deviations (n = 3) of all PAHs and NPAHs were less than 5%. 

Recovery and quantification of individual PAH and NPAH were revised using internal 

standards: Pyr-d10 for FR, Pyr, BaA and Chr; BaP-d12 for BbF, BkF, BaP, BgPe and IDP; FNF 

for all NPAHs. 

 

3. Results and discussion 

3.1. Atmospheric concentrations of PAHs and NPAHs 

Table 3 shows the average concentrations of nine PAHs and five NPAHs in the heating 

and non-heating seasons at two sites in Beijing from 2004 to 2010. Each figure represents the 

average value of all sampling sites. In the heating seasons, the most abundant PAHs were FR 

and Pyr at all sites in every year. By contrast, in the non-heating seasons, the most abundant 

PAHs were BbF and BgPe. Among NPAHs, 9-NA was the most abundant at all sites in both 

in the heating and non-heating seasons from 2004 to 2010. The average concentrations of nine 

PAHs ranged from 730 to 1230 pmol/m3 in the heating seasons and ranged from 20.2 to 84.0 

pmol/m3 in the non-heating seasons. The average concentrations of five NPAHs ranged from 

1480 to 3200 fmol/m3 in the heating seasons and ranged from 120 to 2900 fmol/m3 in the 

non-heating seasons. Both PAH and NPAH concentrations were remarkably higher in the 

heating season than in the non-heating season at each site, in agreement with other reports in 

Beijing (Huang et al., 2006; Li et al., 2015; Zhou et al., 2005). Possible causes for the 

seasonal variation include the large amount of emissions from solid fuel combustion for 

residential heating in winter (Li et al., 2015; Tang et al., 2005, 2011), the formation of a 

temperature inversion in the boundary layer in winter and photochemical degradation of 

NPAHs in summer (Fan et al., 1996; Fujitani, 1986). There is evidence that the air pollutants 

including PAHs in Beijing in winter were occasionally transported from industrial areas from 
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Hebei, Inner Mongolia, Shanxi province (Lin, et al., 2015; Liu et al., 2007; Wang et al., 

2008).  

The average concentrations of the nine PAHs at site 1, an urban site, from Nov. 25 to Dec. 

21, 2009 (heating season) and from Aug. 11 to Sep. 1, 2010 (non-heating season) were higher 

than those at site 2, a suburban site, from Jan. 20 to 31, 2010 (heating season) and from Aug. 

2 to 16, 2010 (non-heating season), respectively. However, these differences were not 

statistically significant (n = 7, p = 0.44 and 0.32 in heating season and non-heating season, 

respectively). The average concentrations of 1-NP were higher at site 1 but the average 

concentrations of 9-NA were higher at site 2 in both seasons. In contrast to atmospheric 1-NP, 

9-NA not only originated from imperfect combustion of fossil fuels, but is also formed in the 

atmosphere via reaction of its parent PAH (Amador-Muñoz et al., 2011; Feilberg et al., 2001; 

Hayakawa et al., 1995; Lin et al., 2015; Zhang et al., 2011). And, no strong source of air 

pollutant are close to site 2. Therefore, atmospheric PAHs and NPAHs at site 2 were very 

likely to come from other areas in both seasons (Liu et al., 2007; Tao et al., 2007; Wang et al., 

2008). 

 

3.2. Yearly variation of PAHs and NPAHs at site 1 

Table 3 shows the average concentrations of PAHs and NPAHs in Beijing from 2004 to 

2010. Both PAHs and NPAHs levels at site 1 decreased from 2005 to 2010. Compared with 

data obtained in 2005, the average concentrations of PAHs and NPAHs decreased by 72.6% 

and 93.4%, respectively (n = 7 in 2010; n = 15 in 2005, p < 0.01). The same trend of 

atmospheric PAHs at urban sites in Beijing has been reported. For example, the average 

concentrations of the same nine PAHs were 225 ng/m3 from 2005 to 2007 (Wang et al., 2009) 

and were 96.5 ng/m3 from 2008 to 2009 (Ma et al., 2011). The other pollutants such as PM10, 

NO2 and SO2 also decreased in Beijing from 2004 to 2010 (Table 1). Vehicle exhaust is a 
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more important source of PAHs in summer in Beijing than other sources, such as coal 

combustion and biomass combustion (Chen et al., 2015; Feng et al., 2005; Huang et al., 2006; 

Jiang et al., 2009; Wang et al., 2009; Zhou et al., 2005). Recent report also showed that the 

high numbers of motor vehicles caused higher NPAHs concentrations in Beijing (Li, et al., 

2015). However, the numbers of registered cars in Beijing more than doubled between 2005 

and 2010 (Table 1).  

As a possible cause for the decrease of atmospheric PAHs and NPAHs in the non-heating 

season were source control measures implemented by the city of Beijing before the 2008 

Summer Olympic Games. These included new vehicle emission standards (European 

emission standards (Euro) III from 2005 and Euro IV from 2008) and restrictions on the use 

of vehicles (MEPB). The source control measures are still in effect. 

By contrast, as shown in Table 3, in the heating season, only the average concentration of 

NPAHs at site 1 decreased from 2004 to 2009. Compared with data obtained in 2004, the 

average concentrations of NPAHs decreased by 53.7% (p < 0.01). Because the yield of 

NPAHs from coal stove and/or boiler are smaller than that from vehicle (Tang et al., 2005) 

and DNPs and 1-NP in the atmosphere are mainly emitted from diesel-engine vehicles 

(Hayakawa et al., 1995), this result suggested that the source control measures were more 

effective against NPAHs than PAHs in the heating season. On the other hand, the average 

concentrations of PAHs at site 1 decreased from 2004 to 2008 (p = 0.68) but increased from 

2008 to 2009 (p = 0.19), although these yearly variations were not significant. The coal 

combustion systems for domestic heating seemed to be the major contributors to the higher 

PAH levels in the heating season, in agreement with other reports (Feng et al., 2005; 

Hayakawa et al., 2007; He et al., 2006; Hou et al., 2006; Huang et al., 2006; Jiang et al., 2009; 

Liu et al., 2007; Wang et al., 2008; Zhang et al., 2009; Zhou et al., 2005). However, another 

improvement was the increasing use of natural gas in place of coal in winter in Beijing. In the 
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present study, two days back trajectory was calculated during our 2009 heating season 

sampling period (online program provided by Air Resources Laboratory, NOAA). As shown 

in Fig. 2, high concentrations of PAHs were observed in the shorter trajectories, which means 

low wind speed, and these shorter trajectories originated from Hebei and Liaoning provinces 

on Nov. 27 (Fig. 2-(A), PAHs: 1940 pmol/m3) and from Shanxi province on Dec. 7 (Fig. 

2-(B), PAHs: 2800 pmol/m3), which are the regions with heavy air pollutants (Li, et al., 2015; 

Streets et al., 2007). On the other hand, low concentrations of PAHs were observed in the 

longer trajectories, such as on Dec. 16 (PAHs: 524 pmol/m3) and Dec. 18 (PAHs: 260 

pmol/m3) (Fig. 2-(C)), suggesting that the air pollutants that originated locally were diffused 

by the high wind speed and diluted by relatively fresh air that came directly from the higher 

altitudes. The Air Pollution Index (API) values were 132, 141, 55 and 42 on Nov. 27, Dec. 7, 

16 and 18, 2009, respectively (BMEPB), and showed the same trend with our PAHs data. 

Therefore, the high concentrations of PAHs at site 1 during our sampling period in 2009 have 

been influenced also by surrounding cities and provinces.  

 

3.3. Source indicators of PAHs and NPAHs 

The diagnostic ratios of several PAHs and NPAHs in the atmosphere have previously 

been used to indicate the main sources of the PAHs and NPAHs. Combustion of pertroleum 

products, such as gasoline and diesel fuel have smaller ratios of [BaA]/([Chr]+[BaA]), 

[BaP]/([BaP]+[BgPe]) and [1-NP]/[Pyr] (Masclet et al., 1986; Simcik et al., 1999; Tang et al., 

2005), while combustion of coal, such as in stoves, have large these ratios (Table 4) (Daisey 

et al., 1979; Tang et al., 2005). In this study, [BaA]/([Chr]+[BaA]) and [BaP]/([BgPe]+[BaP]) 

ratios (Table 5), indicate that the major contributors of atmospheric PAHs and NPAHs in 

Beijing were coal combustion in the heating season and vehicle emissions in the non-heating 

season.  
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On the other hand, the [BbF]/([BbF]+[BkF]), [FR]/([FR]+[Pyr]), [IDP]/([IDP]+[BgPe]) 

and [1-NP]/[Pyr] ratios were between in vehicle emission and in coal combustion (Table 4, 5), 

suggest that the mixing of these sources contributed to atmospheric PAHs and NPAHs in 

Beijing in each season although coal combustion was the main source in the heating season 

whereas vehicle emissions were the main source in the non-heating season, in agreement with 

other reports (Feng et al., 2005; Huang et al., 2006; Jiang et al., 2009; Wang et al., 2009; 

Zhou et al., 2005).    

 

3.4. Fate of atmospheric PAHs and NPAHs 

   Atmospheric PAHs and NPAHs mainly originate from imperfect combustion and 

pyrolysis of organic matters (Chen et al., 2005; Hayakawa et al., 1995; Huang et al., 2013; 

Tang et al., 2005; Zhang et al., 2008). PAHs and NPAHs exist in both the gas and particle 

phases in the atmosphere. In general, PAHs having 2 rings exist in the gas phase, PAHs 

having 5 rings and NPAHs having 4 rings or more exist in the particle phase, and PAHs 

having 3 and 4 rings and NPAHs having 2 and 3 rings are in both phases (Araki et al., 2009; 

Tao et al., 2007; Yamasaki et al., 1982). When PAHs and NPAHs were exhausted to the 

atmosphere, their fates were influenced by various chemical and physical processes. 

Heterogeneous or homogeneous reactions of parent PAHs with nitrogen oxides and hydroxyl 

radicals decreased the parent PAHs and increased their nitro-, oxy- and hydroxyl derivatives 

in the atmosphere (Amador-Muñoz et al., 2011; Arey et al., 1986; Feilberg et al., 2001; 

Kameda et al., 2011; Yang et al., 2011). Dry and wet deposition processes can effectively 

remove particulate PAHs and NPAHs from the atmosphere (Bidleman 1988). In this study, 

we examined the effects of two physical factors, wind speed (m/s) and relative humidity (%), 

to evaluate the directly effects to the atmospheric concentrations of PAHs and NPAHs in the 

different season in Beijing. Strong and negative correlations were found between all PAH and 
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NPAH levels and wind speed in heating season (n = 34, p < 0.01 for all PAHs and DNPs and 

p < 0.05 for 1-NP) (Table 6). However, the correlation was weak for DNPs, and no 

correlation was observed in the non-heating season. The negative correlations between PAH 

and NPAH levels and wind speed may have been due to the high wind speed (Table 2), which 

is generally associated with clean air from higher altitudes in the heating season, as discussed 

in section 3.2. High relative humidity led to decreases in the concentrations of PAHs and 

NPAHs in the non-heating season, in agreement with other reports (Hong et al., 2007; Park et 

al., 2002; Zhu et al., 2014), whereas it led to increases in PAH and NPAH levels, except for 

9-NA, in the heating season. The negative correlation between relative humidity and wind 

speed in the heating season was strong (n = 34, r = -0.6873, p < 0.01), which suggests that 

low wind speed reduced the diffusion of PAHs and NPAHs originating from domestic sources. 

9-NA originates from both direct emissions and heterogeneous reactions in the atmosphere on 

particulate-bound anthracene and nitrating agents (Amador-Muñoz et al., 2011; Feilberg et al., 

2001; Lin, et al., 2015; Zhang et al., 2011). Therefore, the atmospheric behavior of 9-NA 

cannot be explained by only physical parameters used in this study. 

 

4. Conclusions 

  In this study, the behaviours of atmospheric PAHs and NPAHs were investigated at two 

sites in Beijing from 2004 to 2010. The concentrations of PAHs and NPAHs were higher in 

the heating season in every year at both sites. The concentrations of both PAHs and NPAHs 

decreased in the non-heating season but only the concentrations of NPAHs decreased in the 

heating season at site 1, which is an urban site. Moreover, the yearly average concentrations 

of PM10, SO2 and NO2 decreased in Beijing from 2004 to 2010 (Table 1). These observations 

suggest that source control measures implemented by the city of Beijing had a positive effect 

on the Beijing air pollution. The concentrations of PAHs increased at site 1 in 2010, possibly 
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due to transposition of emission from other areas, such as Shanxi province. Diagnostic ratios 

of atmospheric PAHs and NPAHs showed that the mixed sources contributed to atmospheric 

pollution in Beijing, although coal combustion was the main source in the heating season and 

vehicle emissions were the main source in the non-heating season. Our results also show that 

atmospheric PAHs and NPAHs in Beijing can be removed by high wind speeds in the heating 

season and by high relative humidity in the non-heating season. 
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Figure captions 

 

Fig. 1. Map of Beijing (39º55’N; 116º26’E) with air sampling sites. 

Site 1: an urban site located at No. 18 Shuangqing Road, Hiadian District 

Site 2: a suburban site located at Shenshan Village, Huairou District 

 

Fig. 2. Two-day back trajectories at 500 m during the 2009 heating season sampling period by 

using an online program provided by the Air Resources Laboratory, NOAA. 

(A): Nov. 23, 25 and 27, (B): Dec. 7 and 9, (C): Dec. 16 and 18. 
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Figure 2 
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Table 1 Population, gross domestic product (GDP), energy consumptions and numbers of registered carsa, and PM10, SO2 and NO2 levelsb in 

Beijing from 2004 to 2010. 

Population GDP Energy consumptions No. of cars PM10 SO2 NO2

(X 104) (billion yuan) (million tonnes coal equivalent) (X 104)
2004 1493 428.3 51.4 187 0.149 0.055 0.071
2005 1538 697.0 55.0 215 0.142 0.050 0.066
2006 1581 811.8 59.1 244 0.161 0.053 0.066
2007 1633 984.7 62.9 278 0.148 0.047 0.066
2008 1695 1112 63.4 318 0.122 0.036 0.049
2009 1755 1215 65.8 402 0.121 0.034 0.053
2010 1961 1378 69.5 481 0.121 0.032 0.057

Year
(µg/m3)

 
a Beijing Statistical Information Net (http://www.bjstats.gov.cn/esite/) 

b Beijing Municipal Environmental Monitoring Center (http://www.bjmemc.com.cn) 
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Table 2 Meteorological conditions in Beijing during the sampling periods. 

Sampling period Temperature Wind speed Relative humidity Visibility
(ºC) (m/s) (%) (km)

Site 1
Heating Dec. 18 - 30, 2004 -5.3 (-7.6 ~ -0.6) 3.1 (1.0 ~ 6.8) 55.8 (29.0 ~ 90.3) 4.3 (1.1 ~ 6.4)

Jan. 21 - Feb. 2, 2008 -4.1 (-6.7 ~ -2.3) 4.0 (1.5 ~ 6.7) 30.1 (22.7 ~ 62.4) 5.7 (4.0 ~ 6.5)
Nov. 25 - Dec. 21, 2009 -5.5 (-7.2 ~ -4.8) 3.3 (1.1 ~ 8.3) 47.1 (17.1 ~ 83.4) 2.9 (0.9 ~ 4.5)

Non-heating May 9 - 24, 2005 18.9 (11.5 ~ 23.6) 3.2 (2.5 ~ 4.4) 54.6 (30.6 ~ 87.5) 4.6 (2.7 ~ 6.0)
Aug. 21 - Sep. 2, 2007 26.0 (22.2 ~ 30.2) 2.5 (1.9 ~ 3.5) 62.3 (51.2 ~ 89.3) 4.7 (3.4 ~ 6.2)
Aug. 11 - Sep. 1, 2010 25.3 (20.1 ~ 29.5) 2.6 (1.7 ~ 5.3) 67.9 (28.7 ~ 87.4) 3.0 (1.0 ~ 4.2)

Site 2
Heating Jan. 20 - 31, 2010 -1.8 (-5.5 ~  2.9) 5.0 (1.8 ~ 8.5) 29.3 (17.5 ~ 44.9) 3.9 (2.6 ~ 4.2)
Non-heating Aug. 2 - 16, 2010 26.6 (24.1 ~ 29.5) 2.8 (1.6 ~ 5.7) 61.9 (28.7 ~ 85.1) 2.8 (1.2 ~ 4.2)  

Average temperature, dew point, wind speed and visibility in Beijing during the sampling periods were obtained from National Climatic Data 

Center, NOAA (http://www.ncdc.noaa.gov/) and average humidity were calculated by using the data of average temperature and dew point.  
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Table 3 Concentrations of atmospheric PAHs and NPAHs in Beijing from 2004 to 2010.  

PAH FR 193 ± 154 166 ± 104 294 ± 222 9.72 ± 5.05 5.25 ± 1.47 2.87 ± 0.54 252 ± 99.1 2.82 ± 0.95
(pmol/m3) Pyr 188 ± 139 162 ± 108 276 ± 200 8.47 ± 3.80 4.77 ± 1.26 2.54 ± 0.49 252 ± 108 2.59 ± 0.67

BaA 103 ± 68.0 78.8 ± 43.6 198 ± 154 6.09 ± 1.98 2.78 ± 0.81 0.84 ± 0.19 103 ± 38.2 1.18 ± 0.33
Chr 100 ± 62.8 61.7 ± 33.1 186 ± 137 9.26 ± 2.98 4.78 ± 1.62 1.91 ± 0.53 134 ± 50.3 1.69 ± 0.38
BbF 71.5 ± 47.3 69.8 ± 33.8 91.6 ± 48.7 15.0 ± 4.53 11.8 ± 5.71 4.85 ± 1.78 33.3 ± 19.9 2.95 ± 0.76
BkF 30.8 ± 18.8 22.4 ± 11.2 37.6 ± 20.9 5.90 ± 1.87 4.22 ± 1.32 1.53 ± 0.39 27.0 ± 14.0 1.21 ± 0.36
BaP 64.4 ± 41.2 50.7 ± 30.0 68.6 ± 37.3 9.05 ± 3.03 5.37 ± 1.51 2.00 ± 0.48 63.6 ± 35.0 2.05 ± 0.74
BgPe 52.1 ± 31.6 82.1 ± 41.7 26.1 ± 27.1 12.4 ± 3.66 13.3 ± 3.86 3.22 ± 0.80 31.1 ± 18.1 3.42 ± 0.99
IDP 31.6 ± 22.0 36.1 ± 21.7 54.5 ± 32.6 8.12 ± 2.24 7.38 ± 1.81 3.22 ± 0.89 47.8 ± 50.9 2.29 ± 0.96

Total PAHs 835 ± 580 730 ± 421 1230 ± 862 84.0 ± 24.6 59.6 ± 16.2 23.0 ± 5.59 944 ± 262 20.2 ± 4.36

NPAH DNPs 40.7 ± 26.7 15.5 ± 7.00 13.5 ± 9.17 20.1 ± 26.7 8.18 ± 3.76 1.25 ± 0.30 8.76 ± 5.78 1.54 ± 0.43
(fmol/m3) 9-NA 2070 ± 1120 1610 ± 225 1260 ± 784 1730 ± 868 705 ± 216 82.4 ± 104 2740 ± 1810 181 ± 81.4

1-NP 1084 ± 997 761 ± 228 391 ± 182 76.2 ± 48.6 92.7 ± 41.9 48.4 ± 20.3 203 ± 72.3 38.2 ± 18.3

Total NPAHs 3200 ± 1320 2390 ± 460 1480 ± 900 1820 ± 890 805 ± 234 120 ± 118 2900 ± 1880 221 ± 85.1

Site 2
Heating Non-heating Heating Non-heating

Dec. 18 - 30, Jan. 21 - Feb. 2, Nov. 25 - Dec.21,
2008 (n  = 7) 2009 (n  = 7) 2005 (n  = 15) 2007 (n  = 7)

Compound

Site 1

2010 (n  = 7)2004 (n  = 13) 2010 (n  = 7) 2010 (n  = 7)
May 9 - 24, Aug. 21 - Sep. 2, Aug. 11 - Sep. 1, Jan. 20 - 31, Aug. 2 - 16,

 

All data represent mean ± standard deviation. 

Symbol:  

BaA: benz[a]anthracene; Chr: chrysene; FR: fluoranthene; Pyr: pyrene; BbF: benzo[b]fluoranthene; BkF: benzo[k]fluoranthene; BaP: 

Benzo[a]pyrene; BgPe: benzo[ghi]perylene; IDP: indeno[1,2,3-cd]pyrene; DNPs: dinitropyrenes; 9-NA: 9-nitroanthracene; 1-NP: 

1-nitropyrene. 
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Table 4 Concentration ratios of PAHs in particulates from gasoline-engines, diesel-engines and coal stoves from previous reports. 

Source [BaA]/([Chr]+[BaA]) [FR]/([Pyr]+[FR]) [BbF]/([BbF]+[BkF]) [BaP]/([BaP]+[BgPe]) [IDP]/([BgPe]+[IDP]) [1-NP]/[Pyr] Reference
Gasoline-engine 0.22 - 0.55 Simcik et al., 1999

0.40 Rogge et al., 1993
0.52 - 0.60 Dickhut et al., 2000

0.21 - 0.22 Khalili et al., 1995

Diesel-engine 0.38 - 0.64 0.60 - 0.70 Sicre et al., 1987
0.35 - 0.70 Rogge et al., 1993

0.36 0.50 0.50 0.36 Tang et al., 2005
0.23 - 0.28 Masclet et al., 1987

Coal stove 0.50 0.53 0.33 0.001 Tang et al., 2005
0.35 - 0.69 Zhang et al., 2008

0.47 - 0.86 Daisey et al., 1979
0.23 - 0.47 Chen et al., 2005

0.18 - 0.38 0.36 - 0.53 0.81 - 0.95 0.14 - 0.32 Huang et al., 2014
0.78 - 0.80 Masclet et al., 1987  
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Table 5 Diagnostic ratios of several PAHs and NPAH in the atmosphere at two sites in Beijing. 

[BaA]/([Chr]+[BaA]) [FR]/([Pyr]+[FR]) [BbF]/([BbF]+[BkF]) [BaP]/([BaP]+[BgPe]) [IDP]/([BgPe]+[IDP]) [1-NP]/[Pyr]
Site 1 Dec., 2004 0.51 0.51 0.70 0.55 0.38 0.006

Jan., 2008 0.56 0.51 0.76 0.38 0.31 0.005
Nov., 2009 0.52 0.52 0.71 0.72 0.68 0.002
May, 2005 0.40 0.53 0.72 0.42 0.40 0.011
Aug., 2007 0.37 0.52 0.74 0.29 0.36 0.021
Aug., 2008 0.31 0.53 0.76 0.38 0.50 0.019

Site 2 Jan., 2010 0.43 0.50 0.55 0.67 0.61 0.001
Aug., 2010 0.41 0.52 0.71 0.37 0.40 0.015  
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Table 6 Correlation coefficients between nine PAHs, six NPAHs and several meteorological 

factors at two sites in the heating and non-heating seasons. 

Heating Non-heating Heating Non-heating
FR -0.5375** 0.0496 0.3084 -0.0979
Pyr -0.5446** 0.0761 0.2861 -0.1031
BaA -0.5968** 0.1675 0.4169* -0.2960
Chr -0.5642** 0.1229 0.3995* -0.2477
BbF -0.7790** 0.0529 0.5813** -0.1538
BkF -0.7362** 0.1523 0.5443** -0.2656
BaP -0.6769** 0.1863 0.4043* -0.3329
BgPe -0.5038** 0.1364 0.1817 -0.2544
IDP -0.5132** 0.2156 0.2402 -0.2346
DNPs -0.5559** 0.1953 0.4742** -0.4048*
9-NA -0.071 0.1312 -0.3820* -0.4769**
1-NP -0.4268* -0.0594 0.3946* -0.1170

Compound
Wind Flow (m/s) Relative Humidity (%)

 

Level of significance: *: p < 0.05; **: p < 0.01. n = 34 in heating season and n = 36 in 

non-heating season. 

 

 

 


