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Abstract

The transient process of the solidi�cation of a pure liquid phase-change

material in the presence of natural convection in a rectangular enclosure

is considered both analytically and numerically. One vertical boundary is

held at a temperature below the melting point of the material, the other

above; the horizontal boundaries are both assumed adiabatic. A nondi-

mensional analysis of the problem, principally in terms of the Rayleigh

(Ra) and Stefan (St) numbers, indicates that some asymptotic simpli�-

cation is possible for materials often considered in the literature (water,

gallium, lauric acid). This observation suggests a way to simplify the full

problem when Ra� 1 and St� 1; giving a conventional boundary value

problem for the liquid phase and pointwise-in-space �rst-order ODEs for

the evolution in time of the solidi�cation front. The method is tested

against full 2D �nite-element-based transient numerical simulations of so-

lidi�cation. In addition, simpler approaches for determining the average

thickness of the solid layer, based on boundary-layer and enclosure �ow

correlations, are also investigated.

Keywords: solidi�cation, natural convection, �nite-element methods,

asymptotics
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NOMENCLATURE

Cpl speci�c heat capacity of liquid

Cps speci�c heat capacity of solid

F function of the Prandtl number, Pr

g gravitational acceleration

H enclosure height

kl thermal conductivity of liquid

ks thermal conductivity of solid

n unit normal to the surface x = s (y; t)

p pressure

[p] pressure scale

Pr Prandtl number, �Cpl=kl
Ra Rayleigh number, �2l;meltg�Cpl (Thot � Tmelt)H3=�kl

s location of the solidi�cation front

S rescaled dimensionless location of the solidi�cation front

sav average thickness of the solid layer

St Stefan number, Cps (Tmelt � Tcold ) =�Hf

t time

t unit tangent to the surface x = s (y; t)

[t] time scale

Tcold cold boundary temperature

Tmincold minimum temperature at cold boundary

Thot hot boundary temperature

Tl temperature of liquid

Tl0 reference temperature

Tmelt melting temperature of solid

Ts temperature of solid

u horizontal velocity component

[u] velocity scale

U rescaled dimensionless horizontal velocity component

v vertical velocity component

V rescaled dimensionless vertical velocity component

W enclosure width

x horizontal coordinate

X rescaled dimensionless horizontal coordinate

y vertical coordinate
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Greek

� volumetric thermal expansion coe¢ cient

� dimensionless function of y

�Hf latent heat of fusion

�� increment in dimensionless temperatures (�l and �s)

� increment in stream function,  

�cold dimensionless cold plate temperature

�l dimensionless temperature of liquid

�s dimensionless temperature of solid

� dimensionless coe¢ cient, kl(Thot�Tmelt)
ks(Tmelt�Tcold )

�l liquid thermal di¤usivity, kl=�l;meltCpl
�s solid thermal di¤usivity, ks=�sCps
� enclosure aspect ratio, W=H

� dimensionless coe¢ cient, St
�
ks
kl

��
Cpl
Cps

��
�l;melt

�s

�
� liquid molecular viscosity

�l liquid density

�l;melt liquid density at melting temperature

�s solid density

% dimensionless coe¢ cient, �s=�l;melt
� dimensionless time (� = t=�[t])

� solution to transcendental equation (54)

' phase lag

 dimensionless stream function

! cooling oscillation frequency
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1 Introduction

Buoyancy-driven �ows with coupled solid-liquid phase change occur in a broad

range of scienti�c and engineering �elds; often cited examples are those in the

solidi�cation and melting phenomena encountered in metallurgical processes,

latent heat thermal energy storage, oceanography, food processing and nuclear

reactor safety.

A geometrical con�guration of particular interest for such �ows, owing to

its simplicity and practical importance, is a rectangular enclosure in which the

cooling occurs at one of the vertical walls, whilst the horizontal walls are adi-

abatic. This geometry has been considered for the freezing of water [1�7], the

melting of tin [8] and the solidi�cation of gallium [9�11], as well as in metal

casting [12]. Recent years have also seen an increased focus on the development

of numerical methods used to solve such problems [7, 13,14].

The focus of this work di¤ers from that of earlier ones by combining asymp-

totic analysis with numerical computations to give an improved understanding

of the evolution in time of the phase-change front in solidi�cation problems

in rectangular enclosures, as well as to provide useful engineering correlations

for the thickness of the solidi�ed layer as a function of time. To illustrate

this, numerical computations are carried out based around the thermophysical

properties of lauric acid, CH3(CH2)10COOH, which is often used in laboratory

investigations of melting-point depression and has been the subject of a couple

of recent experimental and numerical studies [7, 16]. One of the key results of

the present paper is that, for substances such as water, gallium and lauric acid,

the full transient 2D coupled solidi�cation/natural convection problem can be

systematically decoupled to give a conventional boundary value problem for the

liquid and pointwise-in-space �rst-order ODEs for the evolution in time of the

solidi�cation front; furthermore, this can be used to understand how a front

will move if subjected to periodic cooling. In addition, the numerical method

used here is also novel: we use the arbitrary Lagrangian Eulerian formulation

within commercially-available �nite element software, Comsol Multiphysics [15],

an approach well-suited to problems where there is isothermal phase change.

The layout of the paper is as follows. In section 2, we formulate the problem

mathematically. In section 3, it is rewritten in nondimensionalised variables,

and subsequently analyzed in section 4. Section 5 gives a description of the

numerical method used. The results are presented and discussed in Section 6,

and conclusions are drawn in Section 7.

4



2 Mathematical formulation

We consider, as shown in Fig. 1, a rectangular enclosure of width W and height

H that initially contains liquid at temperature Thot, which subsequently starts to

solidify when the temperature at x = 0 is reduced to Tcold , where Tcold � Tmelt,

the melting temperature of the solid material; throughout, the wall at x =W is

held at temperature Thot; whereas the horizontal walls at y = 0;H are adiabatic.

With time, a natural convection �ow pattern is expected to develop, as is a solid

layer; the location of the solid-liquid interface is given by x = s (y; t) :

2.1 Governing equations

For the solid region, 0 � x � s (y; t) ; we have

�sCps
@Ts
@t

= ks

�
@2Ts
@x2

+
@2Ts
@y2

�
; (1)

i.e. the equation for transient heat conduction. For the liquid region, s (y; t) <

x < W;we have, on using the Boussinesq approximation in the equations for

transient mass, momentum and heat transfer,

@u

@x
+
@v

@y
= 0; (2)

�l;melt

�
@u

@t
+ u

@u

@x
+ v

@u

@y

�
= �@p

@x
+ �

�
@2u

@x2
+
@2u

@y2

�
; (3)

�l;melt

�
@v

@t
+ u

@v

@x
+ v

@v

@y

�
= �@p

@y
+ �

�
@2v

@x2
+
@2v

@y2

�
+ �l;melt�g (T � Tmelt) ; (4)

�l;meltCpl

�
@Tl
@t

+ u
@Tl
@x

+ v
@Tl
@y

�
= kl

�
@2Tl
@x2

+
@2Tl
@y2

�
: (5)

In equation (4), for the liquid density, �l; we have used for the liquid density,

�l; the expression

�l = �l;melt (1� � (T � Tmelt)) : (6)

2.2 Boundary and initial conditions

At x = 0;

Ts = Tcold for 0 � y � H; (7)
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at x =W;

Tl = Thot ; u = v = 0 for 0 � y � H; (8)

at y = 0;

@Tl
@y

= 0; u = v = 0 for s(0; t) � x �W; (9)

@Ts
@y

= 0 for 0 � x � s(0; t); (10)

at y = H;

@Tl
@y

= 0; u = v = 0 for s(H; t) � x �W; (11)

@Ts
@y

= 0 for 0 � x � s(H; t): (12)

At x = s(y; t);

Ts = Tmelt; Tl = Tmelt; (13)

ksrTs � n�klrTl � n = �s (�Hf )
@s

@t
; (14)

(u; v) � t = 0; �l

�
@s

@t
� (u; v) � n

�
= �s

@s

@t
: (15)

Here, n and t are, respectively, the unit vectors normal and perpendicular to
the curve x = s(y; t).

The initial conditions at t = 0 are

Tl(x; y; 0) = Thot; (16)

s(y; 0) = 0: (17)

3 Nondimensionalisation

We nondimensionalise with

~x =
x

H
; ~y =

y

H
; ~s =

s

H
; ~t =

t

[t]
;

�s =
Ts � Tcold
Tmelt � Tcold

; �l =
Tl � Tmelt
Thot � Tmelt

;

~u =
u

[u]
; ~v =

v

[u]
; ~p =

p

[p]
;
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Suitable choices for the time scale [t]; the velocity scale [u] and the pressure

scale [p] are

[t] =
�s (�Hf )H

2

ks (Tmelt � Tcold )
; [u] =

kl
H�l;maxCpl

; [p] =
�kl

H2�l;maxCpl
:

3.1 Governing equations

Equations (1)-(5) become, on dropping the tildes,

St
@�s
@t

=

�
@2�s
@x2

+
@2�s
@y2

�
; (18)

@u

@x
+
@v

@y
= 0; (19)

�

Pr
@u

@t
+
1

Pr

�
u
@u

@x
+ v

@u

@y

�
= �@p

@x
+
@2u

@x2
+
@2u

@y2
; (20)

�

Pr
@v

@t
+
1

Pr

�
u
@v

@x
+ v

@v

@y

�
= �@p

@y
+
@2v

@x2
+
@2v

@y2
+Ra�l; (21)

�
@�l
@t

+ u
@�l
@x

+ v
@�l
@y

=
@2�l
@x2

+
@2�l
@y2

: (22)

where the Rayleigh number, Ra, the Prandtl number, Pr, and the Stefan num-

ber, St, are given, respectively, by

Ra =
�2l;melt�gCpl (Thot � Tmelt)H3

�kl
; Pr =

�Cpl
kl

; St =
Cps (Tmelt � Tcold )

�Hf
;

and

� = St

�
�s
�l

�
;

where the solid and liquid thermal di¤usivities, �s and �l; are given respectively

by

�s = ks=�sCps; �l = kl=�l;meltCpl:

3.2 Boundary conditions

At x = 0;

�s = 0 for 0 � y � 1; (23)
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at x = �; where � =W=H;

�l = 1; u = v = 0 for 0 � y � 1; (24)

at y = 0;

@�l
@y

= 0; u = v = 0 for s(0; t) � x � �; (25)

@�s
@y

= 0 for 0 � x � s(0; t); (26)

at y = 1;

@�l
@y

= 0; u = v = 0 for s(0; t) � x � �; (27)

@�s
@y

= 0 for 0 � x � s(0; t): (28)

At x = s(y; t);

�s = 1; �l = 0; (29)

r�s � n��r�l � n =
@s

@t
; (30)

(u; v) � t = 0; (31)

(u; v) � n = �(1� %) @s
@t
; (32)

where

� =
kl (Thot � Tmelt)
ks (Tmelt � Tcold )

; % =
�s

�l;melt
:

The initial conditions at t = 0 are

�l(x; y; 0) = 1; (33)

s(y; 0) = 0: (34)

4 Analysis

We have six dimensionless parameters:

Ra; St; �;Pr ; %;�:
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To �x ideas, we focus on processes such as the freezing of water, the solidi�cation

of gallium and the solidi�cation of lauric acid, the values of the relevant physical

parameters for which are given in Table 1. From these, and with

(Tmelt � Tcold ) ; (Thot � Tmelt ) � 5 K, H � 0:5 m,

we have

Ra� 1; � � 1; % � 1;

whereas characteristic values for the other three parameters are given in Table

2. For all three cases, St� 1; which suggests that (18) can be reduced to

@2�s
@x2

+
@2�s
@y2

= 0;

at leading order in St. Note incidentally that for the solidi�cation of metals other

than gallium, e.g. copper, tin [8], St will be O(1) or higher for the temperature

di¤erences given above, since the value of Cps=�Hf is considerably higher than

that for gallium. Thus, the analysis given below mat hold for such metals, but

only if the temperature di¤erences are fractions of a degree.

Next, several levels of decoupling are possible, depending on the value of �:

4.1 �� 1

In this case, equations (20)-(22) become, at leading order,

1

Pr

�
u
@u

@x
+ v

@u

@y

�
= �@p

@x
+
@2u

@x2
+
@2u

@y2
; (35)

1

Pr

�
u
@v

@x
+ v

@v

@y

�
= �@p

@y
+
@2v

@x2
+
@2v

@y2
+Ra�l; (36)

u
@�l
@x

+ v
@�l
@y

=
@2�l
@x2

+
@2�l
@y2

; (37)

whereas (32) reduces to

(u; v) � n = 0:

Thus, the only time-dependence left in the problem occurs via (30). Further-

more, the fact that r�l �n �Ra
1
4 in (30) in the liquid at the interface, as is the

case in the case of natural convection in the absence of solidi�cation, suggests

that the thickness of the solid layer will be much less than the height of the

layer. A consistent asymptotic structure for the solution is then obtained by
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writing, for the solid region,

x = Ra�
1
4X; s = Ra�

1
4S; t = Ra�

1
2 t̂; (38)

so that equation (18) reduces to just

@2�s
@X2

= 0:

Using equations (23) and (29), we obtain

�s =
X

S
�
y; t̂
� :

For the liquid, equations (19)-(22) will reduce, in the vicinity of X = S(y; �);

at leading order, to the steady-state boundary-layer equations, written in terms

of coordinates that are locally normal and tangential to the solidi�cation front

and subject to boundary conditions (29)-(31). Also, as we are assuming that

the solid layer is thin, boundary conditions can be e¤ectively taken at X = 0:

In addition, we reduce equation (31) to

U = 0; V = 0;

although we note that, as is well known from the classical Stefan solution for 1D

solidi�cation, initially S
�
t̂
�
� t̂

1
2 ; so that equation (31) will be strictly speaking

only valid once t̂� (1� %)2 �2.
Further, these considerations imply the solution for the liquid is, at leading

order, can be treated as being the same as that for steady state natural con-

vection in a rectangular cavity. Whilst this would still need to be computed

numerically, it is a considerably simpler computational task than to solve the

full time-dependent moving boundary problem. Once such a computation is

carried out, we will have the evolution equation for s;

@s

@t
=
1

s
� �

�
@�l
@x

�
x=0

; (39)

subject to the initial condition

s(y; 0) = 0: (40)

Here,
�
@�l
@x

�
x=0

is the temperature derivative computed for a steady-state prob-
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lem in an enclosure without solidi�cation, and hence is a function of y only.

This can be integrated with respect to t to give s in implicit form as

��1 log (1� �s) + s = ��t; (41)

where � = �
�
@�l
@x

�
x=0

: This suggests that, for small times,

s � t
1
2 ;

as one would expect from the Stefan solution; note also that this is independent

of �; which therefore indicates one-dimensional solidi�cation. For large times,

s � 1

�

�
1� exp

�
��2t

��
; (42)

we return to this equation later.

Also of interest is whether Pr -dependent Nusselt number correlation, F (Pr);

based on a similarity solution to the boundary-layer equations for steady state

natural convection past a vertical surface, can be of use in determining the

average solid thickness. To see this, we argue as follows. In a rectangular cav-

ity, the average temperature at the outer edge of the boundary layer at the

melting front will be (Tmelt + Thot ) =2: Therefore, we consider a vertical bound-

ary at temperature Tmelt adjacent to �uid at temperature (Tmelt + Thot ) =2; for�
@�l
@x

�
x=0

in (39), we use the value that can be extracted from the correlation

given by, amongst others, Bejan [17]:

F (Pr) = 0:503
�

Pr

Pr + 0:986Pr
1
2 + 0:492

� 1
4

: (43)

This gives
@s

@t
=
1

s
� �

2

�
Ra

2

� 1
4

(1� y)�
1
4 F (Pr); (44)

which can then be solved for s; and then the average solid thickness, sav; de�ned

by

sav :=

Z 1

0

s (y; t) dy;

can be found; in particular, at steady state, this would give

sav !
8
�
Ra
2

�� 1
4

5�F (Pr)
; as t!1: (45)
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An alternative approach would be to balance average heat �uxes at the solidi-

�cation front by writing

dsav
dt

=
1

sav
� 2
3
�

�
Ra

2

� 1
4

F (Pr); (46)

leading to

sav !
3
�
Ra
2

�� 1
4

2�F (Pr)
; as t!1: (47)

However, neither (44) nor (46) take into account the aspect ratio of the enclo-

sure. This can be done by using instead the Berkovsky-Polevikov correlations

recommended by Catton [18]. Using these, we would have the following evolu-

tion equations for sav :

dsav
dt

=
1

sav
� 0:18�

�
RaPr
0:2 + Pr

�0:29
(�(1� sav))�0:13 ; (48)

for 1 < 1
�(1�sav) < 2; 10

�3 < Pr < 105; 103 <
�

Pr
0:2+Pr

�
Ra (�(1� sav))3 ;

dsav
dt

=
1

sav
� 0:22�

�
RaPr
0:2 + Pr

�0:28
(�(1� sav))0:09 ; (49)

for 2 < 1
�(1�sav) < 10; Pr < 10

5; 103 < Ra13: We will compare the results from

equations (44), (46) and (48) in Section 6.

4.2 � � 1

In this case, the �ow in the liquid will evolve with time. However, the solid

layer will not become thicker than its steady state value, which suggests that

the scaling given in (38) will still hold. Consequently, the problem can still

be decoupled by solving for the natural convective �ow in a rectangular cavity,

except that
�
@�l
@x

�
x=0

will now be time-dependent. Although the analytical

solution (41) is not now valid, equation (39) still will be, and the complete

problem can be solved by �rst solving for the velocity and temperature �elds in

the �uid and then the �rst-order ODE in (39).
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4.3 Time-dependent cooling

In addition, a generalization of equation (39), that is of use in problems when

it is desired to control the movement of the solidi�cation front, is possible if

the temperature of the cold boundary varies in space and time, so that Tcold =

Tcold (y; t). We nondimensionalise Ts by

�s =
Ts � Tmincold

Tmelt � Tmincold

;

where Tmincold = min fTcold (y; t) jt � 0; 0 < y < 1g ; and obtain

�s =
(1� �cold (y; t))x

s (y; t)
+ �cold (t) :

giving, as the evolution equation for s;

@s

@t
=
1� �cold (y; t)

s
� �

�
@�l
@x

�
x=0

; (50)

subject to (40).

@s

@t
=
1� �cold (y; t)

s
� �

�
@�l
@x

�
x=0

:

Now, suppose

�cold (y; t) = ��cold (y; t) ;

where �� 1 and �cold is an O(1) function. We see how this a¤ects the location

of the solidi�cation front. Setting

s = s0(y; t) + �s1(y; t) +O
�
�2
�
;

we have at O(�0);
@s0
@t

=
1

s0
� �

�
@�l
@x

�
x=0

; (51)

whereas as O(�);
@s1
@t

= ��cold
s0

� s1
s20
: (52)

Equation (51) is of course the same as (39), but more interesting is equation

(52), whhich indicates that convection in the melt will not contribute to this
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balance. Further, if we assume periodic heating and cooling of the form

�cold = sin!t;

then, after an the initial transient during which the leading order solution settles

to a steady state, the governing equation for s1 is

@s1
@t

= � sin!t
s0(y)

� s1
s20(y)

;

which can be solved exactly. The large time solution for s1 is then

s1 (y; t) = �
1

2is0(y)

0@ exp (i!t)h
1

s20(y)
+ i!

i � exp (�i!t)h
1

s20(y)
� i!

i
1A ;

which can be further rearranged to give

s1 (y; t) =
s0(y) sin (!t� '+ �)

[1 + !2s40(y)]
1
2

; (53)

where

sin' =
!s20(y)

[1 + !2s40(y)]
1
2

; cos' =
1

[1 + !2s40(y)]
1
2

;

i.e.

tan' = !s20(y):

Consequently, we see that the location of the front oscillates in a complex man-

ner, with an amplitude,
�
1 + !2s40(y)

�� 1
2 s0(y); and phase lag, ��'; that depend

both on the leading order y-position of the front, s0(y); and the frequency, !

Whilst the focus of the numerical work in this paper is basically to �nd s0; fu-

ture work will focus on determining numerically the accuracy of the expression

for s1:

5 Numerical implementation

The full problem, involving equations (18)-(22) subject to boundary conditions

(23)-(31) and initial conditions (33) and (34), was solved numerically using the

�nite element-based PDE software, Comsol Multiphysics [15]. All computations

were performed on a Dell Optiplex GX520 computer with a 3 GHz processor
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and 1 GB RAM and required no more half an hour of CPU time.

First, a grid independence study was carried out on the problem without so-

lidi�cation. Lagrangian P2-P1 quadrilateral elements and second-order quadri-

lateral elements for the Navier Stokes and the heat equations, respectively, were

used on three di¤erent mapped meshes, having around 800, 1,400 and 3,400

elements and corresponding to 11,000, 20,000 and 45,000 degrees of freedom,

respectively; the results of this are given in Fig. 2. The di¤erence between the

meshes lies only in the number of points used to discretize the boundary layers;

5,10 and 20 points, respectively, are used within a dimensionless distance of 0.05

from each boundary. For all cases, the same convergence criterion, namely

0@ 1

Ndof

NdofX
i=1

jEij2
1A 1

2

< �;

was applied; here Ndof is the number of degrees of freedom, Ei is the estimated

error in the current approximation to the ith component of the true solution

vector and � = 10�6. Lower values of � were also tried, but the results were

practically indistinguishable. The results of the mesh independence study are

given in Fig. 2, which compares the value of @�l=@x at x = 0 for Ra = 107: We

see that an approximate doubling of the number of mesh elements, in going from

1,400 to 3,400 leads to an almost indiscernible di¤erence in the local values of

@�l=@x. In view of this, and the fact more degrees of freedom are necessary for

the problem with solidi�cation, the mesh having 1,400 elements was judged to

be appropriate for the computations. Results from computations were required

as input to equation (39) for the asymptotic approach.

For the problem with solidi�cation, both steady-state and transient compu-

tations were performed. Both types require the use of Comsol Multiphysics�

Deformed Mesh mode, whereby an arbitrary Lagrangian-Eulerian formulation

is used in order to solve free or moving boundary problems. For the steady-state

computations, a pure conduction problem was solved �rst, and the solution for

this was used as input for the software�s parametric non-linear solver to �nd

converged solutions for increasing Ra values. Speci�c details concerning the

solver can be found in the software manual [15]; here, we point out that New-

ton iteration is used for solving the nonlinear equation system that arises in

the steady-state case, whereas a method of lines discretization is used for the

time-dependent case, and that the solver is an implicit time-stepping scheme
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which uses variable order variable-stepsize backward di¤erentiation formulae.

Note also that when solving the full problem with solidi�cation, the number

of degrees of freedom is somewhat greater than that indicated earlier. This is

because the temperature in the solid region and the 2D mesh displacements also

have to be solved for; for example, it was found that computer memory prob-

lems were encountered even for a mesh having only 1400 elements in the liquid

region, particularly for higher values of Ra. Consequently, it proved possible to

obtain solutions to the full solidi�cation problem for Ra as high as order 107 by

using a mesh with around 800 elements in the liquid.

As usual, a major di¢ culty for the transient computations is the fact that

the solid region initially has zero thickness. To overcome this problem, we

commenced the integration by using the classical 1D Stefan solution, given by

�s =
erf
�

x
2
p
�st

�
erf(�)

if 0 < x < xc (t) ;

�l = 1�
erfc

�
x

2
p
�lt

�
erfc(�

�
�s
�l

� 1
2

)

if xc (t) < x < 1;

where xc (t) = 2�
p
�st and � is given by the solution to the following transcen-

dental equation:

exp
�
��2

�
erf(�)

�
�
�s
�l

� 1
2 � exp(��2

�
�s
�l

�
)

erfc(�
�
�s
�l

� 1
2

)

=
�
1
2�

St
: (54)

Using the values for the physical properties given in Table 1, we obtain � =0.1156.

For the transient computations, the convergence criterion at each time step was

taken as 0@ 1

Ndof

NdofX
i=1

�
jEij

Ai +R jUij

�21A 1
2

< 1;

where (Ui) is the solution vector corresponding to the solution at a certain time

step, Ai is the absolute tolerance for the ith degree of freedom, and R is the

relative tolerance; for the computations, R = 0:01; Ai = 0:001 for i = 1; ::; Ndof
were used.
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6 Results and discussion

As the main purpose here is to compare the results of full numerical simulation

with the asymptotic approach, as well as to determine correlations between

the solid thickness and the Rayleigh number, we focus here only on the case

when � = 1 and �cold (t) � 0: Although the results are presented in terms

of nondimensional parameters, they are based around the properties of lauric

acid, as shown in Table 1. Also, we have chosen Tcold and Thot so that � = 3:

In practice, this would correspond to Tcold and Thot being related by

Thot + 3Tcold = 4Tmelt;

in turn, this gives � = St = 0:05: There were several reasons for choosing the

thermophysical properties of lauric acid, rather than water or gallium, for this

analysis:

� for practical applications, the value of � for water turns out to be large
enough that the assumption that �� 1 may no longer be valid;

� for water, density inversion occurs at around 4oC, giving rise to a velocity
�ow �eld with a secondary recirculation loop [3, 5�7]- it is unlikely that

the given boundary-layer heat-�ux correlations [17, 18] could be valid for

such a �ow �eld;

� computation times for gallium turned out to be much lengthier, presum-

ably because it has a much lower Prandtl number than lauric acid, which

increases the non-linearity in equations (20) and (21).

First, we present some results from the full numerical simulation, before pro-

ceeding to a comparison with analysis.

Fig. 3 shows the location at steady state of the solidi�cation front for in-

creasing values of Ra: For the case of conduction only, it can be shown that

the front will lie at x = (1 + �)
�1
; using the parameters in Tables 1 and 2,

we obtain that x = 0:25; as shown in the �gure. As the Rayleigh number is

increased, there appears to be a regime for Ra as high as 104 where the upper

part of the solidi�cation front lies closer to the cooling wall than for the case

of pure conduction; but the lower part lies further away. Thereafter, as Ra is

increased further, the whole front is shifted further to the left, as the e¤ect of

convection in the liquid phase increases. As may be expected, since the heat
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�ux due to natural convection is highest at the upper part of the solidi�cation

front, that is where the front lies closest to the cooling wall.

Figs. 4(a)-4(c) show the evolution of the isotherms with time for Ra = 107;

because of the way the equations were programmed in the software, it was most

convenient to plot the solution at the prescribed values of � ; which is related to

the actual time t by

� =
t

� [t]
:

The isotherms in the solid are characteristic of heat transport due to conduc-

tion, whereas in the �uid we see thermal boundary layers near the solidi�cation

front, as well as at the heated wall on the right; in between, there is vertical

strati�cation. Although Figs. 4(b and 4(c) may look identical, there is actually

a di¤erence near the point where the solidi�cation front meets the lower horizon-

tal boundary. As we will see from later �gures, it is this point that determines

when a steady state is �nally reached.

Figs. 5(a)-5(c) show the streamfunction,  ; de�ned by

u =
@ 

@y
; v = �@ 

@x
;

show the corresponding streamlines for Ra = 107: Evident here are viscous

boundary layers, particularly at the melting isotherm and the cooling wall. The

�ow here is in an anticlockwise direction.

Fig. 6 shows the location of the solidi�cation front at three di¤erent times

for Ra = 107; as predicted by the analytically-based method outlined in section

4 and the full numerical solution; these results are best discussed in the context

of the average solid thickness, sav; which is shown in Fig. 7. First, we should

note that the result from numerical simulation in Fig. 6 for � = 1 is in fact

the steady state solution, as is evident from the fact that the relevant curve in

Fig. 7 reaches a plateau for this value of � : In Fig. 6, the asymptotic solution

shadows the numerical solution very well for all values of � for y > 0:1; for

y � 0:1; there is a small discrepancy at � = 0:01 which becomes greater as �

increases. Furthermore, this region appears to adversely a¤ect the prediction of

the average solid layer thickness at this value of Ra in Fig. 7: In fact, this �gure

also compares the results obtained when the liquid is assumed to be at steady

state (�� 1), and when it is assumed to evolve (� � 1). We see that if it is

assumed to evolve, the agreement with the full numerical solution for sav is good

for small values of � ; however, after � � 0:1; the agreement is less good and the
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method overpredicts the thickness of the solid layer to the same extent as the

method with �� 1. Why this discrepancy at large times occurs can be found

by referring to Fig. 2 and equation (42). From Fig. 2, it is clear that
�
@�l
@x

�
x=0

;

and hence �; are smallest near the bottom of the enclosure. Consequently, not

only is s largest there, as one would expect from equation (42), but s decays

most slowly there, with t � ��1=2 being the appropriate timescale estimate for
steady state.

An important question is whether the scaling for s suggested by equation

(38) is actually borne out in practice. This is determined in Fig. 8, where

the steady state values of log sav are plotted against log Ra: We see that a

distinct trend emerges for values of Ra greater than 104; sav for Ra > 104 is

well approximated by

sav = 2:17Ra
�0:271; (55)

the fact that the exponent di¤ers slightly from -1/4 is reminiscent of the dif-

ference between the Nusselt number correlation for a boundary layer in semi-

in�nite �uid and in an enclosure. Nevertheless, the value is su¢ ciently close to

-1/4 to suggest that the scaling for s given (38) is correct.

In Fig. 9, we evaluate whether any of the alternatives given in equations (44),

(46) and (48) are able to predict accurately the evolution in time of sav: The

results shown, for Ra = 107; indicate the local boundary layer solution works

best, although all solutions underpredict the actual value and indicate that the

steady state occurs sooner than is predicted by the full numerical solution. Fig.

10 shows the prediction for sav at steady state as a function of Ra; for all values

of Ra; the local boundary layer solution approximates the full numerical solution

best.

7 Conclusions

In this paper, we have considered both analytically and numerically the solid-

i�cation of a phase-change material in the presence of natural convection in

a rectangular enclosure. Asymptotic analysis was carried out in terms of the

Rayleigh (Ra) and Stefan (St) numbers for the regime where Ra � 1 and

St� 1: Computations were carried out using the �nite-element software Com-

sol Multiphysics. The asymptotic analysis enables us to decouple the �uid �ow

and heat transfer problem in the liquid from the heat transfer problem in the

solid, and is able to describe the quantitative features of the numerical solutions
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very well for all times for about 90% of the height of the enclosures. However,

complications arise near the lower part of the enclosure; it appears that, in the

�nal 10%, the analytical solution is not uniformly valid for all time, and tends to

overestimate the �nal thickness of the solid layer. A simpler analytical approach,

which balances the averaged heat �ux over the length of the solidi�cation front,

tends to underestimate the �nal thickness of the solid layer, although is quite

accurate for Ra = 108:

Although the numerical results presented here were for solidi�cation occur-

ring as a result of cooling at a vertical boundary held at a constant temperature,

the analysis presented here can be used for interpreting solidi�cation by means

of time-dependent cooling also.
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FIGURE CAPTIONS
Fig. 1: Schematic diagram of solidi�cation in an enclosure

Fig. 2: Mesh independence study

Fig. 3: Steady state location of the solidi�cation front for di¤erent values of Ra

Fig. 4: Isotherms for �ow at Ra = 107 at: (a) � = 10�2; (b) � = 10�1; (c)

� = 1

Fig. 5: Streamlines for �ow atRa = 107 at: (a) � = 10�2 (� = 10; with 0 �  � 50) ;
(b) � = 10�1 (� = 6; with 0 �  � 30) ; (c) � = 1 (� = 5; with 0 �  � 25)
Fig. 6: Evolution of s towards a steady state for Ra = 107; calculated using

equation (39) and full numerical simulation, at � = 10�2; 10�1; 1

Fig. 7: Comparison of the average solid thickness, sav; as a function of � for

Ra = 107

Fig. 8: log sav as a function of log Ra at steady state

Fig. 9: Comparison of the time evolution of sav for Ra = 107; using the full

numerical solution and three di¤erent liquid-phase heat �ux correlations

Fig. 10: Comparison of log sav as a function of log Ra; using the full numerical

solution and three di¤erent liquid-phase heat �ux correlations
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water gallium lauric acid units

Cpl 4180 381.5 2394 Jkg�1K�1

Cps 2217 381.5 2155 Jkg�1K�1

kl 0.578 32 0.6098 Wm�1K�1

ks 1.918 32 0.6098 Wm�1K�1

Tmelt 273 302.78 316.5 K

�Hf 333000 80160 183000 Jkg�1

�l0 999.972 6093 869.0 kgm�3

�s 918.0 6093 1005.5 kgm�3

� 0.00175 0.00181 0.0071 kgm�1s�1

Table 1

water gallium lauric acid

St 0.02 0.02 0.015

Pr 12 0.02 119

� 0.2 0.02 0.017

Table 2
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Fig. 1: Schematic for the freezing of water
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Fig. 2: Mesh independence study
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Fig. 3: Steady-state location of the solidi�cation front for di¤erent values of

Ra
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Fig. 4(a): Isotherms for �ow at Ra = 107 at � = 10�2

Fig. 4(b): Isotherms for �ow at Ra = 107 at � = 10�1
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Fig. 4(c): Isotherms for �ow at Ra = 107 at � = 1
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Fig. 5(a): Streamlines for �ow at Ra = 107 at � = 10�2

(� = 10; with 0 �  � 50)

Fig. 5(b): Streamlines for �ow at Ra = 107 at � = 10�1

(� = 6; with 0 �  � 30)
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Fig. 5(c): Streamlines for �ow at Ra = 107 at � = 1

(� = 5; with 0 �  � 25)
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Fig. 6: Evolution of s towards a steady state for Ra = 107; calculated using

equation (39) and full numerical simulation, at � = 10�2; 10�1; 1
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Fig. 7: Comparison of the average solid thickness, sav; as a function of � for

Ra = 107
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Fig. 9: Comparison of the time evolution of sav for Ra = 107; using the full

numerical solution and three di¤erent liquid phase-heat �ux correlations
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Fig. 10: Comparison of log sav as a function of log Ra; using the full

numerical solution and three di¤erent liquid-phase heat �ux correlations
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