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The drift of adatoms strongly influences the wandering pattern of an isolated step moving
surface diffusion field. When the drift velocity has a component against the step motion and ex
a critical value, the straight step becomes unstable with long wavelength fluctuations, and wa
This wandering pattern can be controlled by changing the direction of the drift. When the drift
no component parallel to the step edge, the unstable step obeys the Kuramoto-Sivashinsky eq
and shows a chaotic pattern. When the drift has a component parallel to the step edge, the step
the Benney equation. If the parallel component is sufficiently large, the step shows a regular pa
[S0031-9007(98)05966-3]
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To provide a perfectly oriented surface on a cryst
molecular beam epitaxy (MBE) and other similar metho
are widely used. In these methods, atoms adsorbed
the crystal surface diffuse on it and are incorporat
into atomic steps. For a vicinal face which consists
equidistant straight steps, the step-flow mode is expec
to produce a perfectly oriented interface when the st
move uniformly. However, kinetic instabilities of th
step morphology interfere with this ideal behavior. Ste
wander wildly or they bunch to form macrosteps, and t
uniformity of the surface will be deteriorated.

The wandering (or meandering) [1] is a step instabil
in response to a fluctuation along the step edge, and s
cannot remain straight. They deform chaotically in spa
and time [2]. The instability exists even for an isolate
step and is caused by an asymmetry in the surface diffus
field of adsorbed atoms (adatoms): The net rate of ada
incorporation in the step from the upper terrace is differe
from that of the lower terrace. Contrary to the wanderin
the bunching [3] is an instability perpendicular to th
step edge, and the step separation or the step de
along the vicinality cannot remain homogeneous. T
surface takes the form of a regular array of pulses
macrosteps [4]. This is also caused by the asymmetr
the surface diffusion field [5]. The strong contrast betwe
the chaotic morphology under the wandering instabil
and the periodic pulses under the bunching instability
caused by the symmetry difference along the step edge
orthogonal to it. The direction to the right along the step
equivalent to the left, and the parity symmetry exists alo
the step edge. On the contrary, the direction forward fr
the step is different from that backward, and there is
inversion symmetry orthogonal to the steps.

The asymmetry in the diffusion field results either fro
the energy barrier suppressing the interlayer transport
Ehrlich-Schwoebel effect [6–10]) or from the drift o
adatoms due to the external field (for instance, the elec
migration [11,12]). In Si(111), a direct electric current
0031-9007y98y80(19)y4233(4)$15.00
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shown to induce the bunching instability [13,14], and th
is attributed to the drift of adatoms perpendicular to t
steps [3,15–19]. The adatoms encounter a forcef pro-
portional to the external electric fieldE as [20]f ­ ZeE
(Z is the effective valence of an adatom), and drift o
the surface with a drift velocityv ­ sDsZeykBT dE with
the diffusion constantDs at the temperatureT . The same
electromigration effect is theoretically shown to cause
wandering instability and chaotic behavior for an isolat
step [21]. The advantage of electromigration is its ab
ity to alter the direction of the drift and then the parit
symmetry of the system by varying the orientation of t
external field. This in principle leads to control over th
behavior and the profile of an unstable step. The purp
of this paper is to explicitly show an ability of the ex
ternal field in controlling the morphological transition o
steps from a chaotic to an orderly one.

We use the modified version [3,15–19,21] of th
standard step-flow model [22] to study the effect
adatom drift on the step morphology. While adatom
diffuse on the surface, they drift with a constant veloci
v ­ syx , yyd due to the external direct electric field
Simultaneously, they also evaporate at a rate of1yt.
We first examine the case where the deposition of ato
from the ambient vapor phase is neglected. The situat
has been extensively studied in Si [13]. The diffusio
equation of the adatom densitycsr, td is then written as

≠csr, td
≠t

­ Ds=2csr, td 2 v ? =csr, td 2
1
t

csr, td . (1)

For simplicity of presentation, we consider the stability
an isolated step. The step runs on average inx direction,
and its local configuration is denoted byy ­ z sx, td.
Because of evaporation, it recedes the step-up, i.e.,2y
direction. Further from the step, the density of adato
released from the receding step vanishes:csr, td ! 0
at y ! 6`. We assume that adatom incorporation
the step from the upper and the lower terraces is
© 1998 The American Physical Society 4233
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fast that the local equilibrium is realized at the ste
edge [1,2,21]:cjy­z ­ c0

eqs1 2 Gkd. Here c0
eq is the

equilibrium adatom density of a straight step,G is the
capillary length [1] given byG ; Vb̃ykBT (V: atomic
area, b̃: step stiffness), andk is the curvature. In
solving Eq. (1) we use the stationary approximatio
≠csr, tdy≠t ­ 0, which is valid for a slow step motion.
The mass conservation at the step implies that the nor
step velocity obeys the relation

≠zy≠tp
1 1 s≠z y≠xd2

­ VfsDs=c 2 vcd ? n̂gz 10

2 VfsDs=c 2 vcd ? n̂gz 20 , (2)

where n̂ is the unit vector normal to the step and
directed to the lower terrace. Hereafter in the analytic
calculation, we measure time and space in units oft and
the surface diffusion lengthxs ­

p
Dst, respectively, and

denote a dimensionless variableA asÃ.
We first investigate the linear stability of a straight ste

moving in they direction. When the step is straight, th
adatom density depends only on they coordinate, and
the velocity is determined as̃V0 ­ 2Vc0

eqs4 1 ỹ2
yd1y2. If

there is a small sinusoidal perturbation of the step profi
z̃ sx̃, t̃d ­ Ṽ0t̃ 1 z̃1eiq̃x̃1ṽq̃ t̃ , the adatom density respond
with a modulation with the same wave numberq̃ as
csx̃, ỹ, t̃d ­ c0s ỹd 1 c1s ỹdeiq̃x̃1ṽq̃ t̃ . The linear dispersion
relation is obtained from Eq. (2) as

ṽq̃

Vc0
eq

­ 2ỹy

s
1 1

ỹ2
y

4

1 sỹy 2 2G̃q̃2d

s
1 1

ỹ2
y

4
1 q̃2 1 iq̃ỹx

ø i
ỹxỹy

2
q̃ 2 i

ỹx

4
sỹy 1 4G̃dq̃3

1
1
2

sỹy 2 4G̃dq̃2 2
1
8

sỹy 1 8G̃dq̃4. (3)

The approximation holds, if the wavelength of the pertu
bation is longer than the surface diffusion length,q̃ ø 1
or q ø x21

s , and the drift velocity is so small that term
of order ỹ2

y are negligible compared to unity. When th
drift velocity perpendicular to the step̃yy exceeds the
critical valueỹc ­ 4G̃, the straight step becomes unstab
against the long wavelength fluctuation, as signaled
the positive coefficient of thẽq2 term. The wave num-
ber of the fastest growing mode is determined by t
real part ofṽq̃ as q̃max ­ f2sỹy 2 4G̃dysỹy 1 8G̃dg1y2,
and is small near the critical velocity. The wave pa
tern shifts along the step edge with the velocityṼx ­
Vc0

eqỹxf2ỹyy2 1 sỹy 1 4G̃dq̃2
maxy4g. The characteristic

feature ofṼx is its proportionality to the drift velocity of
adatoms in thex direction,ỹx . Near the threshold of in-
stability, the step pattern shifts in the opposite direction
the adatom drift.
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To predict the step behavior as the fluctuation grow
we must take nonlinear effects into account. Th
nonlinear evolution equation near the threshold of t
instability can be derived formally with the reductiv
perturbation method [2,21]. Here we give an intuitiv
explanation of its derivation. The linear part of th
evolution equation is obtained from Eq. (3) by replacin
ṽq̃ and iq̃ with ≠y≠t̃ and ≠y≠x̃. The translational
symmetry in they direction implies that nonlinear terms
significant in the long wavelength instability arẽz 2

x̃ ,
z̃x̃ z̃x̃x̃, z̃

2
x̃x̃, . . . . To find the most important term, we

introduce the distance from the critical velocity as
small parameter;e ; 4sỹy 2 ỹcdy3ỹy. Since q̃max is
proportional to

p
e, the most important nonlinear term

should be the lowest in thex derivatives, and it has the
form gz̃

2
x̃ . The coefficientg is determined from a simple

consideration of the velocity of a straight step tilted fro
thex axis [23]. With a tilting angleu the step position is
expressed as̃z ­ x̃ tanu 1 Ṽysudt̃. By combining the
velocity of the linear analysis and the nonlinear termgz̃

2
x̃ ,

the step velocity in they direction Ṽysud is expressed
as Ṽysud ­ Ṽ0 1 sVc0

eqỹxỹy tanudy2 1 g tan2 u [the
second term corresponds to the linear term of Eq. (3
On the other hand, the rotation of the coordinate syst
gives the velocity of a straight step asṼysud ­ 2sVc0

eqy
cosud

p
4 1 sỹy cosu 2 ỹx sinud2. By comparing the

coefficients of theu2 terms in both equations,g is
determined asg ­ 2Vc0

eq, which is correct up to
the first order in ỹx and ỹy [the accurate expression
is g ­ 2Vc0

eqs1 1 ỹ2
x 1 ỹ2

y d s1 1 ỹ2
yd23y2]. In a

scaled moving frame, X ;
p

e fx̃ 1 Vc0
eqỹxỹy t̃y2g,

T ; 3e2Vc0
eqG̃ t̃y2, H ; z̃y3eG̃, the nonlinear equation

is expressed generically as

≠H
≠T

1
≠2H
≠X2 1

≠4H
≠X4 1 d

≠3H
≠X3 1

1
2

√
≠H
≠X

!2

­ 0 ,

(4)

whered is defined byd ; 24ỹxy3
p

e. Equation (4) is a
form of the Benney equation [24].

The Benney equation was originally introduced
describe the instability of a film flow [24]. Without
the third derivative term ord ­ 0 in Eq. (4), we have
the Kuramoto-Sivashinsky (KS) equation [25,26].
is known to reveal a chaotic behavior spatially an
temporally in the profile evolution ofHsX, T d. On the
other hand, when the second and the fourth derivat
terms vanish ord ! ` in Eq. (4), we have the Korteweg–
de Vries (KdV) equation, and a regular array of solitons
realized. The Benney equation thus interpolates betwe
chaotic and regular patterns. It was studied numerica
under a periodic boundary condition by Kawahara and c
workers [27]. Whend is sufficiently large (jdj . 1.2),
equidistant solitonlike pulses are observed. Thus, n
the critical point wheree is small andd is large, the step
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would show a regular periodic pattern propagating alo
the step edge with a constant velocity.

To test the above analysis we perform Monte Car
simulation of a lattice model. The system size is256 3 64
with periodic boundary conditions. The simulation algo
rithm is similar to that of Ref. [28] except that there i
no Schwoebel effect but rather the drift of adatoms. T
drift is incorporated as a bias in the diffusion trial. In
time intervalDt, an adatom occupying a sitesi, jd moves
with transition probabilitiess1 6 pxdy4 to the neighbor-
ing sitessi 6 1, jd, and with probabilitiess1 6 pydy4 to
the sitessi, j 6 1d. Also during this interval an adatom
can evaporate back into the ambience with the probabil
pev , but no deposition takes place. In the continuu
and the low density limit, the prescription correspond
to the diffusion equation (1) withDs ­ 1y4Dt, yx ­
pxy2Dt, yy ­ pyy2Dt, andt21 ­ pevyDt. We choose
our units in such a way as to makeDs unity. The val-
ues of the other parameters are as follows: the equi
rium adatom densityc0

eq ­ 0.18, the capillary lengthG ­
0.54, the lifetime of adatomst ­ 256, andxs ­ 16. With
these parameter values the instability is expected to oc
at 8.4 3 1023 # yy # 1.94 from Eq. (3).

Figure 1 shows the time evolution of a step patte
in an extended frame,0 # x # 256 and2600 # y # 0,
at various adatom drift velocities. The step is initiall
prepared straight:z sx, 0d ­ 0. Without the adatom drift,
the receding step shows only thermal fluctuation, b
no indication of macroscopic instability for the patter
formation, as shown in Fig. 1(a). Figure 1(b) shows th
step motion with a large drift in the uphill direction
(yy ­ 20.8). Since directions of the step retardatio
and of the adatom drift coincide, the step fluctuatio
is suppressed. A similar kinetic smoothing has be
found for a receding step with the Schwoebel effect [28
Here, the electromigration decreases the coefficient of
q2 term in Eq. (3) and enhances the effective stiffne
[29]. On the contrary, when the drift of adatoms
in the downhill direction, the fluctuation is enhance
Above the critical valueyc ­ 8.4 3 1023, wandering
instability occurs as shown in Fig. 1(c). Withyy ­ 0.2
the wavelength of the most unstable mode is estimated
using the full expression of Eq. (3) aslmax ­ 27.5 which
is the order of the mean interval of the step protrusion
On closer inspection, however, one finds that protrusio
appear at irregular intervals and that they collide a
annihilate chaotically, as is expected from the analy
of the KS equation [2]. When a transversal compone
yx ­ 0.3 is added to the vertical driftyy ­ 0.2, the
step morphology changes, as is shown in Fig. 1(d). T
wandering step now shows a regular pattern as expec
from the solution of the Benney equation with a larg
dispersion coefficient [4,18,19], estimated here asd ­
25.6. The step wandering is thus proven to be controll
by the adatom drift. The most unstable wavelengthlmax
is here estimated aslmax ­ 29.0 which roughly agrees
g
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FIG. 1. Time evolution of a receding step with adatom
drift velocities; (a)syx , yyd ­ s0, 0d; (b) syx , yyd ­ s0, 20.8d;
(c) syx , yyd ­ s0, 0.2d; and (d)syx , yyd ­ s0.3, 0.2d.

with the characteric wavelength in the early stage
evolution in Fig. 1(d).

In this paper we study the effect of adatom drift o
the wandering pattern of an isolated step. The wander
of the step is shown to be described generically by t
Benney equation. When the drift has no compone
parallel to the step edge, the system has the invers
symmetry along the step,x ! 2x, and the step obeys
the KS equation, a limited case (d ­ 0) of the Benney
equation. When the drift has a component paral
to the step edge, the parity symmetry is broken, a
the wandering step shows a regular pattern at a la
d. Theoretically the simple continuum equation can b
justified near the critical point as we have assum
e ø 1 in the derivation. The result of the Monte Carl
simulation, however, suggests that the applicability of o
equation is much wider.

We have considered, so far, the case without depo
tion, but the result can easily be extended to the case w
a finite deposition fluxF. For smallỹx and ỹy , Eq. (3)
is modified by replacingỹy to s1 2 FyFeqdỹy . Here
Feq is the equilibrium flux of deposition:Feq ­ c0

eqyt.
When the overlayer is growing,F . Feq, the instability
4235
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takes place when the drift is opposite to the step m
tion and the drift speed is larger than the critical val
ỹc ­ 4G̃ysFyFeq 2 1d. If the drift by the electromigra-
tion is in the same direction as the step motion, the kine
smoothing takes place, which might be useful to manip
late a straight step.

Si(111) is one of the systems, where the wander
instability by electromigration is expected. From th
critical drift velocity, we can calculate the critical elec
tric field as Ec ­ kBTycyDsZe ­ 4Vb̃yx2

s Ze. By us-
ing the experimental valuesxs ø 2.5 mm [30] andb̃ ø
2 3 10210 J m21 [31], Ec is estimated at the order o
102 V m21 with jZj ø 0.1 [32], which is the common volt-
age for heating Si. The wandering is observed in Si(1
in MBE growth [8] without electric field, and might be
caused by the Schwoebel effect. The wandering pat
there is strongly orientation dependent [33] due to t
7 3 7 reconstruction at the low temperature (#750 ±C).
Therefore, the wandering instability we have studied is
pected only at high temperatures where the step anisotr
and the Schwoebel effect become small. However,
derivation of Eq. (4) based on the expansion by a para
ter qxs ø 1 is then rather difficult to justify, since the dif
fusion lengthxs on Si(111) is extremely large there. Bu
there are many other materials and combinations of ad
bates and substrates which show surface electromigra
[12], and once the wandering instability takes place,
Benney equation may be applicable since the basic st
ture of the equation is determined by the symmetry
the system. Tilting of the electric field can then contr
the regularity and the periodicity of patterns formed on t
crystal surface.
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