
Novel bromomelatonin derivatives suppress
osteoclastic activity and increase
osteoblastic activity: Implications for the
treatment of bone diseases

著者 Suzuki Nobuo, Somei Masanori, Kitamura
Keiichiro, Reiter Russel J., Hattori Atsuhiko

journal or
publication title

Journal of Pineal Research

volume 44
number 3
page range 326-334
year 2008-04-01
URL http://hdl.handle.net/2297/17120

doi: 10.1111/j.1600-079X.2007.00533.x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196728029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1  

Novel bromomelatonin derivatives suppress osteoclastic activity and increase 

osteoblastic activity: Implications for the treatment of bone diseases 

 

Nobuo Suzuki1*, Masanori Somei2, Kei-Ichiro Kitamura3, Russel J. Reiter4 and  

Atsuhiko Hattori5* 

 

1Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa 

University, Housu-gun, Ishikawa, Japan; 2Division of Pharmaceutical Sciences, Graduate 

School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 

Japan; 3Division of Health Sciences, Graduate School of Medical Science, Kanazawa 

University, Kanazawa, Ishikawa, Japan; 4Department of Cellular and Structural Biology, The 

University of Texas, Health Science Center at San Antonio, San Antonio, USA; 5Department 

of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 

Ichikawa, Chiba, Japan 

Running title: Novel bromomelatonin effects on bone metabolism  

Key words: bromomelatonin derivatives; osteoblasts; osteoclasts; scales; goldfish; bone 

diseases 

 

* Corresponding authors:  
Nobuo Suzuki 
Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa 
University, Noto-cho, Ishikawa 927-0553, Japan  
Tel: +81-768-74-1151; Fax: +81-768-74-1644;  
E-mail: nobuo@kenroku.kanazawa-u.ac.jp 
Atsuhiko Hattori 
Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental 
University, Ichikawa, Chiba 272-0827, Japan 
Tel/Fax: +81-47-300-7126 
E-mail: ahattori.las@tmd.ac.jp Japan 

mailto:ahattori.las@tmd.ac.jp


 2  

Abstract The teleost scale is a calcified tissue that contains osteoclasts, osteoblasts, and bone 

matrix, all of which are similar to those found in mammalian membrane bone. Using the 

goldfish scale, we recently developed a new in vitro assay system and previously 

demonstrated that melatonin suppressed both osteoclastic and osteoblastic activities in this 

assay system. In mammals, 2-bromomelatonin possesses a higher affinity for the melatonin 

receptor than does melatonin. Using a newly developed synthetic method, we synthesized 

2-bromomelatonin, 2,4,6-tribromomelatonin and novel bromomelatonin derivatives 

(1-allyl-2,4,6-tribromomelatonin, 1-propargyl-2,4,6-tribromomelatonin, 

1-benzyl-2,4,6-tribromomelatonin, and 2,4,6,7-tetrabromomelatonin) and then examined the 

effects of these chemicals on osteoclasts and osteoblasts. All bromomelatonin derivatives, as 

well as melatonin, had an inhibitory action on osteoclasts. In particular, 

1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin) possessed a stronger activity 

than melatonin. At an in vitro concentration of 10-10 M, benzyl-tribromomelatonin still 

suppressed osteoclastic activity after 6 h of incubation. In reference to osteoblasts, all 

bromomelatonin derivatives had a stimulatory action, although melatonin inhibited 

osteoblastic activity. In addition, estrogen receptor mRNA expression (an osteoblastic 

marker) was increased in benzyl-tribromomelatonin (10-7 M)-treated scales. Taken together, 

the present results strongly suggest that these novel melatonin derivatives have significant 

potential for use as beneficial drug for bone diseases such as osteoporosis. 
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Introduction 

Melatonin, N-acetyl-5-methoxytryptamine, is a secretory product of the vertebrate pineal 

gland which is synthesized during darkness and exhibits a conspicuous circadian rhythm [1, 

2]. In mammals including man, nighttime melatonin levels progressively drop throughout life 

[3, 4], and, as a result, nocturnal melatonin levels in older individuals are much lower than 

they are in younger individuals [5]. Several reports indicate that melatonin is involved in the 

regulation of calcium homeostasis and bone metabolism. For example, melatonin prevents 

phototherapy-induced hypocalcemia in newborn rats [6]. On the basis of these reports, the 

effect of melatonin on bone metabolism was recently examined using the cell line of 

osteoblasts [7-9]. An interaction between osteoclasts and osteoblasts has been recently noted 

in mammals and it is necessary to consider both their actions [10, 11]. In addition, the 

receptor activator of NF-κB (RANK) and the receptor activator of the NF-κB ligand 

(RANKL) have been identified in osteoclasts and osteoblasts, respectively [12]. It was found 

that osteoclasts are activated by binding RANKL to RANK and that multi-nucleolus 

osteoclasts (active type of osteoclasts) are then induced [12]. The bone complex includes 

osteoblasts, osteoclasts, and the bone matrix. Therefore, a co-culture of these components is 

required; however, few techniques have been developed to accomplish this goal.  

The teleost scale is a calcified tissue that contains osteoclasts and osteoblasts [13-15]. In 

the scale as well as in mammalian bone, components of the bone matrix including type I 

collagen [16], bone γ-carboxyglutamic acid protein [17], and osteonectin [18], are present. 

Hydroxyapatite also exists in the scale [19]. The scales of teleosts contain as much as 20% of 

the total body calcium and are a functional internal calcium reservoir during periods of 

increased calcium demand, such as sexual maturation and starvation [13, 20-22]. Thus, there 

are many similarities between the teleost scale and mammalian membrane bone.  

Considering these findings, we recently developed a new in vitro assay system using the 

teleost scale [23, 24]. This system can simultaneously detect the activities of both osteoclasts 
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and osteoblasts with tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase 

(ALP) as respective markers. In mammals, also, the effects of hormones on osteoclasts and 

osteoblasts have been investigated using the same bioactive markers [25, 26]. Furthermore, 

we detected the respective enzyme activity from individual scales by transferring each scale 

into a well of a 96-well microplate and directly incubating it with the substrate.  

Using this in vitro assay system, our previous report demonstrated that melatonin 

suppressed both osteoclastic and osteoblastic activities [24]. This was the first report related 

to the function of melatonin in osteoclasts and on the inhibitory effect of melatonin in 

osteoblasts in any vertebrate species. The finding suggested that melatonin may directly 

regulate bone metabolism. 

   It is well documented that many cells possess membrane melatonin receptors [27-29]. 

However, there is no report regarding the effects of melatonin derivatives on osteoclasts and 

osteoblasts. In the present study, we synthesized novel bromomelatonin derivatives and 

investigated their effects on osteoclastic and osteoblastic activities because 2-bromomelatonin 

is known to have a higher affinity for the melatonin receptor than melatonin itself in 

mammals [30-32]. Also, the estrogen receptor, which is related to osteoblastic growth and 

differentiation [33-35], was recently found to be associated with scales and shown to have a 

co-relationship with osteoblastic activity [36]. Thus, the mRNA expression of the estrogen 

receptor (ER) was analyzed using the reverse transcription-polymerase chain reaction 

(RT-PCR) method as an osteoblastic marker. 

 

Materials and Methods 

Animals 

A previous study [23] indicated that the sensitivity for calcemic hormones was higher in 

mature female teleosts than in mature males. Therefore, mature female goldfish (Carassius 

auratus) (N=16) (40.5 ± 1.5 g) were purchased from a commercial source (Higashikawa Fish 
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Farm, Yamatokoriyama, Japan) and used for the in vitro scale assay and mRNA analysis by 

RT-PCR. The fish were kept under usual conditions before the onset of the experiments. All 

experimental procedures were conducted in accordance with the Guide for the Care and Use 

of Laboratory Animals of Kanazawa University. 

 

Synthesis of bromomelatonin derivatives 

Bromination of melatonin [37, 38] (1) with 0.9 mol eq. of Br2 in AcOH in the presence of 

NaOAc afforded 2-bromomelatonin (2a) and 2,4-dibromomelatonin (2b) in 28 and 20% 

yields, respectively, in addition to a 51% yield of unreacted 1 (Fig. 1). The same reaction with 

3 mol eq. of Br2 exclusively provided 2,4,6-tribromomelatonin (3) in 94% yield.  

   Treatment of 3 with allyl bromide in dimethyl formamide in the presence of K2CO3 

provided 1-allyl-2,4,6-tribromomelatonin (4a) in 95% yield. Similarly, 1-propargyl- (4b) and 

1-benzyl-2,4,6-tribromomelatonins (4c) were produced in 97 and 83% yields, respectively, by 

reacting 3 with either propargyl chloride or benzyl bromide. The preparation of 

2,4,6,7-tetrabromomelatonin (6) was more difficult than expected. Direct bromination of 3 

afforded a complex mixture of products under various reaction conditions. We finally 

obtained 6 in 18% yield by the bromination of 1-hydroxymelatonin [39] (5), together with 3, 

2,4,7-tribromomelatonin (7), and 3,4,7-tribromo-2-oxomelatonin (8) in the respective yields 

of 3, 22, and 9%.  

   Melting points were determined on a Yanagimoto micro-melting-point apparatus and are 

uncorrected. Infrared (IR) spectra were determined with an IR-420 (Shimadzu Co., Kyoto, 

Japan) or FT-720 spectrophotometer (Horiba Ltd., Kyoto, Japan) and proton nuclear magnetic 

resonance (1H-NMR) spectra with a spectrometer (GSX-500, JEOL Ltd., Tokyo, Japan), with 

tetramethylsilane (TMS) as an internal standard. Chemical shifts are reported in δ relative to 
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TMS. Mass spectra (MS) were recorded on a SX-102A spectrometer (JEOL Ltd.). Column 

chromatography was performed on silica gel (SiO2, 100-200 mesh, Kanto Chemical Co. Inc., 

Tokyo, Japan) throughout the study.   

   2-Bromomelatonin (2a) and 2,4-dibromomelatonin (2b) from melatonin (1). A 0.61 M 

solution of Br2 in AcOH (containing 1 mmol of NaOAc, 1.46 mL, 0.89 mmol) was added to a 

solution of 1 (203.8 mg, 0.88 mmol) in AcOH (10 mL), and the mixture was stirred at room 

temperature for 5 h. After the addition of aqueous 10% Na2S2O2 (in excess), the mixture was 

made alkaline by adding 8% aqueous NaOH under ice cooling and extracted with 

CHCl3-MeOH (95:5, v/v). The extract was washed with brine, dried over Na2SO4, and 

evaporated under reduced pressure to leave an oil, which was column-chromatographed on 

SiO2 successively with AcOEt and CHCl3-MeOH (99:1, v/v) to give unreacted 1 (103.3 mg, 

51%), 2a (75.6 mg, 28%), and 2b (68.8 mg, 20%) in the order of elution. 2a: mp 148-149 °C 

(colorless prisms recrystallized from CHCl3-MeOH (95:5, v/v)). IR (KBr): 3210, 1625, 1580, 

1485, 1440, 1362, 1307, 1220, 1180, 1080, 1038, 920, 823, 800, 743 cm-1. 1H-NMR (DMSO) 

δ: 1.78 (3H, s), 2.73 (2H, t, J=7.0 Hz), 3.19 (2H, q, J=7.0 Hz), 3.76 (3H, s), 6.73 (1H, dd, 

J=8.5 and 2.4 Hz), 7.01 (1H, d, J=2.4 Hz), 7.17 (1H, d, J=8.5 Hz), 7.96 (1H, t, J=7.0 Hz), 

11.50 (1H, s). Anal. Calcd for C13H15BrN2O2: C, 50.18; H, 4.86; N, 9.00. Found: C, 50.07; H, 

4.77; N, 8.83. 2b: mp 177-179 °C (pale brown powder recrystallized from CHCl3-hexane). IR 

(KBr): 3410, 3100, 2900, 1648, 1530, 1460, 1410, 1300, 1284, 1245, 1200, 1100, 1060, 790 

cm-1. 1H-NMR (CDCl3) δ: 1.94 (3H, s), 3.21 (2H, t, J=6.5 Hz), 3.61 (2H, q, J=6.5 Hz), 3.91 

(3H, s), 5.72 (1H, br s), 6.89 (1H, d, J=8.8 Hz), 7.21 (1H, d, J=8.8 Hz), 8.41 (1H, br s). MS 

m/z: 388, 390, 392 (M+). Anal. Calcd for C13H14Br2N2O2·1/4 H2O: C, 39.57; H, 3.70; N, 7.10. 

Found: C, 39.56; H, 3.59; N, 6.76. 

   2,4,6-Tribromomelatonin (3) from melatonin (1). A 0.56 M solution of Br2 in AcOH 

(containing 1 mmol of NaOAc, 3.30 mL, 1.85 mmol) was added to a solution of 1 (144.5 mg, 
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0.62 mmol) in AcOH (12 mL), and the mixture was stirred at room temperature for 1.5 h. 

After the addition of Na2S2O3 (1.0 mL) and H2O, the mixture was made basic with 40% 

NaOH under ice cooling and extracted with CHCl3-MeOH (95:5, v/v). The extract was 

washed with brine, dried over Na2SO4, and evaporated under reduced pressure to leave an oil, 

which was column-chromatographed on SiO2 with AcOEt-MeOH (99:1, v/v) to give 3 (272.2 

mg, 94%). 3: mp >300 °C (decomp., colorless powder, recrystallized from MeOH). IR (KBr): 

3371, 3370, 1653, 1543, 1446, 1406, 1306, 1022 cm-1. 1H-NMR (CDCl3) δ: 1.78 (3H, s), 2.97 

(2H, t, J=7.3 Hz), 3.25 (2H, q, J=7.3 Hz), 3.77 (3H, s), 7.52 (1H, s), 7.89 (1H, br t, J=5.6 Hz, 

disappeared on addition of D2O), 12.15 (1H, br t, J=7.3 Hz, disappeared on addition of D2O). 

Anal. Calcd for C13H13Br3N2O2: C, 33.29; H, 2.79; N, 5.97. Found: C, 33.27; H, 2.82; N, 5.85.  

   1-Allyl-2,4,6-tribromomelatonin (4a) from 2,4,6-tribromomelatonin (3) — General 

procedure. K2CO3 (31.1mg, 0.22 mmol) was added to a solution of 3 (30.2 mg, 0.064mmol) 

in DMF (2.0 mL), and the mixture was stirred at room temperature for 1.5 h. To the resultant 

mixture, allyl bromide (0.11 mL, 1.28 mmol) was added and stirred at room temperature for 

1.5 h. After the addition of H2O, the mixture was extracted with AcOEt-MeOH (95:5, v/v). 

The extract was washed with brine, dried over Na2SO4, and evaporated under reduced 

pressure to leave an oil, which was column-chromatographed on SiO2 with AcOEt to give 4a 

(31.0 mg, 95%). 4a: mp 142-143 °C (colorless fine needles, recrystallized from 

AcOEt-hexane). IR (KBr): 3284, 1633, 1562, 1456, 1412, 1298, 1018 cm-1. 1H-NMR (CDCl3) 

δ: 1.93 (3H, s), 3.24 (2H, t, J=6.6 Hz), 3.58 (2H, q, J=6.6 Hz), 3.89 (3H, s), 4.76 (2H, dt, 

J=4.9, 1.7 Hz), 4.89 (1H, d, J=16.6 Hz), 5.20 (1H, d, J=10.3 Hz), 5.55 (1H, br t, disappeared 

on addition of D2O), 5.87 (1H, ddt, J=16.6, 10.3, 4.9 Hz), 7.4 (1H, s). Anal. Calcd for 

C16H17Br3N2O2: C, 37.75; H, 3.37; N, 5.50. Found: C, 37.75; H, 3.37; N, 5.42.  

   1-Propargyl-2,4,6-tribromomelatonin (4b) from 2,4,6-tribromomelatonin (3).  In the 

general procedure for the preparation of 4a, K2CO3 (31.9mg, 0.22 mmol), 3 (30.1 mg, 

0.064mmol), and propargyl chloride (0.09 mL, 1.28 mmol) were used. After work-up, 31.6 
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mg (97%) of 4b was obtained. 4b: mp 199-200 °C (colorless fine needles, recrystallized from 

AcOEt-hexane). IR (KBr): 3286, 2117, 1628, 1558, 1456, 1435, 1410, 1294, 1018 cm-1. 

1H-NMR (CDCl3) δ: 1.93 (3H, s), 2.34 (1H, t, J=2.4 Hz), 3.23 (2H, t, J=6.6 Hz), 3.58 (2H, q, 

J=6.6 Hz), 3.89 (3H, s), 4.91 (2H, d, J=2.4 Hz), 5.54 (1H, br t, J=6.6 Hz, disappeared on 

addition of D2O), 7.58 (1H, s). Anal. Calcd for C13H15Br3N2O2: C, 37.90; H, 2.98; N, 5.53. 

Found: C, 37.78; H, 3.00; N, 5.44.  

   1-Benzyl-2,4,6-tribromomelatonin (4c) from 2,4,6-tribromomelatonin (3). In the general 

procedure for the preparation of 4a, K2CO3 (31.8mg, 0.30 mmol), 3 (40.1 mg, 0.086 mmol), 

and benzyl bromide (0.20 mL, 1.72 mmol) were used. After work-up, 40.3 mg (83%) of 4c 

was obtained. 4c: mp 218-219 °C (colorless fine needles, recrystallized from MeOH). IR 

(KBr): 3280, 1630, 1547, 1454, 1414, 1360, 1298, 1014 cm-1. 1H-NMR (CDCl3) δ: 1.91 (3H, 

s), 3.26 (2H, t, J=6.6 Hz), 3.61 (2H, td, J=12.7, 6.6 Hz), 3.88 (3H, s), 5.36 (2H, s), 5.54 (1H, 

br t, J=6.6 Hz, disappeared on addition of D2O), 7.01 (2H, d, J=6.6 Hz), 7.27-7.33 (3H, m), 

7.39 (1H, s). Anal. Calcd for C20H19Br3N2O2: C, 42.97; H, 3.43; N, 5.01. Found: C, 42.76; H, 

3.40; N, 4.86.  

   2,4,6,7-Tetrabromomelatonin (6), 2,4,7-tribromomelatonin (7), 

3,4,7-tribromo-2-oxomelatonin (8), and 3 from 1-hydroxymelatonin (5). A 0.57 M solution of 

Br2 in AcOH (containing 1 mmol of NaOAc, 1.14 mL, 0.65 mmol) was added to a solution of 

5 (54.1 mg, 0.22 mmol) in AcOH (3.0 mL), and the mixture was stirred at room temperature 

for 2 h. After the addition of 10% aqueous Na2S2O3 (in excess), the mixture was made neutral 

by adding 20% aqueous NaOH under ice cooling and extracted with CHCl3-MeOH (95:5, v/v). 

The extract was washed with brine, dried over Na2SO4, and evaporated under reduced 

pressure to leave an oil which was column-chromatographed on SiO2 with CHCl3-MeOH 

(98:2, v/v) and AcOEt to give 7 (22.6 mg, 22%), 6 (21.0 mg, 18%), 3 (2.7 mg, 3%), and 8 

(10.3 mg, 9%) in the order of elution. 6: mp 232-234 °C (decomp., colorless prisms 

recrystallized from CHCl3-hexane). IR (KBr): 3095, 1624, 1576, 1433, 1288, 1039 cm-1. 



 9  

1H-NMR (DMSO-d6) δ: 1.77 (3H, s), 2.99 (2H, t, J=7.0 Hz), 3.27 (2H, q, J=7.0 Hz), 3.79 (3H, 

s), 7.88 (1H, br t, J=7.0 Hz, disappeared on addition of D2O), 12.33 (1H, br s, disappeared on 

addition of D2O). MS m/z: 544, 546, 548, 550, 552 (M+). Anal. Calcd for C13H12Br4N2O2: C, 

28.50; H, 2.21; N, 5.11. Found: C, 28.25; H, 2.29; N, 4.84. 7: mp 220-221 °C (decomp., 

colorless powder recrystallized from CHCl3-hexane). IR (KBr): 3140, 1674, 1550, 1527, 1300, 

1107, 1066 cm-1. 1H-NMR (CDCl3) δ: 1.93 (3H, s), 3.19 (2H, t, J=6.6 Hz), 3.59 (2H, q, J=6.6 

Hz, collapsed to t, J=6.6 Hz, on addition of D2O), 3.91 (3H, s), 5.55 (1H, br s, disappeared on 

addition of D2O), 7.05 (1H, s), 8.25 (1H, br s, disappeared on addition of D2O). Anal. Calcd 

for C13H13Br3N2O2: C, 33.29; H, 2.79; N, 5.97. Found: C, 33.27; H, 2.87; N, 5.94. 8: yellow 

oil. IR (film): 3261, 1734, 1653, 1466, 1435, 1298, 754 cm-1. 1H-NMR (CDCl3) δ: 1.83 (3H, 

s), 2.70-2.76 (1H, m), 3.10-3.19 (3H, m), 3.88 (3H, s), 5.53 (1H, br s, disappeared on addition 

of D2O), 6.95 (1H, s), 8.04 (1H, br s, disappeared on addition of D2O). HR-FAB-MS m/z: 

Calcd for C13H14N2O3Br3 (M++H): 482.8554, 484.8534, 486.8513, 488.8493. Found: 

482.8508, 484.8505, 486.8502, 488.8497.  

 

Effects of bromomelatonin derivatives on osteoclastic and osteoblastic activities in the 

cultured scales of goldfish 

Scales collected from goldfish after anesthesia with ethyl 3-aminobenzoate, methanesulfonic 

acid salt (MS-222, Sigma-Aldrich, Inc., St. Louis, MO, USA) were incubated for 6 h in 

Eagle’s modified minimum essential medium (MEM; ICN Biomedicals Inc., Aurora, OH, 

USA) supplemented with melatonin, 2-bromomelatonin, 2,4,6-tribromomelatonin,  

1-allyl-2,4,6-tribromomelatonin, 1-propargyl-2,4,6-tribromomelatonin, 

1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin), or 

2,4,6,7-tetrabromomelatonin (each 10-8, 10-6, and 10-4 M). The structures of these substances 

are shown in figure 2. The action in these chemicals was compared with controls. A 1% 

penicillin-streptomycin mixture (ICN Biomedicals, Inc.) was added to these media. HEPES 
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(20 mM) was added to MEM. The pH was adjusted to 7.0. The incubation temperature was 

15 °C. After incubation, scales were fixed in 10% formalin in a 0.05 M cacodylate buffer (pH 

7.4) and then rinsed in distilled water. The scales were kept in a 0.05 M cacodylate buffer at 

4 °C until analysis. For the most effective derivative, the experiment was performed again at 

lower concentrations (10-10 to 10-6 M) to determine the limit of the response of scale 

osteoclasts and osteoblasts using 6 and 18 h incubation periods. This effect was compared 

with that of melatonin. After incubation, the scales were fixed in 10% formalin in a 0.05 M 

cacodylate buffer (pH 7.4) and kept in a 0.05 M cacodylate buffer until TRAP and ALP 

analyses.  

The measurement of TRAP and ALP activities has been described by Suzuki and Hattori 

[24]. The procedure for the TRAP measurement is as follows. Each scale was transferred to 

its own well in a 96-well microplate after being weighted. An aliquot of 200 µl of 10 mM 

para-nitrophenyl-phosphate and 20 mM tartrate in a 0.1 M sodium acetate buffer (pH 5.3) was 

added to each well. Then, this plate was incubated at 20 °C for 60 min while being shaken. 

After incubation, the reaction was stopped by adding 50 µl of a 3 N NaOH-20 mM EDTA 

solution. One hundred and fifty µl of the colored solution was transferred to a new plate, and 

the absorbance was measured at 405 nm. The absorbance was converted to the amount of 

produced para-nitrophenol (pNP) using a standard curve for pNP.  

The detection of ALP was the only change in the buffer system. ALP activities were 

measured using an alkaline buffer (100 mM Tris-HCl, pH 9.5; 1 mM MgCl2; 0.1 mM ZnCl2). 

Other conditions were the same as for the measurement of the TRAP activity. 

 

Changes in ER mRNA expression and osteoclastic and osteoblastic activities in the 

melatonin- and benzyl-tribromomelatonin-treated goldfish scales after 6 h of culture 

Scales were collected from goldfish under anesthesia with MS-222. To examine changes in 

ER mRNA expression in response to the most effective bromomelatonin, scales were 
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incubated for 6 h in MEM (containing antibiotic and 20 mM HEPES) supplemented with 

benzyl-tribromomelatonin (10-7 M), and the results were compared with those from melatonin 

(10-7 M). After incubation, the scales were frozen at -80 °C for mRNA analysis, while the 

others were used in TRAP and ALP analyses using the methods previously described. 

Total RNAs were prepared from goldfish scales using a total RNA isolation kit for 

fibrous tissue (Qiagen GmbH, Hilden, Germany). Complimentary DNA synthesis was 

performed using a kit (Qiagen GmbH). PCR was carried out with Taq polymerase (Nippon 

Gene, Tokyo, Japan). The gene-specific primers (5': TCAAGATTGCCACAGACTCC; 3': 

TTGTGTGTCCATCCGGAGAG) for goldfish ER cDNA reported by Ma et al. (2000) [40] 

were used. The amplification of β-actin cDNA using a primer set 

(5':CACTGTGCCCATCTACGAG; 3': CCATCTCCTGCTCGAAGTC) [41] was performed. 

The conditions for PCR amplification were denaturation for 0.5 min at 96 °C, annealing for 1 

min at 60 °C, and extension for 2 min at 72 °C followed by a single cycle at 72 °C for 30 min. 

The numbers of cycles for amplification in ER and β-actin cDNAs were determined by 

ensuring that PCR amplification was at submaximum and the intensity of the band 

corresponded exactly to the amount of starting material. The PCR products were analyzed on 

a 2.5% NuSive GTG agarose gel (FMC BioProducts, Rockland, ME, USA) and stained with 

ethidium bromide. The band densities were estimated using a computer program (Image J). 

The ER mRNA level was normalized to the β-actin mRNA level. Considering the variance of 

scales among individual goldfish, the relative ratios of the melatonin/control and the 

benzyl-tribromomelatonin/control were then calculated. These experiments were performed 

using five goldfish for the statistical analysis. 

 

Statistical analysis  

The statistical significance was assessed by two-way or one-way ANOVA followed by the 

Dunnett test. The data for the ER mRNA level were analyzed using the paired t-test. The 
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selected significance level was P<0.05. 

  

Results 

The results for osteoclasts are shown in figure 3. Melatonin (10-8, 10-6, and 10-4 M) 

suppressed osteoclastic activity. For 2-bromomelatonin and 2,4,6,7-tetrabromomelatonin, the 

inhibitory action was less than that of melatonin, at least under the present conditions. On the 

other hand, the strength of suppression by tribromomelatonin derivatives in osteoclasts was 

similar to that of melatonin. 

  Figure 4 shows the results regarding osteoblasts. Melatonin inhibited osteoblastic activity. 

However, all bromomelatonin derivatives have a promotional action of osteoblasts. In 

particular, benzyl-tribromomelatonin possessed the strongest activity for osteoblasts. 

Therefore, we analyzed the detailed effects of this chemical on the scale osteoclasts and 

osteoblasts and compared them with those of melatonin.  

Figures 5 and 6 show the osteoclastic and osteoblastic activities, respectively. Significant 

differences between melatonin- and benzyl-tribromomelatonin-treated scales were obtained in 

both osteoclasts (6 h: P<0.05; 18 h: P<0.001) and osteoblasts (6 h: P<0.001; 18 h: P<0.001) 

by two-way ANOVA analysis. Benzyl-tribromomelatonin has a stronger activity in 

osteoclasts than did melatonin. This inhibitory action of the derivative was still effective at 

10-10 M after 6 h of incubation compared with control (Fig.5A). In addition, 

benzyl-tribromomelatonin activated osteoblasts (10-9 to 10-6 M) after 6 h of incubation, while 

melatonin (10-8 to 10-6 M) suppressed osteoblastic activity (Fig.6A). The action of these 

chemicals on osteoclasts and osteoblasts after 18 h incubation was similar to that after 6 h 

incubation.  

The typical pattern of PCR products is indicated in figure 7. After 6 h of incubation, the 

expression of ER mRNA in melatonin (10-7 M)-treated scales did not change from those of 

control scales; however, benzyl-tribromomelatonin (10-7 M) increased ER mRNA expression. 
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The relative ratios of the melatonin/control and the benzyl-tribomelatonin/control were 0.912 

± 0.055 and 1.320 ± 0.101, respectively. A statistically significant difference (P<0.01) 

between control scales and benzyl-tribromomelatonin-treated scales was obtained. There was 

no band without reverse transcriptase (data not shown). 

Table 1 indicates the changes in osteoclastic and osteoblastic activities induced by 

melatonin or benzyl-tribromomelatonin treatments. The osteoclastic and osteoblastic activities 

similarly changed, as shown in figures 3-6. Both substances inhibited osteoclastic activity; 

however, benzyl-tribromomelatonin increased osteoblastic activities, while melatonin 

suppressed them.  

 

Discussion 

Since melatonin functions to suppress the activities of osteoclasts and osteoblasts [24], we 

were interested in an indole molecule that would function to activate osteoblasts and suppress 

osteoclasts concurrently. For this purpose, we developed a simple, economical, and practical 

synthetic method starting from tryptamine, as reported previously [37, 38], since the eight 

synthetic routes for melatonin so far developed have been ineffective [38, 42]. With 

melatonin in hand, we examined its halogenation under various reaction conditions with 

reagents such as chlorine gas, NCS, bromine, NBS, and Br2-AcOH in vain. We finally 

succeeded in identifying the regioselective tribromination of melatonin, culminating in the 

formation of a new 2,4,6-tribromomelatonin utilizing Br2-AcOH-NaOAc, as indicated in the 

present paper (Fig. 1). Using this reaction, tetrabromomelatonin can also be synthesized (Fig. 

1). In addition, novel tribromomelatonin derivatives were obtained as a result of the 

introduction of appropriate appendages, such as allyl, benzyl, and propargyl groups, onto the 

1-position of tribromomelatonin. In the present study, we indicate that these bromomelatonin 

molecules have the ability to activate osteoblasts and suppress osteoclasts (Figs. 3-6, Table 1). 

This study is the first to demonstrate that bromomelatonins influence bone metabolism. 
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In osteoclasts, the suppressive action of 2-bromomelatonin and 

2,4,6,7-tetrabromomelatonin was less strong than that of melatonin when the activities of 

these chemicals were compared at the concentrations of 10-8, 10-6, and 10-4 M, as shown in 

figure 3. On the other hand, the strength of suppression by tribromomelatonin derivatives in 

osteoclasts was similar to that of melatonin (Fig. 3). Thus, the location of the bromine may be 

important for osteoclastic activity. We presume that melatonin receptors are located on 

osteoclast membranes since this receptor is detected on the mammalian monocytes [43], 

which are related to osteoclastic progenitors. In our previous study, we showed that the 

inhibitory action of melatonin in osteoclasts was faster than that in osteoblasts [24]. 

Bromomelatonin increased osteoblastic activity, although melatonin suppressed it (Fig. 4). 

Also, benzyl-tribromomelatonin (10-9 to 10-6M) activated osteoblasts at 6 h of incubation, 

while melatonin (10-8 to 10-6M) suppressed osteoblastic activity at the same incubation time 

(Fig. 6). It seems that another receptor for bromomelatonin exists in osteoblasts. 

Bromomelatonin derivatives might bind to this receptor and activate osteoblastic activity. In 

fact, a different action of melatonin and melatonin-related substances has been reported 

[44-46]. In the present study, all bromomelatonin derivatives almost equally promoted 

osteoblastic activity, although osteoclastic activities were changed by the location of the 

bromine. The results strongly indicate that bromomelatonin binds to an unknown receptor and 

promotes osteoblastic activity. Therefore, the mechanism of bromomelatonin in osteoblasts 

seems to be different from that in osteoclasts. In the response of osteoblasts to melatonin, 

inconsistent results have been reported. In an in vitro culture using the cell line of osteoblasts, 

osteoblastic activity increased by melatonin treatment [7, 8] while melatonin suppressed 

osteoblastic activity in an in vivo experiment using ovariectomized rats [47] as well as in our 

scale in vitro co-culture system of osteoblasts and osteoclasts. Furthermore, high endogeneous 

levels of melatonin correlate with low levels of bone forming markers (i.e. ALP and 

carboxyterminal propeptide of type I collagen) in male Wistar rats [48]. Plans are underway 
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to examine the characterization of binding for melatonin and bromomelatonin derivatives 

using both goldfish scale and mammalian osteoblastic cell lines. This may contribute 

elucidation of the osteoblastic response to melatonin. 

  The mRNA expression of the ER (an osteoblastic marker) in the 

benzyl-tribromomelatonin-treated scales increased over the value of the control (Fig. 7). In 

the goldfish used in ER mRNA analysis, benzyl-tribromomelatonin activated osteoblasts 

(Table 1). Our data indicate that bromomelatonin has a different action in osteoblasts than that 

of melatonin. In the case of osteoclasts, as described above, tribromomelatonin has the same 

inhibitory action as does melatonin (Fig. 3). Therefore, tribromomelatonin has potential as a 

beneficial drug for bone diseases. It is well known that calcitonin, a 32-amino acid peptide 

hormone, has a hypocalcemic action and that calcitonin can mineralize bones by suppressing 

the activities of osteoclasts. This drug is useful for the treatment of human osteoporosis 

[49-51]. We recently obtained evidence that the strength of the inhibitory action of melatonin 

on scale osteoclasts was almost equal to that of salmon and eel calcitonins (N. Suzuki, 

personal communication). In addition, the present study indicates that the inhibitory strength 

of benzyl-tribromomelatonin on osteoclasts is higher than that of melatonin (Fig. 5). In 

ovariectomized rats, melatonin has an inhibitory effect for urinary deoxypyridinoline as a 

marker of bone resorption, but it did not influence bone mineral density [52]. Thus, we 

believe that bromomelatonin derivatives have the potential to increase bone mineral density 

and that these chemicals have potential for use as benefical drugs for bone diseases such as 

osteoporosis.  
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Figure Legends 

 

Fig. 1. Synthetic pathways of melatonin derivatives. 

 

Fig. 2. Chemical structure of the melatonin derivatives used in the present study. 

The numbers in the bracket correspond to each of the number indicated in figure 1.  

 

Fig. 3. Effects of melatonin and bromomelatonin derivatives on osteoclastic activities in the 

cultured goldfish scales after 6 h of incubation. *, **, and *** indicate statistically significant 

differences at P<0.05, P<0.01, and P<0.001, respectively, from the values in the control scales. 

1: melatonin, 2: 2-bromomelatonin, 3: 2,4,6-tribromomelatonin, 4: 

1-allyl-2,4,6-tribromomelatonin,  5: 1-propargyl-2,4,6-tribromomelatonin, 6: 

1-benzyl-2,4,6-tribromomelatonin, 7: 2,4,6,7-tetrabromomelatonin.  

 

Fig. 4. Effects of melatonin and bromomelatonin derivatives on osteoblastic activities in the 

cultured goldfish scales after 6 h of incubation. * and ** indicate statistically significant 

differences at P<0.05 and P<0.01, respectively, from the values in the control scales. 1: 

melatonin, 2: 2-bromomelatonin, 3: 2,4,6-tribromomelatonin, 4: 

1-allyl-2,4,6-tribromomelatonin,  5: 1-propargyl-2,4,6-tribromomelatonin, 6: 

1-benzyl-2,4,6-tribromomelatonin, 7: 2,4,6,7-tetrabromomelatonin.  

 

Fig. 5. Effects of 1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin) and 

melatonin on osteoclastic activities in the cultured goldfish scales after 6 (A) and 18 (B) h of 

incubation. *, **, and *** indicate statistically significant differences at P<0.05, P<0.01, and 

P<0.001, respectively, from the values in the control scales. 
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Fig. 6. Effects of 1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin) and 

melatonin on osteoblastic activities in the cultured goldfish scales after 6 (A) and 18 (B) h of 

incubation. *, **, and *** indicate statistically significant differences at P<0.05, P<0.01, and 

P<0.001, respectively, from the values in the control scales. 

 

Fig. 7. Expressions of ER and β-actin mRNA in the control scales, melatonin- and 

1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin)-treated scales of goldfish after 

6 h of incubation.  



Table 1. Effects of melatonin (10-7 M) and 1-benzyl-2,4,6-tribromomelatonin (benzyl-
tribromomelatonin) (10-7 M) on the osteoclastic and osteoblastic activities 
(nmol pNP produced/ mg scale/ h) of goldfish scales in the 6 h of incubation.

Control                  Melatonin              Benzyl-tribromomelatonin

Osteoclastic activity 
No.1   3.48±0.33     2.73±0.20*     2.60±0.23*     
No.2 3.25±0.20     2.78±0.10* 2.65±0.10**     
No.3 3.18±0.15     2.75±0.15*     2.63±0.10**     
No.4 3.33±0.25     2.68±0.10* 2.63±0.10**     
No.5 3.85±0.13     3.13±0.15** 3.05±0.13***  

Osteoblastic activity
No.1      7.63±0.20     5.48±0.28*     10.15±0.30**     
No.2 5.13±0.55     3.53±0.30* 6.60±0.45*     
No.3 6.13±0.33     4.53±0.25**      7.50±0.48*     
No.4 6.05±0.38     4.83±0.30* 7.58±0.53*     
No.5 6.80±0.48     4.53±0.25** 10.30±0.85***

All results are expressed as means±SEM (N=8). *, **, and *** indicate statistically significant 
differences at P<0.05, P<0.01, and P<0.001, respectively, from the values in the control scales.
Nos. 1 to 5 correspond to each of five goldfish used in this experiment.

Suzuki et al., Table1
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Figure 2 Suzuki et al.
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Figure 5 Suzuki et al.
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Figure 6 Suzuki et al.
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Figure 7 Suzuki et al.
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