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We study group chase and escape with some fast chasers. In our model chasers look for the nearest target and
move to one of the nearest sites in order to catch the target. On the other hand, targets try to escape from the
nearest chaser. When a chaser catches a target, the target is removed from the system and the number of targets
decreases. The lifetime of targets, at which all targets caught, decreases as tα with increasing the number of
chasers. When there are no fast chasers and the total number of chasers is small, the exponent α is large. When
the total number of chasers is large, α becomes small. There is an optimal number of chasers to minimize the cost
used in order to catch all targets. However, when we add a few fast chasers, the region with the large α vanishes.
The optimal number of chasers vanishes, and the cost monotonically increases with increasing the number of
chasers.
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I. INTRODUCTION

Problems of chasing and escaping have been studied for a
long time [1–3]. Chasing and escaping between a target and a
chaser, which is a model of a warship chasing a pirate vessel, is
one of the simplest cases. One of the more complicated cases
is the problem of chasing and escaping with a target and some
chasers [4–7]. In that case, if chasers walk randomly and a
target does not move, the probability pimm(t) with which the
target survives until time t is given by pimm(t) ∼ e−αρt , where
α is the positive constant and ρ is the density of chasers.
The dependence of the density of chasers changes when both
chasers and targets can move. If chasers and targets search each
other in the region which is shorter than the critical length, the
survival probability is given by pimm(t) ∼ e−αρ3t .

Recently, Kamimura and Ohira [8] studied a more compli-
cated case: group chase and escape. In their model, although
each chaser independently moves in order to catch one of
the nearest targets, some groups of chasers are simultaneously
formed. A lifetime T , at which the last target is caught, depends
on the number of chasers. The lifetime T decreases with the
number of chasers as N−α

c . When there is only a few chasers,
the value of the exponent α is about 3. On the other hand,
with sufficiently many chasers, the value of α decreases and
becomes 0.75. The dependence of an average lifetime τ on the
number of targets was also studied. When the number of targets
is small, the lifetime τ increases with increasing the number
of targets. With too many targets, however, they prevent each
other from escaping from chasers, and the lifetime τ decreases
with increasing the number of targets. Thus, although T

increases monotonically with increasing the number of targets,
there is an optimal density of targets, which gives the longest
average lifetime. The authors also evaluated the cost to catch
all targets and showed the existence of an optimal number of
chasers, which minimize the cost to catch all targets.

The model used in a previous study is so simple that many
various modified versions of the model are conceivable. For
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example, Nishi and coworkers studied the group chase and
escapes under a conversion law [9], and we studied the group
chase and escape with three species [10]. In the previous paper
[8], some variations of the original model, which are valuable
to study, are suggested. One of them is the model in which
chasers or targets with fast velocity are present. If only one fast
chaser is added to system, the chaser can catch targets without
cooperation with other slow chasers, so that the existence of a
fast chaser probably changes some features of the system. In
this report we add fast chasers in the system and study how the
dependence of the lifetimes τ and T on the number of chasers
change owing to the presence of a few fast chasers. We also
investigate the influence of fast chasers to the cost for catching
all targets. In Sec. II we introduce our model. In Sec. III we
show the results of simulations. In Sec. IV we summarize our
results and give brief discussions.

II. MODEL

Our model is the modified model of previous studies [8,10].
We consider a system of two-dimensional square lattice with
periodic boundary condition. Initially we put Nc chasers and
NT targets randomly on sites. In a trial we choose a particle
from targets and chasers. When the chosen particle is a chaser,
it looks for the nearest target and tries to move to one of
the nearest neighboring sites in order to decrease the distance
from the nearest target. If there are two paths by which the
chaser decreases the distance to the target, the chaser selects
a site with a probability 1/2 and tries to move. For example,
if the position of chaser is (i,j ) and that of target is (i +
1,j + 1), there are two paths, (i,j ) → (i + 1,j ) → (i + 1,j +
1) and (i,j ) → (i,j + 1) → (i + 1,j + 1), for the chaser to
catch the target. The target selects (i + 1,j ) or (i,j + 1) with
the probability 1/2. If the selected site is already occupied
by another chaser, the chaser does not move and stays in the
same site. If the selected cite is occupied by a target, the
chaser moves to the site, and the target is removed from the
system. When the chosen particle is a target, the target looks
for the nearest chaser and escapes from it. The rule for targets
to escape from chasers is similar to that for chasers to chase
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FIG. 1. (Color online) Dependence of lifetimes (a) T and (b) τ

on the number of chasers Nc. Black circles and red triangles show
the dependence without fast chasers and that with four fast chasers,
respectively. The simulation is carried out with the system size 160 ×
120, and the data are averaged over 1000 individual runs.

targets. A target tries to escape from the nearest chaser by
moving in the opposite direction. If there are two or more
nearest chasers, the target selects one of them and escapes
from the chaser. Note that the movement rules we used in this
study correspond to asynchronous updating, which is different
from the asynchronous updating in Ref. [8].

In our simulation, we add some fast chasers, which can
move M sites in a trial. When we select an active chaser in a
trial, it can move to M sites in the direction to decrease the
distance between the nearest neighboring target. If it collides
with another chaser or catches the nearest neighboring target
before moving M sites, the chaser stops moving there. In our
simulation, we set M = 2. Hereafter, we refer to the numbers
of fast chasers, slow chasers (normal chasers), and the total
number as Nc,fast, Nc,slow, and Nc, respectively.

III. RESULTS OF SIMULATION

Figure 1 shows the dependence of lifetimes T and τ on
the total number of chasers Nc. The system size is Lx × Ly =
160 × 120. The initial number of targets is 20. The lifetimes T

and τ are averaged on 1000 individual runs. The dependence
of the lifetimes on Nc without fast chasers is shown by black
circles in Fig. 1. Since we neglect fast chasers, Nc = Nc,slow.
The relation between T and Nc is expressed as N−α

c .
When there are a few chasers, the exponent α = 1.5. which

is smaller than that in the original model [8]. The difference
may be caused by differences in the way to move chasers
and targets between our model and the model in a previous
study [8]: The positions of targets and chasers are updated
asynchronously in our model but simultaneously in Ref. [8].
With sufficiently many chasers, the difference of α from the
previous model vanishes, and the exponent becomes α = 0.75.
The dependence of T on Nc with some fast chasers is expressed
by red triangles. The number of the fast chasers Nc,fast = 4. By
adding normal chasers and keeping the number of fast chasers
constant (NN,fast = 4), we increase Nc. In this region, the
exponent, α = 0.5, is much smaller than without fast chasers.
With sufficiently many chasers, we observe α = 0.75, which
agrees with the result in Ref. [8]. The existence of fast chasers
changes the dependence of T in the region with small Nc,
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FIG. 2. Dependence of lifetimes T and τ on NT. Nc = 100 and
the number of fast chasers, Nc,fast = 0. Circles and squares show the
change of T and τ , respectively. The system size and the number of
runs for averaging data are the same as those in Fig. 1

where the capture of targets may be completely dominated
by the fast chasers. However, with a large number of slow
chasers, the capture by collective action of slow chasers is more
effective than that of a few fast chasers. Thus, the difference
from the original model vanishes.

From Fig. 1, we found that the difference in updating
already changes the dependence of T on Nc in our model
in comparison to Ref. [8] even without fast chasers. Thus, we
first neglect the fast chasers and investigate the dependence of
τ and T . Then we study how the behaviors change owing to the
presence of a few fast chasers. Figure 2 shows the dependence
of the lifetimes T and τ on the initial number of targets
NT(0), in which fast chasers are absent. The dependence of T

and τ is expressed by circles and triangles, respectively. The
numbers of chasers are Nc,fast = 0 and Nc,slow = Nc = 100.
The averaged lifetime τ is defined as

τ =
∑

t

t
�NT(t)

NT(0)
, (1)

where �NT(t) represents the decrease of the number of targets
at time t . In the region with a few NT(0), both T and τ increase
gradually with increasing NT(0). Then the increase of the
lifetimes accelerates. When NT(0) is much larger than Nc,
the increase of the lifetimes T and τ becomes gradual again.
Figure 3 shows the dependence of τ on NT (0) with various
values of Nc, in which the fast chasers are absent: Nc,fast = 0
and Nc,slow = Nc. In Fig. 3(a), the dependence with 50, 100,

and 200 chasers is shown. In each case, similarly to the result in
Fig. 1, τ monotonically increases with increasing NT(0). When
Nc is much smaller than that in Fig. 3(a), the dependence of
τ on NT(0) changes. In Fig. 3(b), we show the dependence
of τ with 5 and 10 chasers. In the region with small NT(0),
τ increases with increasing NT(0). However, with too many
targets, τ decreases with increasing NT(0), and a maximum
of an average lifetime, τmax, appears. NT,max(0), which is
NT(0) giving τmax(0), is about 1.1 × 104 with 10 chasers and
3.0 × 103 with 5 chasers, so that NT,max(0) becomes large with
increasing Nc.
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FIG. 3. Dependence of τ on the NT(0) (a) with 50 (circles), 100
(squares), and 200 (triangles) chasers, and (b) with 5 (circles) and 10
(squares) chasers, in which the fast chasers are absent. The system
size and the number of runs for averaging data are the same as those
in Fig. 1

Figure 3 shows that the behavior of τ for large Nc without
fast chasers in our model differs from that reported in Ref. [8].
Next, we add a few fast chasers and study how the existence
of fast chasers changes the dependence of T and τ on NT(0).
Figure 4 shows the dependence of the lifetimes T and τ on
targets; Nc = 100 with various values of Nc,fast. Without fast
chasers, the increase of the lifetimes slows down in the region
with many chasers. If fast chasers are added, the amplitude of
slowing down becomes small. In Fig. 4 we show the results
with 100 chasers. Though we did not show results, we also
carried out a simulation with Nc = Nc,fast = 5. In that case,
τmax, which appears in Fig. 3(b), does not appear, and τ keeps
increasing with increasing NT(0). Figure 5 shows the relation
between NT(0) and the number of targets caught by one fast
chaser, Nf . Except for in the region with sufficiently large
NT(0), Nf increases as Nf = βNT(0). The velocity of fast
chasers is twice as fast as that of normal chasers, so that the
number of sites which a fast chaser can search is 12 in a trial,
which is 3 times larger than the number that a slow chaser
can search. Thus, the expected value of β is about 3 × 10−2

because Nc = 100. However, we obtain β = 4.2 × 10−2, so
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FIG. 4. Dependence of τ and T on NT(0). Nc is kept at 100 with
various values of Nc,fast. Circles, squares, diamonds, and triangles
show the dependence with 0, 20, 50, and 100 fast chasers, respectively.
The system size and the number of runs for averaging data are the
same as those in Fig. 1.
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FIG. 5. Dependence of Nf on NT(0). Nc = 100 and Nc,fast = 10.
The system size and the number of runs for averaging data are the
same as those in Fig. 1.

that the fast chasers appear to catch more targets than our
expectation.

We also study the dependence of the cost required to catch
all targets on Nc. Figure 6 shows the dependence of the cost
on Nc. The definition of the the cost c is given by

c = T

4NT(0)

Nc∑

i=1

vi. (2)

We assumed that the cost per a chaser is proportional to its
moving range. In a trial, the number of sites which a chaser
can reach is 4 for a slow chaser and 12 for a fast chaser. Thus,
we use vi = 4 for a slow chaser and vi = 12 for a fast chaser.
In the simulation, NT(0) is 10 and the minimum number of
chasers is 2. We investigate the dependence of c on Nc without
fast chasers and with a single fast chaser. Circles show the
dependence without fast chasers. With increasing the number
of chasers, initially, c decreases. Then a minimum of c appears

100 101 102 103
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FIG. 6. Dependence of cost on the number of chasers. Circles and
squares show the result without chasers and with a single fast chaser,
respectively. The system size and the number of runs for averaging
data are the same as those in Fig. 1
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and the cost again increases, so that there is an optimal number
of chasers in order to catch targets. When one chaser is added in
the system, the dependence drastically changes: The minimum
of c vanishes and c increases monotonically.

IV. SUMMARY AND DISCUSSIONS

In this paper we studied group chase and escape with
some fast chasers. The lifetime T , at which all targets vanish,
decreases with increasing Nc as N−α

c . Without fast chasers,
α = 1.5 in the region with small Nc, and α = 0.75 in the region
with large Nc. The exponent α in the region with small Nc is
smaller than that in a previous study, which is probably caused
by the difference in the way chasers and targets are moved.
In the original model, all chasers are moved at same time.
Then the positions of all targets are updated simultaneously.
On the other hand, we select and move a particle. Thus,
the chasers in the original model enclose the targets more
easily than those in our model. When the density of chasers
is large, i.e., Nc is large, the targets meet chasers frequently.
The difference between our model and previous model is less
important, and we obtain α, which is the same as that in the
original model [8]. In previous studies [11–13], the difference
in the method of updating the system, synchronous updating
and asynchronous updating, affects the spatiotemporal pattern.
Since it is suggested that asynchronous updating is a good
approximation of real continuous time, the model used in the
report is better than that in the previous model [8].

When we added a few fast chasers, the exponent α with
small Nc became smaller than that without fast chasers, while
α with large Nc hardly changed. In our simulation, we added
normal chasers and did not add the fast chasers in order to
increase the number of chasers. With small Nc, chasers need
to move for a long distance in order to catch targets because
surrounding and catching targets is difficult. However, the

normal chasers do not move as fast as the fast chasers. Thus,
the effect of the increase of Nc on the decrease of the lifetime
T is small, and the exponent α in the region with a few
chasers becomes smaller than that without the fast chasers.
The dependence of the lifetimes τ and T on NT(0) was also
affected by fast chasers. When we added a few fast chasers, the
slowing down of the increase of lifetimes with large NT(0) did
not occur. In our simulation, the ability for fast chasers to catch
targets is about four times larger than that of normal chasers.
The existence of fast chasers is equivalent to the increase of Nc.
Thus, the slowing down of the increase of lifetimes probably
occurs if we carry out simulations with larger NT(0).

The fast chasers drastically changed the dependence of the
cost c. Without fast chasers, the maximum of c appeared, which
means that there is a suitable number of chasers to catch the
targets. However, if we added a few fast chasers, c increased
monotonically and the minimum of c did not appear. In our
simulation, to increase Nc, we added normal chasers. When Nc

is small, the added normal chasers did not work as well as the
fast chasers which were already present, so that the increase
of chasers did not cause the decrease of c and the minimum of
c vanished.

In previous studies and this paper, a two-dimensional lattice
was considered, and targets and chasers moved on the sites.
In that case the lattice probably gives a significant impact to
behaviors of targets and chasers. In previous papers [14–18],
collective motions of interacting entities were studied by using
particles moving off-lattice space. Thus, we intend to study the
problem of group chase and escape on an off-lattice space.
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