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Keeping two-dimensional lattice structures formed by nanoparticles covered with DNA in mind, we carry

out Brownian dynamics simulations to study the effect of interaction strength on a two-dimensional lattice

structure formed in a binary system. In our previous study [H. Katsuno, Y. Maegawa, and M. Sato, J. Phys.

Soc. Jpn. 85, 074605 (2016)], we carried out simulations using the Lennard–Jones potential, in which

the difference in interaction length was taken into account. When the interaction length between different

species, σ′, is smaller than that between the same species, σ, various lattice structures were formed with

changing the ratio σ′/σ. In this paper, taking the difference in the interaction strength into account, we

study the effect of the difference in interaction strength on the two-dimensional lattice structure.

1. Introduction

A nanoparticle covered with DNA strands, which we call the DNA nanoparticle, is

one of promising building blocks for fabricating nanostructures. Since the DNA strands

attaching to DNA nanoparticles are designed freely, we can control the interaction

between the particles independently of particle size and particle shape according to the

purpose.

There are many experiments on the formation of three-dimensional structures.1–5

When DNA nanoparticles are connected to each other by self-complementary linkers,

the fcc structure is formed. When two kinds of non-self-complementary linkers are used

to connect the DNA particles, the system is regarded as a binary system and the bcc

structure is formed. The NaCl lattice structure is formed when the particles with both

self-complementary and non-self-complementary linkers are used.4 CsCl, AlB2, Cr3Si,

and Cs6C60 lattices can also be formed by controlling particle size.5

Recently, Isogai and coworkers have studied the formation of a two-dimensional

lattice structure in a binary system.6,7 They showed that the lattice structure can be

changed from the triangular lattice to the square one by controlling the magnesium
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ion density in a solution.7 They proposed that DNA strands are bundled with a high

density of magnesium ions, which changes the coordination number and the particles

covered with the DNA strands form a square lattice. However, it has not been clarified

whether their proposal is correct.

Previously, we studied the formation of two-dimensional lattice structures in a binary

system,8 keeping the two-dimensional lattice structure formed by DNA nanoparticles in

mind. For simplicity, we used the Lennard-Jones (LJ) potential as the interaction poten-

tial. We assumed that the interaction length between different species, σ′, is smaller than

that between the same species, σ. In Ref. 8, we showed the possibility of changing the

lattice structure by controlling σ′/σ: a stable lattice structure is successively changed

from a triangular lattice to a square lattice, a honeycomb lattice and, a rectangular

lattice with decreasing ratio σ′/σ.

In our previous study,8 we neglected the difference in interaction strength: the inter-

action strength between the same species, ϵ, is equal to that between different species,

ϵ′. However, the difference in interaction strength probably affects the stable lattice

structure. Thus, in this paper, we take into account the difference between ϵ′ and ϵ, and

study the two-dimensional lattice formed in the binary system. In Sect. 2, we introduce

our model. In Sect. 3, we show the results of Brownian dynamics simulations. We show

how the lattice structure is changed by ϵ′/ϵ. In Sect. 4, we summarize our results.

2. Model

In experiments,6,7 DNA nanoparticles are adsorbed on a cationic supported lipid bilayer

by electrostatic coupling between DNA strands and cationic lipids. Two-dimensional

diffusion of the DNA nanoparticles on the lipids occurs since the lipids move similarly

to a fluid. Thus, the motion of the ith DNA nanoparticle is given by

m
d2ri
dt2

= −ξ
dri
dt

+ Fi + F B
i , (1)

wherem is the mass of the DNA nanoparticle, ri is the position of the ith particle, and ξ

is the frictional coefficient. F B
i and Fi represent the thermal noise and the sum of inertial

forces, respectively. F B
i satisfies ⟨F B

i ⟩ = 0 and ⟨FB
i,k(t)F

B
j,l(t

′)⟩ = 2ξkBTδijδklδ(t − t′),

where FB
i,k(t) represents the k-direction component of thermal noise at time t. Fi is

given by the gradient of the interaction potential U(rij) as

Fi =
∑
i̸=j

∇U(rij), (2)
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where rij = |ri − rj|. It is suggested that the DNA nanoparticle can be treated as a

fuzzy sphere in Ref. 4, but an appropriate potential for expressing the effect of the

attraction by DNA strands is not obvious. At least, taking into account the attraction

by DNA strands and the repulsion by the excluded volume effect of nanoparticles is

necessary. Thus, as a simple potential, we use the Lennard–Jones (LJ) potential as the

interaction potential:

U(rij) = 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (3)

where ϵij and σij represent the interaction strength and interaction length, respectively.

Nanoparticles are exposed to a sharp short-range repulsion at rij < 21/6σij and a gradual

long-range attraction at rij > 21/6σij. When rij ≥ 3σij, the attractive force is negligibly

small. Thus, the LJ potential is suitable for hard spheres covered with flexible DNA

strands as a first approximation.

We consider a binary system, in which the numbers of two species are the same. In

our previous study,8 we assumed that the interaction length for different species, σ′, was

shorter than that for the same species, σ. The interaction strength ϵij was independent

of the combination of species. In this paper, we assume that both ϵij and σij depend

on the combination of species: σij = σ and ϵij = ϵ for the combination of the same

species and σij = σ′ < σ and ϵij = ϵ′ > ϵ for the combination of different species.

Experimentally,1–5 ϵ is negligibly small in a binary system, so that decreasing ϵ might

be more practical than increasing ϵ′ to realize ϵ/ϵ′ → 0. In our simulation, however,

decreasing temperature is necessary to prevent thermal disordering when we decrease ϵ.

Thus, we increase ϵ′ to avoid the complication of temperature tuning to realize ϵ/ϵ′ → 0.

Since DNA particles are adsorbed on the lipid bilayer in experiments,6,7 the friction

is probably large. Thus, we neglect md2r/dt2, and solve Eq. (1) numerically using a

simple difference equation given by9

r̃i(t̃n+1) = r̃i(t̃n) + F̃i∆t̃+∆r̃B
i , (4)

where r̃i = ri/σ, t̃n = ϵtn/(ξσ
2), F̃i = σFi/ϵ, and t̃n+1 = t̃n + ∆t̃. The displace-

ment caused by a random force, ∆r̃B
i , satisfies ⟨∆r̃B

i ⟩ = 0 and ⟨∆r̃Bi,k(tn)∆r̃Bj,l(tm)⟩ =
2kBTδijδklδmn/ϵ, where ∆r̃Bi,k(tn) represents the component of ∆r̃B

i in the k-th direction.

We carry out the simulations in a square system with the system size L× L under the

periodic boundary condition.

In this paper, we fix the value of σ′/σ and investigate how a lattice structure is
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changed by ϵ′/ϵ. To specify the type of lattice structures, we carry out simulations using

some individual initial conditions, and calculate the radial distribution function g(r)

and the parameter of local rotational symmetry ϕk by averaging them over individual

samples. The radial distribution function g(r) is defined as

g(r) =
1

Ns

1

N

Ns∑
m

N∑
i

ni,m

2πrδr
, (5)

where ni,m represents the number of particles between the distance r and r + δr for

the ith particle in the mth sample. N is the number of particles in a sample and Ns

represent the number of individual samples. In our simulation, N , Ns, and δr are set to

be 512, 10, and 10−2, respectively.

The parameter ϕk, which represents the averaged k-hold rotational symmetry, is

defined as

ϕk =
1

Ns

1

N

Ns∑
m

N∑
i

ϕm
k (i), (6)

where ϕm
k (i) is the local k-hold rotational symmetry around the ith particle in the mth

sample. ϕm
k (i) is given by10–14

ϕm
k (i) =

1

Nm
n (i)

∣∣∣∣∣∣
Nm

n (i)∑
j=1

eikθ
m
ij

∣∣∣∣∣∣ , (7)

where Nm
n (i) and θmij are the number of neighbors around the ith particle and the angle

representing the direction of the jth particle in the mth sample, respectively.

In all our simulations, temperature, system size, and interaction length ratio σ′/σ

are set to be kBT/ϵ = 0.1, and L = 23.97, and σ′/σ = 0.45, respectively. We carry out

simulations using various values of ϵ′/ϵ and study how the structure is changed by the

interaction strength ratio.

3. Results and discussion

In our previous study,8 the lattice structure is changed from the triangular lattice to

the square lattice, honeycomb lattice, and the rectangular lattice with decreasing σ′/σ.

When σ′/σ is too small, the potential we use in our simulations is not realistic because

it is necessary to consider the effect of steric hindrance. However, our purpose is to

investigate how ϵ′/ϵ affects lattice structures. Thus, we set σ′/σ to be 0.45, with which

the rectangular lattice is formed when ϵ′/ϵ = 1, and carry out simulations at a low

temperature.
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Fig. 1. (color online) Dependence of ϕk with k = 2, 3, 4, and 6 on ϵ′/ϵ.

To study how the lattice structure is changed by ϵ′/ϵ, first we investigate the change

in rotational symmetry caused by ϵ′/ϵ. Figure 1 shows the dependence of ϕk with k = 2,

3, 4, and 6 on ϵ′/ϵ. ϕ2 is the largest parameter when ϵ′/ϵ = 1, which shows the formation

of the rectangular lattice.8 When ϵ′/ϵ > 10, ϕ2 starts decreasing, and ϕ3 starts increasing

instead. ϕ3 becomes the largest parameter when 30 < ϵ′/ϵ < 5× 102, which shows the

formation of the honeycomb lattice. Then, ϕ3 decreases and ϕ4 increases sharply with

increasing ϵ′/ϵ. The largest parameter is ϕ4 when 6× 102 < ϵ′/ϵ < 2× 104 and ϕ6 when

3×104 < ϵ′/ϵ. These results show the formation of the square lattice and the triangular

lattice, respectively. The range of the changes in ϵ′/ϵ is wide. In Eq. (4), the amplitude of

displacement caused by the random force is proportional to kBT/ϵ. In our simulations,

kBT/ϵ is kept constant. Experimentally, a similar condition is probably realized by

decreasing ϵ with increasing ϵ′ and tuning temperature. Decreasing interaction strength

is possible by changing the DNA strands. Thus, we think that our range of parameter

of interaction energies is probably possible in an experiment.

The changes in the rotational symmetries show that the rectangular lattice suc-

cessively changes to the honeycomb lattice, square lattice, and triangular lattice with

increasing ϵ′/ϵ. Hereafter, we show snapshots and the radial distribution functions for

some typical ϵ′/ϵ values to confirm the changes in the lattice structure.

Figure 2 shows a snapshot of the rectangular lattice, in which the density of particles

is given by πN(σ/2)2/L2 = 0.7 if all the particles are isolated. In our previous study,8

two types of particles individually form the triangular lattices with σ′/σ = 0.45, where

a different type of particle is present in the middle point on a side of the triangular

lattice. In the rectangular lattice, the ratio of the long side formed by the pair of different
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Fig. 2. (color online) Snapshot of a rectangular lattice. Parameters are given by σ′/σ = 0.45,

ϵ′/ϵ = 1, and kBT/ϵ = 0.1. The number of particles N is 512 and the length of one side of the square

system satisfies L/σ = 23.97. We use open circles and solid circles to distinguish two species, where

the sizes of the circles are smaller than 0.5 to show the positions of the species clearly.

species to the short side formed by the same species is
√
3. Thus, the lengths of the short

and long lattice constants are about 0.45r∗ and 0.45
√
3r∗ with r∗ = 21/6σ, respectively.

The actual area fraction is much lower than 0.7 as shown in Fig. 2.

To confirm the formation of the rectangular lattice, we calculate the radial distribu-

tion function g(r). Figure 3(a) shows the radial distribution function, for which we use

the same parameters as those in Fig. 2. In Fig. 3(b), we show the contributions of the

same and different species to g(r), respectively. To see the higher-order peak clearly, we

show 2πrδrg(r) in the vertical axis. The peaks appear at r = 0.486r∗, r = 0.878r∗, and

r = 0.985r∗. The first and second peaks are formed by different species, and the third

peak is formed by the same species [Fig. 3(b)]. From the radial distribution function,

the formation of the rectangular lattice8 is confirmed .

Since temperature is sufficiently low, the rectangular lattice is formed in Fig. 2. If

we increase the interaction strength keeping the temperature low, disordering caused by

thermal noise is prevented. Thus, by setting kBT/ϵ to 0.1 and increasing ϵ′/ϵ, we carry

out simulations. Figure 4 shows the snapshots with some ϵ′/ϵ’s. With increasing ϵ′/ϵ,

the lattice structure is changed from the rectangular lattice to the honeycomb lattice

at ϵ′/ϵ = 102 [Fig. 4(a)], the square lattice at ϵ′/ϵ = 103 [Fig. 4(b)], and the triangular

lattice at ϵ′/ϵ = 105 [Fig. 4(c)].

Figures 5-7 show g(r) for those ϵ′/ϵ’s. Figure 5 shows g(r) with ϵ′/ϵ = 102. Since
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Fig. 3. (color online) (a) Radial distribution function g(r) and (b) the contributions of the same

and different species to g(r), where parameters are given by σ′/σ = 0.45, kBT/ϵ = 0.1, and ϵ′/ϵ = 1.

To see the higher-order peak clearly, we show 2πrδrg(r) in the vertical axis. The data are the

averages of 10 samples.

the interaction strength ϵ′ is much larger than that in Fig. 2, the effect of thermal noise

decreases relatively. Thus, the peaks are sharper than those in Fig. 3. The positions of

the first, second, and third peaks are 0.459r∗, 0.807r∗, and 0.949r∗, respectively. The

first and third peaks correspond to different species and the second peak corresponds

to the same species [Fig. 5(b)]. We find the formation of the honeycomb lattice from

these peaks.

Figure 6 shows g(r) with ϵ′/ϵ = 103. The positions of the first, second, and third

peaks are 0.459r∗, 0.664r∗, and 0.922r∗, respectively. The first and third peaks consist of

different species and the second peak consists of the same species [Fig. 6(b)]. The peaks

positions are close to those of the square lattice with the lattice constant of 0.45r0.

Figure 7 shows g(r) with ϵ′/ϵ = 105. The positions of the first, second and third
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Fig. 4. (color online) Snapshots of a rectangular lattice. Parameters are given by σ′/σ = 0.45 and

kBT/ϵ = 0.1. The values of the ratio ϵ′/ϵ are (a) 102, (b) 103, and (c) 105. The number of particles N

is 512 and the length of one side of the square system satisfies L/σ = 23.97. We use open circles and

solid circles to distinguish two species, where the sizes of the circles are smaller than 0.5 to show the

positions of the species clearly.
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Fig. 5. (color online) (a) Radial distribution function g(r) and (b) the contributions of the same

and different species to g(r), where σ′/σ = 0.45, kBT/ϵ = 0.1, and ϵ′/ϵ = 102. To see the higher-order

peak clearly, we show 2πrδrg(r) in the vertical axis. The data are the averages of 10 samples.

peaks are 0.450r∗, 0.807r∗, and 0.905r∗, respectively. The peaks correspond to both the

same and different species. From the peaks in Fig 7(b) the ratios of the contribution

of different species to that of the same species in the first, second, and third peaks are

given by 6.0 to 1, 0.35 to 1, and 0.84 to 1, respectively. The positions of the peaks are

close to those in the triangular lattice with the lattice constant 0.45r∗.

In our previous study,8 the change in the lattice structure induced by σ′/σ is under-

stood by the rough estimation of interaction energies. Here, we estimate the interaction

energies similarly to explain the change in lattice structure induced by the change in

ϵ′/ϵ. In our simulations, the nearest neighbors consist of different species except for the

triangular lattice. Since ϵ′ ≥ ϵ, we set the distance to the nearest neighboring particles

r0 to be 21/6σ′. Figure 8(a) shows the structure of the rectangular lattice expected from

Fig. 2. We sum up the interaction energies in the minimum unit surrounded by the red

dotted lines. The distance between the nearest neighbors, e. g., the particles b and c,

is r1 = r0. The distance between the second nearest neighbors, e. g., the particles a
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Fig. 6. (color online) (a) Radial distribution function g(r) and (b) the contributions of the same

and different species to g(r), where σ′/σ = 0.45, kBT/ϵ = 0.1, and ϵ′/ϵ = 103. To see the higher-order

peak clearly, we show 2πrδrg(r) in the vertical axis. The data are the averages of 10 samples.

and b, is r2 =
√
3r0, and that between the third nearest neighbors, e. g., the particles

a and c, and the particles a and e, is r3 = 2r0. The numbers of connections with the

first, second, and third nearest neighbors in the minimum unit are N1 = 1, N2 = 1, and

N3 = 3, respectively. Taking into account the total particle number in the minimum

unit, the interaction energy per particle ER is estimated as

ER

4ϵ
= N1

ϵ′

ϵ

[(
σ′

r0

)12

−
(
σ′

r0

)6
]
+N2

ϵ′

ϵ

[(
σ′

√
3r0

)12

−
(

σ′
√
3r0

)6
]

+ N3

[(
σ

2r0

)12

−
(

σ

2r0

)6
]
. (8)

Figure 8(b) shows the structure of the honeycomb lattice expected from Fig. 4(a).

The first, second, and third nearest neighbors are, e.g., the particles a and b, the particles

a and c, and the particles a and d, respectively. In the lattice, their distances are given

by r1 = r0, r2 =
√
3r0, and r3 = 2r0. The numbers of connections are given by N1 = 3,
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Fig. 7. (color online) (a) Radial distribution function g(r) and (b) the contributions of the same

and different species to g(r), where σ′/σ = 0.45, kBT/ϵ = 0.1, and ϵ′/ϵ = 105. The data are the

averages of 10 samples.

N2 = 6, and N3 = 3. Thus, the interaction energy per particle EH is estimated as

EH

4ϵ
=

1

2

{
N1

ϵ′

ϵ

[(
σ′

r0

)12

−
(
σ′

r0

)6
]
+N2

[(
σ√
3r0

)12

−
(

σ√
3r0

)6
]

+ N3
ϵ′

ϵ

[(
σ′

2r0

)12

−
(

σ′

2r0

)6
]}

. (9)

Figure 8(c) shows the structure of the square lattice expected from Fig. 4(b). In the

lattice, we do not need to take into account the effect of the third nearest neighbors.

The first and second nearest neighbors are, e.g., the particles a and b, and the particles

a and c, respectively. Their distances are given by r1 = r0 and r2 =
√
2r0, and the

numbers of connections are N1 = 2 and N2 = 2, so that the interaction energy per

particle ES is estimated as

ES

4ϵ
= N1

ϵ′

ϵ

[(
σ′

r0

)12

−
(
σ′

r0

)6
]
+N2

[(
σ√
2r0

)12

−
(

σ√
2r0

)6
]
. (10)
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Fig. 8. (color online) Lattice structures formed by two species: (a) rectangular lattice, (b)

honeycomb lattice, (c) square lattice, and (d) triangular lattice, where we distinguish the two species

from their colors. The minimum unit is surrounded by red dotted lines. Black dashed lines represent

the bonds between the different species.

Finally, we consider the lattice structure expected from Fig. 4(c). Figure 1 shows

that ϕ6 is the largest parameter when ϵ′/ϵ = 105; thus, we expect the formation of

the triangular lattice shown in Fig. 8(d) with a low energy because the contribution of

the same species to the first peak is larger than that of the different species in Fig. 7.

The first and second nearest neighbors are, e.g., particles a and b, and particles b and
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d, respectively. There are two types of third nearest neighbors. One includes the third

nearest neighbors in the minimum unit such as the particles c and f, and the other

induces the third nearest neighbors across the minimum units such as the particles b

and h. In the lattice, r1 = r0, r2 =
√
3r0, and r3 = 2r0. When we count the numbers

of connections, we need to take into account the types of species The numbers of the

connections with the first, second, and third nearest neighbors consisting of the same

species are N1 = 3, N2 = 3, and N3 = 6, respectively, and those consisting of different

species are N ′
1 = 6, N ′

2 = 6, and N ′
3 = 0, respectively. Thus, the interaction energy per

particle ET is estimated as

ET

4ϵ
=

1

3

{
N1

[(
σ

r0

)12

−
(
σ

r0

)6
]
+N ′

1

ϵ′

ϵ

[(
σ′

r0

)12

−
(
σ′

r0

)6
]

+ N2

[(
σ√
3r0

)12

−
(

σ√
3r0

)6
]
+N ′

2

ϵ′

ϵ

[(
σ′

√
3r0

)12

−
(

σ′
√
3r0

)6
]

+ N3

[(
σ

2r0

)12

−
(

σ

2r0

)6
]
+N ′

3

ϵ′

ϵ

[(
σ′

2r0

)12

−
(

σ′

2r0

)6
]}

. (11)

Figure 9 shows the energies estimated using Eqs. (8)-(10). The structure with the

minimum interaction energy is the rectangular lattice when ϵ′/ϵ < 70, the honeycomb

lattice when 70 < ϵ′/ϵ < 800, the square lattice when 800 < ϵ′/ϵ < 105, and the

triangular lattice when 105 < ϵ′/ϵ. The relationship between the lattice structures with

the minimum interaction energy and the ratio ϵ′/ϵ roughly agrees with our simulations.

4. Summary

In this paper, keeping the two-dimensional lattice formed by DNA nanoparticle in mind,

we studied the effect of the difference in interaction strength on the lattice structures.

Assuming that ϵ′ is larger than ϵ, we carried out Brownian dynamics simulations. With

increasing ϵ′, the rectangular structure formed with σ′/σ = 0.45 changes to the honey-

comb lattice, square lattice, and triangular lattice in this sequence. The change in the

lattice structure induced by increasing ϵ′ is explained by the simple estimation of the

interaction energy of each structure. We also carried out similar simulations in the cases

that σ′/σ = 0.58 and 0.71 although we did not show the results. When σ′/σ = 0.58,

the honeycomb structure, which is formed when ϵ′/ϵ = 1, changes to the square lattice

and triangular lattice in succession with increasing ϵ′/ϵ. The transition of the square

lattice to the triangular lattice induced by the increase in ϵ′/ϵ also occurs in the case

that σ′/σ = 0.71. For each σ′/σ, the structure changes to the triangular lattice with a
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Fig. 9. (color online) Dependences of ER/4ϵ, EH/4ϵ, ES/4ϵ, and ET/4ϵ on ϵ′/ϵ. The ϵ′/ϵ ranges

are (a) 10 < ϵ′/ϵ < 103 and (b) 104 < ϵ′/ϵ < 106.

sufficiently large ϵ′.

In our simulations, instead of decreasing ϵ and temperature tuning, we increased

ϵ′ with the temperature fixed. In our previous study,8 we showed that not only the

ratio of the interaction length σ′/σ but also the ratio of the interaction strength ϵ′/ϵ

are important for determining the lattice structure. The effect of increasing ϵ′/ϵ is the

same as that of increasing σ′/σ. From our previous study,8 we found that increasing

σ′/σ can change the square lattice to the triangular lattice. In this study, increasing ϵ′

changes the lattice structure from the honeycomb lattice to the triangular lattice via

the square lattice when σ′/σ = 0.45. Increasing ϵ′/ϵ changes the lattice structures to

the triangular lattice when σ′/σ ̸= 1. The triangular lattice is formed when σ′/σ = 1

and ϵ′/ϵ = 1, so that increasing ϵ′/ϵ does not cause the change in the two-dimensional

structure when σ′/σ = 1. From our studies, it is not sufficient to determine the validity
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of Isogai’s proposal that bundling the DNA strands causes the change in the two-

dimensional lattice structure. However, if the difference in interaction length is induced

by controlling the magnesium ion density in a solution, it is possible to induce the

change in the lattice structure without bundling the DNA strands. The lattice constant

is changed in Ref. 7, so that the change in the lattice structure induced by σ′/σ, which

is shown in Ref. 8, agrees with the experiment qualitatively.

In colloidal dispersion systems, long-range attractions such as depletion attraction

and Van der Waals interaction act between particles in general. Thus, we think that

it is natural to take into account a long-range interaction in our simulation.8 However,

it might be better to add the short-range interaction potential, which represents the

attraction by DNA strands, to other long-range attractive potentials than using the

modified LJ potential. Nevertheless, as a first step of the study, we used the same

model as that in our previous study and investigated the effect of the strength of the

interaction potential, which we neglected before. It is very important to study how the

form of the interaction potential affects the lattice structure. Considering more suitable

potential and studying its effect on the lattice structure are our future problems.
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