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We study the effect of two-dimensionality on step bunching on a Si(001) vicinal face heated

by direct electric current. When the anisotropy of the diffusion coefficient changes alternately

on consecutive terraces like a Si(001) vicinal face, bunching occurs with the drift of adatoms.

If the wandering fluctuation of step bunches is neglected as in the one-dimensional model,

the bunching with step-down drift is faster than that with step-up drift in contradiction with

experiment (Latyshev et al., Appl. Surf. Sci. 130–132, 139 (1998)). In a two-dimensional

model with a wide system width, the step bunches wander heavily with step-up drift, and the

recombination of neighboring bunches occur more frequently than those with step-down drift.

The bunching with step-up drift is accelerated and can be faster than that with step-down

drift.
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The Si(001) surface is reconstructed by the dimerization of surface atoms. When its vicinal

face is tilted in the 〈110〉 direction, the terraces with dimer rows parallel to the steps, TA, and

those with dimer rows perpendicular to the steps, TB, appear alternately. Since the surface

diffusion along the dimer rows is faster than that across the dimer rows, the anisotropy of the

surface diffusion changes alternately on consecutive terraces.

On the vicinal face, two types of step instabilities, step wandering1 and step bunching,1–3

occur when a specimen is heated by direct electric current. The step wandering occurs with

step-up current in a region of relatively large inclination (the tilting angle is 0.08◦ ≤ θ ≤ 0.5◦).1

Due to the step wandering, grooves perpendicular to the steps appear on the vicinal face. The

step bunching1–3 occurs irrespective of the current direction in the region of small inclination

(θ ≤ 0.08◦). The types of dominant terraces, which separate step bunches, are TB with step-

down current and TA with step-up current. The size of the bunches increases with time as

t1/2,3 which is independent of the drift direction. The growth rate of the bunches with step-

down current seems slightly slower than that with step-up current.3

The step instabilities are caused by drift of adatoms induced by the current. By tak-

ing account of the alternation of the anisotropic surface diffusion, the step instabilities are
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theoretically explained. If the repulsive interaction is strong such that the step bunching is

suppressed, the step wandering occurs with step-up drift.4 The motion of the steps is given

by the solution of the nonlinear equation derived by Pierre-Louis and co-workers.5,6 The step

bunching occurs irrespective of the drift direction.7–12 Since the current and the drift are in the

same direction,13,14 the results are consistent with the experiments.1–3 In a one-dimensional

step flow model,12 the size of the bunches increases with time as tβ with β ≈ 0.4, which

roughly agrees with the experiment.3 However, the growth rate with step-up drift is slower

than that with step-down drift since terraces with fast diffusion along the current direction

are dominant with step-down drift; this contradicts the experiment.3 Since the model with

alternating diffusion anisotropy has consistently explained the bunching and the wandering

instabilities on the Si(001) vicinal face, this disagreement is a major obstacle in obtaining a

unified understanding.

In the one-dimensional step flow models,11,12 the motion of step bunches with step-down

drift is similar to that with step-up drift, except for the time scale. In the Monte Carlo

simulation, however, the step pattern is changed by the drift direction:10,15 the step bunches

with step-up drift wander more than those with step-down drift. A difference of this type in

the two-dimensional step motion may solve the disagreement in the growth rate between the

experiment3 and the one-dimensional model.11

In this paper, we carry out Monte Carlo simulations and show that the growth rate of

bunches can be reversed in the two-dimensional model. For simplicity, we use a square lattice

model with the lattice constant a = 1. We consider the x-axis as parallel to the steps and

y-axis in the down-hill direction. The boundary conditions are periodic in the x-direction and

helical in the y-direction. Since the formation of two-dimensional islands and vacancies can be

neglected in the experiments,1–3 we forbid two-dimensional nucleation and use solid-on-solid

steps, i.e., the step positions are single-valued functions of x.

In our simulation, we distinguish adatoms and solid atoms so that the lattice model in the

continuum limit reduces to the standard step flow model.11,12,15 We repeatedly select a solid

atom at the step or an adatom on the terrace. We perform the diffusion and solidification trial

for the adatom and melting trial for the solid atom. In the diffusion trial, the adatom hops

to a neighboring site. The anisotropy of the diffusion coefficient and the drift of adatoms are

taken into account in the hopping probability. With regard to TA, where the surface diffusion

in the x-direction is faster, an adatom on site (i, j) moves to (i ± 1, j) with probability 1/4

and to (i, j ± 1) with probability pd(1 ± Fa/2kBT )/4, where pd(< 1) is the ratio of the two

diffusion coefficients. F is the force responsible for the drift. F > 0 represents the drift in

the step-down direction. With regard to TB, where the surface diffusion in the y-direction is

faster, an adatom on site (i, j) moves to (i± 1, j) with probability pd/4 and to (i, j ± 1) with

probability (1±Fa/2kBT )/4. For a diffusion trial, the time increment is ∆t = 1/(4Na), where
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Na is the number of adatoms so that the fast diffusion coefficient is unity.

If an adatom comes in contact with a step from the lower terrace after a diffusion trial,

solidification occurs and the adatom is transferred to a solid atom with probability

ps =
[
1 + exp

(
∆Es − φ

kBT

)]−1

. (1)

On the Si(001) vicinal face, ∆Es is complicated.16 However, for simplicity, we neglect differ-

ences of step properties between SA and SB, and assume that the step energy is proportional

to the step length: ∆Es is given by ∆Es = ε×(the increment of the step perimeter due to

the solidification), where ε is the half of the nearest-neighbor bonding enery, and φ is the

decrement of the chemical potential by the solidification. The step stiffness β̃ is related to ε

as
β̃a

kBT
=

1
2

sinh2 ε

kBT
. (2)

If we select a solid atom, a melting trial is performed. When an adatom is absent on the

top of the solid atom, melting occurs and the solid atom is transferred to an adatom with

probability

pm =
[
1 + exp

(
∆Es + φ

kBT

)]−1

. (3)

There is no extra diffusion barrier over the steps: the steps are permeable. We neglect the

long-range repulsive interaction between steps, but take into account a short-range repulsive

interaction by forbidding the overlap of steps. Impingement of atoms and evaporation are

absent.

Figures 1 and 2 represent snapshots of the step bunching. The system size is 256×256 and

the number of steps is 64. The parameters are ε/kBT = 0.5, φ/kBT = 1.5, Fa/2kBT = ±0.08,

and pd = 0.25. Initially, a few adatoms are present and the steps are equidistant. The dotted

lines represent SA steps and the solid lines represent SB steps.

Fig. 1. Snapshots of step bunching at t = 7.1 × 102 (a) with step-down drift and (b) step-up drift.

The system size is 256 × 256 and the number of steps is 64.
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The step bunching is suppressed by the strong repulsion and the step wandering occurs

with the step-up drift.15 In Fig. 1 the repulsion is absent and the step bunching occurs. In the

initial stage, pairing of SA and SB occurs. The upper side step in a pair is SA with step-up drift

and SB with step-down drift. Small bunches are formed by coalescence of step pairs. Since the

stiffness is small, the bunches wander and connect with each other at many locations (Fig. 1).

The figures may seem to indicate that the bunches with step-down drift are more straight

than those with step-up drift.

Fig. 2. Snapshots of step bunching (a) with step-down drift at t = 3.6× 104 and (b) step-up drift at

t = 3.5 × 104. The system size is 256 × 256 and the number of steps is 64.

The effect of the drift direction on the form of bunches becomes evident at a later stage

(Fig. 2). With a step-down drift, the bunches are straight and recombination of bunches are

few. With a step-up drift, the wandering width of the bunches is large. The bunches collide

with each other and frequent recombination is observed. The difference of the form caused by

the drift direction may affect the time evolution of the bunch size.

Fig. 3. Time evolution of averaged step positions (a) with step-down drift and (b) step-up drift. The

system size is 8 × 512 and the number of steps is 128.

To investigate the effect of the wandering and recombination on the growth rate, we carry
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out simulations with systems of two different widths. Figure 3 represents the time evolution

of the average step positions in a narrow system of size 8 × 512 with 128 steps. The system

is narrow to the extent that the bunches are straight and the crossing fluctuation with step-

up drift is suppressed. The bunches grow due to the collisions of small bunches; this can be

explained by the fluctuation of the terrace width. Since the long-range repulsive interaction is

neglected in the simulation, we cannot compare the time scale with that in the one-dimensional

model.12 However, the time evolution of step bunches is similar to that in the one-dimensional

model.12

Fig. 4. Time evolution of the largest bunch size with step-up drift (�) and step-down drift (◦). The

system size is 8× 512 and the number of steps is 128. The result is obtained by averaging over 20

runs.

In Figure 4, the number Nmax of steps in the largest bunch at x = 1 is plotted as a

function of time. The growth rate with step-up drift is slower than that with step-down drift,

as in the one-dimensional model. The bunch size increases with time as tβ with β ≈ 0.25.17

The exponent differs from the value β = 0.36 ∼ 0.45 in the one-dimensional model.12 In the

one dimensional model, the kinetic coefficient does not changes with an increase in the bunch

size. Once the distance between the bunches fluctuates, the bunches begin to coalesce by the

diffusion field. In the two-dimensional model, small fluctuations do not necessarily initiate the

deterministic motion. With an increase in the buch size, the kink density extremely decreases

and the kinetic coefficient becomes small. Because of the periodic boundary condition in the

x-direction, time required for the bunch to appreciably shift the average position is more. The

long waiting time is obvious from Fig.3. The retardation of the start of coalescence may cause

a change in the growth exponent.

We carry out simulations in a much wider system: 1024×512. Figure 5 represents the time

evolution of Nmax. The growth exponent is β ≈ 0.38, which is larger than that in the narrow

system and comparable with that of the one-dimensional system. As seen from Fig.2, steps

crossing the large terraces connect step bunches. The steps cause the zipping of the bunches

and trigger the coalescence of bunches, thereby preventing the retardation. In contrast to the

one-dimensional model,12 however, the growth of the bunch size with step-up drift is slightly
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Fig. 5. Time evolution of the largest bunch size with step-up drift (�) and step-down drift (◦). The

system size is 1024× 512 and the number of steps is 128. The result is obtained by averaging over

10 runs.

faster than that with step-down drift. With the step-up drift, the bunches wander and the

recombination of bunches becomes more frequent. With the step-down drift, the step bunches

are straight and the recombination of bunches becomes much less. As a result, the growth

with step-up drift becomes faster than that with step-down drift. Thus, the slow diffusion in

the y-direction is compensated by the efficient coalescence due to the wandering of bunches.

Also, the fast diffusion in the x-direction with step-up drift facilitates the recombination of

bunches. Consequently, the growth rate of bunches with step-up drift become faster than that

with step-down drift.

The growth exponent β ≈ 0.38 is slightly smaller than the experiment.3 Our simulation

model is still different from reality. The long-range step interaction is neglected, which certainly

affects the exponent,12 and the SOS condition is imposed on the steps, which tends to result

in straight step pairs running in the y-direction on the terrace as seen in Fig.2(a). Such

simplifications can also affect the exponent.

Remarks on the parameters adopted in the simulations are in order. On the Si(001) vicinal

face, the step stiffness of SA is larger than that of SB. We have neglected the difference of the

step stiffness and used the value βa/kBT = 0.14, which is of the same order as that in the

previous studies.19,20 The difference in the step stiffness results in the difference in the kink

density, which determines the kinetic coefficients. We have performed a series of simulations

with smaller kinetic coefficients (reduction of the solidification probability) for the SA. The

result has shown that it helps the reversal of the growth rate of the bunch size.

On the Si(001) vicinal face, the difference of the diffusion barrier parallel to the dimer

row from that perpendicular to the dimer row has been calculated as 0.3 eV.18 Since the

experiment3 was carried out at T = 1170◦ C, the ratio pd is estimated as pd ≈ 0.09. In our

simulation, we used a larger value pd = 0.25. By increasing the anisotropy of the diffusion

coefficient, the wavelength of the in-phase step wandering becomes shorter15 and the collision

of the bunches occurs more frequently, which probably accelarate the step bunching. On

the other hand, the one-dimensional model12 predicts that the difference of the growth rate
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with step-down drift and that with step-up drift increases with an increase in the diffusion

anisotropy. Thus, it is not clear whether the increment in the diffusion anisotropy is responsible

for the ease of reversal of the bunch size growth rate. This problem is currently begin studied.
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