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The drift of adatoms strongly influences the wandering pattern of an isolated step moving in a
surface diffusion field. When the drift velocity has a component against the step motion and exceeds
a critical value, the straight step becomes unstable with long wavelength fluctuations, and wanders.
This wandering pattern can be controlled by changing the direction of the drift. When the drift has
no component parallel to the step edge, the unstable step obeys the Kuramoto-Sivashinsky equation
and shows a chaotic pattern. When the drift has a component parallel to the step edge, the step obeys
the Benney equation. If the parallel component is sufficiently large, the step shows a regular pattern.
[S0031-9007(98)05966-3]

PACS numbers: 81.10.Aj, 05.70.Ln, 47.20.Hw, 68.35.Fx

To provide a perfectly oriented surface on a crystalshown to induce the bunching instability [13,14], and this
molecular beam epitaxy (MBE) and other similar methodss attributed to the drift of adatoms perpendicular to the
are widely used. In these methods, atoms adsorbed teps [3,15-19]. The adatoms encounter a fdrgeo-
the crystal surface diffuse on it and are incorporatecortional to the external electric fieH as [20]f = Z¢E
into atomic steps. For a vicinal face which consists of(Z is the effective valence of an adatom), and drift on
equidistant straight steps, the step-flow mode is expecteithe surface with a drift velocity = (D;Ze/kpT)E with
to produce a perfectly oriented interface when the stepthe diffusion constanb, at the temperaturé. The same
move uniformly. However, kinetic instabilities of the electromigration effect is theoretically shown to cause a
step morphology interfere with this ideal behavior. Stepsvandering instability and chaotic behavior for an isolated
wander wildly or they bunch to form macrosteps, and thestep [21]. The advantage of electromigration is its abil-
uniformity of the surface will be deteriorated. ity to alter the direction of the drift and then the parity

The wandering (or meandering) [1] is a step instabilitysymmetry of the system by varying the orientation of the
in response to a fluctuation along the step edge, and stepgternal field. This in principle leads to control over the
cannot remain straight. They deform chaotically in spacéehavior and the profile of an unstable step. The purpose
and time [2]. The instability exists even for an isolatedof this paper is to explicitly show an ability of the ex-
step and is caused by an asymmetry in the surface diffusiaiernal field in controlling the morphological transition of
field of adsorbed atoms (adatoms): The net rate of adatosteps from a chaotic to an orderly one.
incorporation in the step from the upper terrace is different We use the modified version [3,15-19,21] of the
from that of the lower terrace. Contrary to the wanderingstandard step-flow model [22] to study the effect of
the bunching [3] is an instability perpendicular to theadatom drift on the step morphology. While adatoms
step edge, and the step separation or the step densityffuse on the surface, they drift with a constant velocity
along the vicinality cannot remain homogeneous. Ther = (v,,v,) due to the external direct electric field.
surface takes the form of a regular array of pulses oSimultaneously, they also evaporate at a ratel pf.
macrosteps [4]. This is also caused by the asymmetry ilVe first examine the case where the deposition of atoms
the surface diffusion field [5]. The strong contrast betweerfrom the ambient vapor phase is neglected. The situation
the chaotic morphology under the wandering instabilityhas been extensively studied in Si [13]. The diffusion
and the periodic pulses under the bunching instability isquation of the adatom densityr, ¢) is then written as
caused by the symmetry difference along the step edge an (r.1)
orthogonal to it. The direction to the right along the step is .
equivalent to the left, and the parity symmetry exists along
the step edge. On the contrary, the direction forward fronf=or simplicity of presentation, we consider the stability of
the step is different from that backward, and there is n@n isolated step. The step runs on average direction,
inversion symmetry orthogonal to the steps. and its local configuration is denoted by= {(x,1).

The asymmetry in the diffusion field results either from Because of evaporation, it recedes the step-up, +e.,
the energy barrier suppressing the interlayer transport (thg@irection. Further from the step, the density of adatoms
Ehrlich-Schwoebel effect [6—10]) or from the drift of released from the receding step vanisheg:,t) — 0
adatoms due to the external field (for instance, the electrat y — *=o. We assume that adatom incorporation at
migration [11,12]). In Si(111), a direct electric current isthe step from the upper and the lower terraces is so

— DV2(r.1) — v - Ve(r.1) — %c(r, 9. @)

0031-900798/80(19)/4233(4)$15.00 © 1998 The American Physical Society 4233



VOLUME 80, NUMBER 19 PHYSICAL REVIEW LETTERS 11 My 1998

fast that the local equilibrium is realized at the step To predict the step behavior as the fluctuation grows,
edge [1,2,21]:cly—; = cgq(1 — I'k). Here cgq is the we must take nonlinear effects into account. The
equilibrium adatom density of a straight stel,is the  nonlinear evolution equation near the threshold of the
capillary length [1] given byI" = Q3 /ksT (Q: atomic  instability can be derived formally with the reductive
area, B: step stiffness), andk is the curvature. In perturbation method [2,21]. Here we give an intuitive
solving Eq. (1) we use the stationary approximation,explanation of its derivation. The linear part of the
dc(r,t)/dr = 0, which is valid for a slow step motion. evolution equation is obtained from Eq. (3) by replacing
The mass conservation at the step implies that the normal; and ig with 9/07 and 9/dx. The translational

step velocity obeys the relation symmetry in they direction implies that nonlinear terms
a0z /ot significant in the long wavelength instability arg,

—————— = Q[(D;Ve — v¢) - fi]z40 Gilav, T, ... To find the most important term, we

V1 +(9/9x)? introduce the distance from the critical velocity as a

— Q[(DsVe = ve) - h];—0, (2)  small parametere = 4(i, — #,.)/30,. SINCE Jmax IS
where i is the unit vector normal to the step and is Proportional to/e, the most important nonlinear term
directed to the lower terrace. Hereafter in the analyticapnould be the lowest in the derivatives, and it has the
calculation, we measure time and space in units ahd  10'M ¥ ¢ The coefficienty is determined from a simple
the surface diffusion length, = /D, 7, respectively, and consideration of the velocity of a straight step tilted from
denote a dimensionless variableasA. ' thex axis [23]. With a tilting angled the step position is

We first investigate the linear stability of a straight step€*Pressed ag = tané + V,(¢)i. By combining the
moving in they direction. When the step is straight, the Velocity of the linear analysis and the nonlinear teyds,
adatom density depends only on thecoordinate, and the step velocity in ﬂ})@ direction Vy(6) is expressed
the velocity is determined d& = —Qcl, (4 + 9912 If 85 Vy(0) = Vo + (Qcg t.ytang)/2 + ytarw o [the
there is a small sinusoidal perturbation of the step profileSecond term corresponds to the linear term of Eq. (3)].
£(x, 1) = Wof + Le'¥ @ the adatom density responds ON the other hand, the rotation of the coordinate system

with a modulation with the same wave numbgras —9ives the velocity of a straight step &5(6) = —(Qcg,
c(%,9,7) = co(§) + c1(§)e'? @, The linear dispersion cosf)+/4 + (#, cosd — ¥, sind)?. By comparing the
relation is obtained from Eq. (2) as coefficients of thed? terms in both equationsy is
determined asy = —chq, which is correct up to
wg |+ 2 the first order inv, and v, [the accurate expression
Qe Uy 4 is y= —Q¢gq(1 + 92+ 92)(1 + 92732, In a
5 72 scaled moving frame, X = \/e[x + chqf;xf;yt/z],
+ (v, —2IgH)4/1 + 2 q* + iqo, T =3e>Qc2,I'7/2, H = [/3€T, the nonlinear equation
is expressed generically as
~'ﬁxﬁy~—'&(~ +4D)g? 2
Ty T 1 0H = 9*H  0*H #®H 1 (0H
ot + = || =0,
1 . 1 et (3 oT 0X 0X 0X 2\ oX
+ Eg(vy 4g E;(vy + 81g". (3) (4)

The approximation holds, if the wavelength of the perturwheres is defined bys = —4#,/3,/e. Equation (4) is a
bation is longer than the surface diffusion lengihs<< 1 form of the Benney equation [24].

or g < x; !, and the drift velocity is so small that terms ~ The Benney equation was originally introduced to
of order &} are negligible compared to unity. When the describe the instability of a film flow [24]. Without
drift velocity perpendicular to the step, exceeds the the third derivative term o8 = 0 in Eq. (4), we have
critical valued,. = 4T, the straight step becomes unstablethe Kuramoto-Sivashinsky (KS) equation [25,26]. It
against the long wavelength fluctuation, as signaled bys known to reveal a chaotic behavior spatially and
the positive coefficient of thg> term. The wave num- temporally in the profile evolution o (X,7T). On the

ber of the fastest growing mode is determined by thesther hand, when the second and the fourth derivative
real part of@; as gmax = [2(5y — 41)/(5y, + 80)1"/2,  terms vanish 08 — « in Eq. (4), we have the Korteweg—
and is small near the critical velocity. The wave pat-de Vries (KdV) equation, and a regular array of solitons is
tern shifts along the step edge with the veloclty =  realized. The Benney equation thus interpolates between
Qcl o [—y/2 + (B, + 41)g5,,/4]. The characteristic chaotic and regular patterns. It was studied numerically
feature ofV, is its proportionality to the drift velocity of under a periodic boundary condition by Kawahara and co-
adatoms in the: direction,?,. Near the threshold of in- workers [27]. When§ is sufficiently large 5| > 1.2),
stability, the step pattern shifts in the opposite direction ofequidistant solitonlike pulses are observed. Thus, near
the adatom drift. the critical point wheres is small andé is large, the step
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would show a regular periodic pattern propagating alon¢ 0p=——=— —— O
the step edge with a constant velocity. e
To test the above analysis we perform Monte Carlc

simulation of a lattice model. The system siz23§ X 64
with periodic boundary conditions. The simulation algo-
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no Schwoebel effect but rather the drift of adatoms. The
drift is incorporated as a bias in the diffusion trial. In a -400
time intervalA¢, an adatom occupying a sig j) moves
with transition probabilitieg1 + p,)/4 to the neighbor-
ing sites(i = 1, j), and with probabilitieg1 = p,)/4 to A R " T
the sites(i,j = 1). Also during this interval an adatom _6000 100 200 0 100 200
can evaporate back into the ambience with the probability X X

" . (@ (b)
Pev, but no deposition takes place. In the continuum

~400 E 3

and the low density limit, the prescription corresponds 0 ——————————x 0 =

to the diffusion equation (1) withD, = 1/4Az, v, = N A N

px/2At, v, = p,/2At, and7 ! = p.,/At. We choose WW m,\

our units in such a way as to mak, unity. The val- W N N A

ues of the other parameters are as follows: the equilib_200 WM —200 W
MM\—/

0.54, the lifetime of adatoms = 256, andx, = 16. With

these parameter values the instability is expected to occi_sago W ~400 T AZAA
at84 x 10 = v, = 1.94 from Eq. (3). SN N
Figure 1 shows the time evolution of a step patterr %&V\MWF W

rium adatom density., = 0.18, the capillary lengti” = y W §§ 2 % y b"’%‘\r

in an extended framé), = x = 256 and —600 = y = 0, NSRS RN

at various adatom drift velocities. The step is initially =600 == "m0~ 0% o0 200
prepared straight/ (x,0) = 0. Without the adatom drift, X x

the receding step shows only thermal fluctuation, bu. © @

no indication of macroscopic instability for the patternFiG. 1. Time evolution of a receding step with adatom
formation, as shown in Fig. 1(a). Figure 1(b) shows thedrift velocities; (a)(v.,vy,) = (0,0); (b) (v,,vy) = (0,—0.8);

step motion with a large drift in the uphill direction (€) (vx,vy) = (0,0.2); and (d)(vs, v,) = (0.3,0.2).

(vy = —0.8). Since directions of the step retardation

and of the adatom drift coincide, the step fluctuation

is suppressed. A similar kinetic smoothing has beermwith the characteric wavelength in the early stage of
found for a receding step with the Schwoebel effect [28].evolution in Fig. 1(d).

Here, the electromigration decreases the coefficient of the In this paper we study the effect of adatom drift on
g*> term in Eq. (3) and enhances the effective stiffnesghe wandering pattern of an isolated step. The wandering
[29]. On the contrary, when the drift of adatoms isof the step is shown to be described generically by the
in the downhill direction, the fluctuation is enhanced.Benney equation. When the drift has no component
Above the critical valuev. = 8.4 X 1073, wandering parallel to the step edge, the system has the inversion
instability occurs as shown in Fig. 1(c). With, = 0.2  symmetry along the step; — —x, and the step obeys
the wavelength of the most unstable mode is estimated iype KS equation, a limited casé & 0) of the Benney
using the full expression of Eq. (3) ag.x = 27.5 which  equation. When the drift has a component parallel
is the order of the mean interval of the step protrusionsto the step edge, the parity symmetry is broken, and
On closer inspection, however, one finds that protrusionthe wandering step shows a regular pattern at a large
appear at irregular intervals and that they collide and5. Theoretically the simple continuum equation can be
annihilate chaotically, as is expected from the analysigustified near the critical point as we have assumed
of the KS equation [2]. When a transversal component < 1 in the derivation. The result of the Monte Carlo
v, = 0.3 is added to the vertical drifv, = 0.2, the simulation, however, suggests that the applicability of our
step morphology changes, as is shown in Fig. 1(d). Thequation is much wider.

wandering step now shows a regular pattern as expectedWe have considered, so far, the case without deposi-
from the solution of the Benney equation with a largetion, but the result can easily be extended to the case with
dispersion coefficient [4,18,19], estimated heredas=  a finite deposition flux<. For small?, and o, Eq. (3)
—5.6. The step wandering is thus proven to be controlleds modified by replacingd, to (1 — F/F.q)0,. Here

by the adatom drift. The most unstable wavelengthy,  Feq is the equilibrium flux of depositionF, = cgq/r.

is here estimated as,.x = 29.0 which roughly agrees When the overlayer is growing; > F.q, the instability
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