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We theoretically study the effect of evaporation and impingement of atoms on step wandering induced by the
drift of adatoms. With a Si�001� vicinal face in mind, the anisotropy in diffusion coefficient is assumed to
alternate on consecutive terraces. Without evaporation, steps wander in-phase with step-up drift and grooves
perpendicular to the steps appear. The form of the wandering steps is sinusoidal with the width increasing in
time as t1/2. Evaporation of adatoms suppresses the step wandering and introduces two surface diffusion
lengths. When they are longer than the step distance, the step width still increases in proportion to t1/2, but with
a smaller coefficient than that in the case without evaporation. When one of the surface diffusion lengths is
comparable or shorter than the step distance, the saturation of the step width occurs. Impingement of atoms, on
the other hand, changes the form of the wandering steps: their front becomes flat and wide and the grooves
become steep and narrow. The growth rate of the step width becomes small, but the step width increases with
the same exponent 1 /2.

DOI: 10.1103/PhysRevB.72.045401 PACS number�s�: 81.10.Aj, 05.70.Ln, 47.20.Hw, 68.35.Fx

I. INTRODUCTION

The Si�001� surface is reconstructed by the dimerization
of surface atoms. When a vicinal face is tilted in the �110�
direction, TA terraces, where the dimer rows are parallel to
the steps, and TB terraces, where the dimer rows are perpen-
dicular to the steps, appear alternately. Since the surface dif-
fusion along the dimer rows is faster than that perpendicular
to the dimer rows,1 the direction of the fast surface diffusion
changes on consecutive terraces.

Nielsen and co-workers2 observed steps on the vicinal
face heated by direct electric current. When the current is in
the step-down direction, step bunching occurs. When the cur-
rent is in the step-up direction, the step bunching occurs on a
region of small inclination. With increasing the inclination
�about 0.08–0.5°�, the step bunching is suppressed and in-
phase step wandering occurs. Straight grooves parallel to the
current appear on the vicinal face.

The step wandering is caused by the drift of adatoms in-
duced by the current. With taking account of the alternation
of the anisotropy of surface diffusion, we have theoretically
studied3 the step wandering induced by the drift. If the step-
step repulsion is weak, the step bunching occurs irrespective
of the drift direction. With a strong step repulsion, the step
bunching is suppressed and the in-phase step wandering oc-
curs with step-up drift. Since the step repulsion is strong for
the large inclination, our results has the same tendency with
the experiment.2

In the previous analysis,3 we neglected the evaporation
and impingement of atoms. However, the experiment2 was
carried out at a high temperature, and the evaporation may be
important. On the Si�001� vicinal face, the observation dur-
ing growth has not yet been attempted, but it is probably
possible as on a Si�111� vicinal face.4

In this paper, we study effect of the evaporation and the
impingement on the drift-induced step wandering. In Sec. II,

we introduce a step flow model. We study the effect of
evaporation in Sec. III and impingement in Sec. IV. We carry
out a linear stability analysis to find the condition for the step
wandering, and a Monte Carlo simulation to see the behavior
of the unstable steps. In Sec. V, we summarize the results
with a brief discussion.

II. MODEL

For the stability analysis we use a step flow model,3,5–14 in
which the step velocity is determined by the mass conserva-
tion at step positions. We assume that the steps are parallel to
x axis on average, and the slope is downward in the positive
y direction. The diffusion equation of the adatom density
c�r , t� is given by

�c�r,t�
�t

= − � · j�r,t� −
1

�
c�r,t� + Fim, �1�

where j�r , t� is the adatom current on the surface, � the life-
time of adatoms for evaporation and Fim is the impingement
rate of atoms from the vapor phase. The current is given by

j�r,t� = − �Dx
�c

�x
êx + Dy

�c

�y
êy� + Dy

Fc

kBT
êy , �2�

where êx and êy are the unit vectors in the x and y directions.
The first term in Eq. �2� represents the surface diffusion and
the second term represents the drift of adatoms. F is the force
to induce the drift. The diffusion coefficient D� perpendicu-
lar to the dimers, is larger than that D� parallel to the dimers.
The diffusion coefficients are �Dx ,Dy�= �D� ,D�� on TB ter-
races, and �Dx ,Dy�= �D� ,D�� on TA terraces �Fig. 1�.

In our previous study,14 the growth law of the step bunch-
ing for the model with infinite kinetic coefficient agrees with
the experiment.15 In the limit of fast kinetics, the adatom
density at the steps is in equilibrium with the steps
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c�� = ceq
0 	1 +

��̃�

kBT
+

�

kBT

�

�y

U�l+� + U�l−��� , �3�

where y=��x , t� is the step position, ceq
0 the equilibrium ada-

tom density for an isolated straight step, � the atomic area, �̃
the step stiffness and � the curvature of the step. U is the
step-step interaction potential. l+�−� is the terrace width of the
lower �upper� side terrace. We assume that the step interac-
tion is present only between neighboring steps and the form
of the interaction potential is U�l�=A / ln or U�l�=A ln l.16

By solving the diffusion equation �1� in the quasistatic
approximation ��c /�t=0� with the boundary condition �3�,
the adatom density is determined. The step velocity is

V = �n̂ · �j��+ − j��−� , �4�

where j is given by Eq. �2�.

III. EFFECT OF EVAPORATION

A. Linear stability analysis

Without evaporation, in-phase step wandering occurs with
step-up drift.14 In this section, we study effect of the evapo-
ration on the step wandering without impingement of atoms.
On the vicinal face with the step distance l, the velocities VA
of step SA and VB of SB are given by

VA = �D�ceq
0 �−

f

2
− ��

cosh ��l − e−fl/2

sinh ��l
�

− �D�ceq
0 �−

f

2
+ ��

cosh ��l − e−fl/2

sinh ��l
� , �5�

VB = �D�ceq
0 �−

f

2
− ��

cosh ��l − e−fl/2

sinh ��l
�

− �D�ceq
0 �−

f

2
+ ��

cosh ��l − e−fl/2

sinh ��l
� . �6�

In Eqs. �5� and �6�, the parameters, f , �� and �� are defined
as

f =
F

kBT
, �7�

�� =
1

2
f2 +

4

x�
2 , �8�

�� =
1

2
f2 +

4

x�
2 , �9�

where x�=D�� is the surface diffusion length along the
dimer rows, and x� =D�� is that perpendicular to the dimer
rows. When the terrace width is small such that ��l�1 and
��l�1, the step velocities VA and VB are approximated as

VA = �ceq
0 	−

l

�
− �D� − D��f� , �10�

VB = �ceq
0 	−

l

�
+ �D� − D��f� . �11�

In Eqs. �10� and �11�, the first terms proportional to the
evaporation rate are always negative: the steps recede by the
evaporation. Since the contribution of the evaporation to VA
and VB are the same, the evaporation does not cause step
pairing. The second terms proportional to the drift velocity
vanish if the surface diffusion is isotropic. If the drift is in
the step-down direction �f �0�, the second term in Eq. �10�
is negative and that in Eq. �11� is positive. SA steps recede
faster than SB, and step pairs separated by large TB terraces
appear. When the drift direction is the opposite �f 	0�, step
pairs separated by TA terraces appear.

If step distances alternate lA and lB consecutively, the
equilibrium adatom density cA of SA is different from cB of
SB due to the repulsive interaction. From the condition that
the steps move at the same velocity, VA=VB, the difference
of the equilibrium adatom density 
c=cB−cA is determined
as


c

2ceq
0 =

D�

v
���

sinh flB/2

sinh ��lB
+

f

2
� −

D�

v
���

sinh flA/2

sinh ��lA
+

f

2
� ,

�12�

where lA is the width of TA, lB that of TB, and v is defined as

v =
D���

sinh ��lB
�cosh flB + cosh ��lB�

+
D���

sinh ��lA
�cosh flA + cosh ��lA� . �13�

When the difference of the terrace width �
l= lB− lA� is
small, 
c is approximately written as 
c=
c0+
c1 with


c0 =
�D� − D��
�D� + D��

Flceq
0

kBT
, �14�


c1 = −
l2
c0

6�D� + D���
, �15�

where we have assumed �fx��2�1, �fx��2�1, �fl�2�1 and

l / l�1.


c0 is the difference of the equilibrium adatom density
without evaporation.3 
c1 is due to the evaporation and sup-
presses the effect of 
c0. From the step-step repulsion, 
c is
expressed as

FIG. 1. A Si�001� vicinal face tilted in �110� direction. Short
lines on the terraces represent dimers.
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c =
2�ceq

0

kBT

U��lB� − U��lA�� � g
l , �16�

where g is given by

g = −
2�ceq

0

kBT

d2U

dl2 = −
2n�n + 1�A�ceq

0

kBTln+2 . �17�

From Eqs. �14�–�16�, the difference of the terrace width is
determined by


l

l
= −

Fceq
0 �D� − D��

g�D� + D��kBT
	1 −

l2

6�D� + D���
� . �18�

If the step distance is shorter than the surface diffusion
length, l�x�, the second term is neglected.

We give small fluctuations, �Aeiqx to straight SA steps and
�Beiqx to straight SB steps. Evolution of the fluctuations is
expressed as

d�A

dt
= FA

�D� + FA
��̃� + FA

�U�, �19�

d�B

dt
= FB

�D� + FB
��̃� + FB

�U�, �20�

where F’s are given in Appendix A. In Eqs. �19� and �20�,
the second terms proportional to the step stiffness suppress
the step wandering, and the third terms proportional to g
suppress step bunching �the fluctuation of the step distance�.
The first terms may destabilize the straight steps.

If the step distance is small so that the repulsion is strong,
Eqs. �19� and �20� are expanded up to the first order correc-
tion in l, and the evolution equations are approximately
given by

d�A

dt
= −

d�B

dt
=

�
c0

l2 �D� − D����A − �B�

−
��� + 2g�

l
�D� + D����A − �B� , �21�

where �=��̃ /kBT. The effect of evaporation does not ap-
pear in this order. The amplitude of the fluctuations increases
as �A,�B�e�t with the rate �, which is given by

�out = 2�

c0

l2 �D� − D�� − 2�
�� + 2g�

l
�D� + D�� , �22�

�in = 0. �23�

The subscripts indicate out-of-phase fluctuation, �A=−�B,
and in-phase fluctuation, �A=�B. From Eq. �16�, the first
term of �out is smaller than the second term, and the out-of-
phase fluctuation decays irrespective of the drift direction.
The amplification rate �in vanishes and the steps are mar-
ginal to the in-phase fluctuation. If we expand Eqs. �19� and
�20� up to the third order in l , �in is given by

�in = −
��D� − D��
c

2
q2 −

��D� + D��l
2

�q4, �24�

where we have assumed �f /
c�1. With step-down drift,
the first term is negative and the step wandering does not
occur. With step-up drift, the first term is positive and the
steps are unstable to a long wavelength fluctuation. The
wavelength of the most unstable mode, max is given by

max = 2�2��D� + D��l
�D� − D��
c

, �25�

and the amplification rate of the most unstable mode, �max is

�max =

�D� − D��
c�2

8ceq
0 �D� + D��l�

. �26�

Equation �24� has the same form as the amplification rate in
the conserved system with the replacement of 
c0 by 
c.
The effect of evaporation appears only in 
c. The wave-
length max increases and the amplification rate �max de-
creases with increasing evaporation. Thus the evaporation
stabilizes the vicinal face.

B. Monte Carlo simulation

From the linear analysis, we found the condition for the
step wandering. To study the behavior of unstable steps, we
carry out Monte Carlo simulation.3,10,13,17 We use a square
lattice model with the lattice constant a=1. Boundary condi-
tions are periodic in the x direction and helical in the y di-
rection. We forbid two-dimensional nucleation and use solid-
on-solid steps: step positions are single-valued functions of
x. The time increment for a diffusion trial is set 
t=1/4Na
�Na is the number of adatoms� so that the larger diffusion
coefficient is D�=1. Long-range step repulsion is taken into
account in the y direction. In the x direction, only the short
range repulsion is taken account by forbidding overlap of
steps.

During the time interval 
t, an adatom evaporates with
the probability 
t /�. On TA terraces, an adatom at the site
�i , j� moves to �i±1, j� with the probability 1 /4 and to
�i , j±1� with the probability pd�1±Fa /2kBT� /4, where F is
the external force to induce the drift and pd=D� /D���1�
represents the strength of the anisotropy of the diffusion. On
TB terraces, an adatom at the site �i , j� moves to �i±1, j� with
the probability pd /4 and to �i , j±1� with the probability
�1±Fa /2kBT� /4. In the simulation we use the permeable
steps:13 adatoms diffuse over steps to the neighboring ter-
races without an extra potential barrier. The diffusion be-
tween neighboring terraces is assumed to occur with the tran-
sition probability of the upper side terrace.

When an adatom comes in contact with a step from the
lower terrace, solidification occurs with the probability

ps = 	1 + exp�
Es + 
U − �

kBT
��−1

. �27�

When there is no adatom on top of a solid atom at the step
position, melting of the solid atom occurs with the probabil-
ity
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pm = 	1 + exp�
Es + 
U + �

kBT
��−1

. �28�


Es is the increment of the step energy and � the energy
gain by solidification. 
Es is given by 
Es=�� �the incre-
ment of the step perimeter�, where the half of the nearest-

neighbor bond energy, �, is related to the step stiffness �̃ as

2�̃

kBT
= sinh2 �

2KBT
. �29�

The equilibrium adatom density of an isolated step, ceq
0 sat-

isfies the detailed balance ceq
0 ps= �1−ceq

0 �pm at kink sites.
Since the perimeter length does not change by solidification
or by melting at the kink sites, the change of the step energy
vanishes, and ceq

0 is given by17

ceq
0 =

1

1 + e�/kBT . �30�


U is the change of step-step interaction potential. On a
Si�001� vicinal face, the repulsive interaction potential be-
tween straight steps is logarithm of the terrace width.16 For
the long-range interaction potential between the nth and the
�n+1�th steps, we use

U = �
xi

A ln�yn�xi� − yn+1�xi�� , �31�

where yn�xi� is the y coordinate of the nth step at x=xi.
We first carry out the simulation without evaporation. Fig-

ure 2 shows the motion of steps without evaporation. Solid
lines represent SB steps and dotted lines represent SA steps.

At the beginning, all the steps are straight with the step dis-
tance l=8, and only a few adatoms are present on the ter-
races. The system size is 256�256 and the number of steps
is 32. The parameters are so chosen as the equilibrium ada-

tom density is ceq
0 =0.18, the step stiffness is �̃ /kBT=0.13.

The diffusion coefficients are D� =0.5 and D�=1.0. The ki-
netic coefficient is so large that the local equilibrium condi-
tion at the steps is valid. The strength of repulsive potential is
A /kBT=4.6 and strong enough to suppress step bunching.
When the drift is in the step-down direction with f =0.05, the
step wandering does not occur and the steps are straight 
Fig.
2�a��. The step wandering occurs when the drift is in the
step-up direction with f =−0.05 
Fig. 2�b��. The results agree
with the linear analysis.3,8,10–12 Because of the in-phase step
wandering, hills and valleys parallel to the y axis appear
periodically. The formation of straight grooves is explained
by the nonlinear analysis.3,8,11 The form of wandering steps
is sinusoidal and symmetric in the y direction.

Figure 3 shows the wandering of steps with evaporation.
In Fig. 3�a�, the lifetime of adatoms is �=512. The shorter
surface diffusion length is x� =16, which is twice as long as
the initial step distance. The effect of the evaporation is
small: the width and the form of grooves are similar to that
of Fig. 2�b�. In Fig. 3�b�, the lifetime is �=256 and the sur-
face diffusion length x� =82 is longer than the step distance.
The width of grooves becomes wider than that without
evaporation, but the form of grooves is similar to Fig. 3�a�.
In Fig. 3�c�, the lifetime is �=128 and x� =8 is as long as the
step distance. The wavelength of the grooves becomes longer
and the growth of the amplitude is slow. These features
qualitatively agree with the linear analysis.

When the surface diffusion lengths are longer than the
step distance, the form of the wandering steps is sinusoidal
and symmetric in the y direction as in the conserved system.
The form becomes asymmetric when the surface diffusion
length becomes comparable or shorter than the step distance.
The hills are narrower than the valleys. The asymmetry may
be caused by the same nonlinear effect as in the KPZ equa-
tion. The evaporation also changes the growth law of step
width, which is defined as

w�t� =
1

N
�
n=1

N 1

L�
i=1

L 	yn�i� −
1

L
�

i

L

yn�i��2

. �32�

N is the number of steps and L the system size in the x
direction. Figure 4 shows the time evolution of the amplitude
w for several evaporation rates. The results are obtained by

FIG. 2. Snapshots of the step wandering without evaporation:
�a� with step-down drift f =0.05 at t=5.0�105 and �b� with step-up
drift f =−0.05 at t=5.0�105.

FIG. 3. Snapshots of the step
wandering during sublimation
with step-up drift f =−0.05 at t
�5.0�105. The lifetime of ada-
toms is �a� �=512, �b� �=256, and
�c� �=128.
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averaging over 10 runs of the size 512�128 with 16 steps.
In the conserved system, the step width increases rapidly in
an early stage. In a late stage the width increases as w� t�

with ��1/2.3,8,11,12 When the evaporation rate is small, the
rapid growth of the step width in an early stage is similar to
that in the conserved system. When the evaporation rate is so
large and the short diffusion length is as long as or shorter
than the step distance, the step width is saturated in a late
stage.

IV. EFFECT OF IMPINGEMENT

A. Linear stability analysis

In this section, we study the effect of the impingement of
adatoms on the step wandering. To focus on the impingement
of adatoms, we neglect the evaporation. When the steps are
straight and equidistant with a separation l, the velocities of
steps are given by

VA = �
Fiml + �D� − D��fceq
0 � , �33�

VB = �
Fiml − �D� − D��fceq
0 � . �34�

Since the contribution of the impingement to SA is the same
as to SB, the impingement does not cause the step pairing.
The step pairing is induced by the second terms in Eqs. �33�
and �34�, which is proportional to the product of the differ-
ence of the diffusion coefficients and the drift of adatoms.
The step distance in a pair is determined by the condition
VA=VB. When steps are paired with alternating distances lA
and lB, the condition is

�D�tanh
flA

2
− D�tanh

flB

2
� f
c

= Fim�lBtanh
flA

2
− lAtanh

flB

2
�

+ 2fceq
0 �D� − D��tanh

flA

2
tanh

flB

2
. �35�

If the step distance is small flA, flB�1, the first term of the
right-hand side of Eq. �35� is of the order of Fimf3l3
l and
the second term is �ceq

0 Df3l2. As long as the impingement is
weak Fim�ceq

0 D / l
l, the effect on 
c is negligible.

To study the step wandering on the vicinal face, we give
small fluctuations �A�t�eiqx to SA and �B�t�eiqx to SB. The
linearized evolution equations are given by

d�A

dt
= GA

�D� + GA
�Fim� + GA

��̃� + GA
�U�, �36�

d�B

dt
= GB

�D� + GB
�Fim� + GB

��̃� + GB
�U�, �37�

where G’s are given in Appendix B. In Eqs. �36� and �37�,
the first terms are proportional to 
c. The forms of the terms
are the same as those in the conserved system3 except that

c depends on the impingement rate, and the terms cause the
step wandering. The second terms are proportional to the
impingement rate. The third terms are proportional to the
step stiffness and the forth terms come from the repulsive
interaction potential.

GA,B
�Fim� are proportional to the impingement rate and

smaller than GA,B
�D� when the impingement rate is small. The

second terms in Eqs. �36� and �37� are negligible and the
form of the evolution equation is the same as that without
evaporation.3 Then, the motion of the steps is probably simi-
lar to that in the conserved system: grooves are symmetric in
the y direction. With increasing the impingement rate, the
second terms become more important than the first terms. To
see the effect of the impingement on the step wandering, we
analyze the step motion only with the second terms. When
the step distance is small enough ��ql , ��ql�1, the linear-
ized evolution equations are given by

d�A

dt
= −

��D�
2 − D�

2�Fim

6D�D�
��A −

1

2
�B�q2, �38�

d�B

dt
=

��D�
2 − D�

2�Fim

6D�D�
��B −

1

2
�A�q2. �39�

The linear amplification rates are

�± = ±
3�2�D�

2 − D�
2�Fim

12D�D�

q2. �40�

The relation between amplitudes, �A and �B for the decaying
mode �− is �A= �2+3��B. The relation for the growing
mode �+ is �A= �2−3��B, and the amplitude of SA is
smaller than that of SB. Without impingement, the relation of
the two amplitudes is �A=�B, but the two amplitudes are
forced to be different from each other by the impingement.
Then, the behaviors of the step wandering, e.g., the wave-
length of the wandering, the amplification rate, may change
with increasing the impingement rate.

Figure 5 shows snapshots of the late stage of the step
wandering. Without the impingement 
Fig. 5�a��, the form of
wandering step is sinusoidal and symmetric in the
y-direction. The valleys and the hills have the same width.
With the impingement 
Figs. 5�b� and 5�c��, the width of the
hills is wider than that of the valleys, and the form is asym-
metric in the y direction: the hill is flat and the width of the
hills is larger than that of the valleys. When the impingement
is present, the coarsening of the width of grooves occurs with

FIG. 4. Time evolution of the step width with several evapora-
tion rate.
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increasing the amplitude of step fluctuation, which is the
same as that in the conserved system.

The change of the wandering pattern affects the growth
rate of step width. Figure 6 shows the time evolution of step
width with various impingement rates. When the impinge-
ment rate is small, the growth rate is hardly changed by the
impingement. When the impingement rate is large, the

growth of step width becomes slow. However, irrespective of
the impingement rate, the step width increases as t1/2.

V. SUMMARY AND DISCUSSION

In this paper, we studied the effect of evaporation and
impingement on the drift-induced step wandering with aniso-
tropic surface diffusion. With evaporation, diffusional effect
extends only up to two finite surface diffusion lengths. When
the surface diffusion lengths are longer than the uniform step
distance, the step motion hardly changes from the behavior
observed without evaporation. The form of wandering step is
sinusoidal and step width increases as t1/2. When the evapo-
ration is so strong that at least one of the surface diffusion
lengths is comparable or shorter than the step distance, the
form of wandering step changes: the narrow hill and the
wide valley appear. In this case, the step width saturates ul-
timately.

If the impingement is present, the form of wandering
steps changes with the impingement rate. When the rate is
small, the wandering step is sinusoidal as that without evapo-
ration, but with increasing the rate, the hills become wide
and flat. Albeit with this form variation, the step width in-
creases as t1/2 irrespective of the impingement rate.

FIG. 5. Snapshots of the step
wandering with step-up drift dur-
ing growth: �a� Fim=0.0 at t=9.9
�106, �b� Fim=0.003 at t=9.5
�106, and �c� Fim=0.005 at t
=9.2�106.

FIG. 6. Time evolution of the step width during growth: �

without impingement, � with Fim=0.001, � with Fim=0.003, and
� with Fim=0.005.
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On the Si�001� vicinal face, the step wandering was ob-
served in sublimation.2 On the vicinal face the surface diffu-
sion length is a few �m, which is much longer than the step
distance, and the effect of the evaporation is expected to be
weak. The fact that the form of grooves observed in the
experiment2 is sinusoidal supports this expectation, and we
conclude that the effect the evaporation is negligible in the
experiment2 in spite of the high temperatures �990 °C and
1040 °C�. As for the time evolution of the grooves, it is not
reported in Ref. 2. If the depth of grooves, which is propor-
tional to the step width, is measured, it will increase with
time as �t1/2.

To observe the impingement effect on the step wandering,
a growth experiment is necessary. It has not been carried out
so far, but seems feasible on a Si�001� surface as well as on
the Si�111� vicinal face.4 If a similar experiment is carried
out on the Si�001� vicinal face, it corresponds to our simu-
lation for the growing vicinal face without evaporation. We
expect to observe the surface with narrow grooves and wide
hills �Fig. 5�, and that the depth of the grooves increases as
t1/2 �Fig. 6�. The absolute amplitude of the growth rate of the
depth decreases with increasing the impingement rate, but
the exponent does not change. In addition to the asymmetric
step pattern, distinct feature of the wandering during growth
is that the wavelength increases as the impingement rate
�Fig. 5�. This is in contrast to other wandering instabilities
where the characteristic wavelength decreases as the im-
pingement rate increases.5,8,17–19 Thus the experiment on a
growing Si�001� vicinal face will be a good test to judge if
the proposed mechanism for the step instabilities is active.
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APPENDIX A: LINEAR EVOLUTION EQUATION
WITH EVAPORATION

In Eqs. �19� and �20�, the terms FA
�D� and FB

�D�, which
cause the step wandering, are given by

FA
�D� = − �D����q

cosh ��qlB

sinh ��qlB
+

f

2
�

�	���

cosh ��lB

sinh ��lB
−

f

2
�cA −

��e−flB/2

sinh ��lB
cB��A

− �D�

��qe−flB/2

sinh ��qlB
	−

��eflB/2

sinh ��lB
cA

+ ���

cosh ��lB

sinh ��lB
+

f

2
�cB��B

− �D����q
cosh ��qlA

sinh ��qlA
−

f

2
�

�	− ���

cosh ��lA

sinh ��lA
+

f

2
�cA +

��eflA/2

sinh ��lA
cB��A

− �D�

��qeflA/2

sinh ��qlA
	 ��e−flA/2

sinh ��lA
cA

− ���

cosh ��lA

sinh ��lA
−

f

2
�cB��B, �A1�

FB
�D� = − �D����q

cosh ��qlA

sinh ��qlA
+

f

2
�	���

cosh ��lA

sinh ��lA
−

f

2
�cB

−
��e−flA/2

sinh ��lA
cA��B − �D�

��qe−flA/2

sinh ��qlA
	−

��eflA/2

sinh ��lA
cB

+ ���

cosh ��lA

sinh ��lA
+

f

2
�cA��A − �D����q

cosh ��qlB

sinh ��qlB

−
f

2
�	− ���

cosh ��lB

sinh ��lB
+

f

2
�cB +

��eflB/2

sinh ��lB
cA��B

− �D�

��qeflB/2

sinh ��qlB
	 ��e−flB/2

sinh ��lB
cB − ���

cosh ��lB

sinh ��lB

−
f

2
�cA��A, �A2�

where ��q and ��q are defined as

��q =
1

2
f2 + 4� 1

x�
2 +

D�

D�

q2� , �A3�

��q =
1

2
f2 + 4� 1

x�
2 +

D�

D�

q2� . �A4�

The terms FA
��̃� and FB

��̃�, which originate from the step
stiffness and suppress the step wandering, are given by

FA
��̃� = − D�

�2�̃

kBT
q2	���q

cosh ��qlB

sinh ��qlB
+

f

2
��A

−
��qe−flB/2

sinh ��qlB
�B� − D�

�2�̃

kBT
q2	���q

cosh ��qlA

sinh ��qlA

−
f

2
��A −

��qeflA/2

sinh ��qlA
�B� , �A5�

FB
��̃� = − D�

�2�̃

kBT
q2	���q

�Bcosh ��qlA

sinh ��qlA
+

f

2
��B

−
��qe−flA/2

sinh ��qlA
�A� − D�

�2�̃

kBT
q2	���q

cosh ��qlB

sinh ��qlB

−
f

2
��B −

��qeflB/2

sinh ��qlB
�A� . �A6�

The terms FA
�U� and FB

�U�, which originate from the step-step
repulsion, are given by
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FA
�U� = − �D�g	���q

cosh ��qlB

sinh ��qlB
+

f

2
� +

��qe−flB/2

sinh ��qlB
�

���A − �B� − �D�g	���q
cosh ��qlA

sinh ��qlA
−

f

2
�

+
��qeflA/2

sinh ��qlA
���A − �B� , �A7�

FB
�U� = − �D�g	���q

cosh ��qlA

sinh ��qlA
+

f

2
� −

��qe−flA/2

sinh ��qlA
���B − �A�

− �D�g	���q
cosh ��qlB

sinh ��qlB
−

f

2
� −

��qeflB/2

sinh ��qlB
�

���B − �A� . �A8�

APPENDIX B: LINEAR EVOLUTION EQUATION
WITH IMPINGEMENT

In Eqs. �36� and �37�, the first terms, GA
�D� and GB

�D� are
given by

GA
�D� =

�D�f
c

eflB − 1
	��q

cosh �qlB

sinh �qlB
+

f

2
��A −

�qe�qflB/2

sinh �qlB
�B�

+
�D�f
c

1 − e−flB
	�− �q

cosh �qlA

sinh �qlA
+

f

2
��A −

�qe−flA/2

sinh �qlA
�B� ,

�B1�

GB
�D� =

�D�f
c

1 − eflA
	��q

cosh �qlA

sinh �qlA
+

f

2
��B −

e�qflA/2

sinh �qlA
�A�

+
�D�f
c

e−flB − 1
	�− �q

cosh �qlB

sinh �qlB
+

f

2
��B

−
�qe−flB/2

sinh �qlB
�A� , �B2�

where �q and �q are defined as

�q =
1

2
f2 +

4D�

D�

q2, �B3�

�q =
1

2
f2 +

4D�

D�

q2. �B4�

The second terms, GA
�Fim� and GB

�Fim� are given by

GA
�Fim� =

�2Fim

f
	��q

cosh �qlB

sinh �qlB
+

f

2
��1 −

flB

eflB − 1
��A

−
�qe−flB/2

sinh �qlB
�1 −

flBeflB

eflB − 1
��B�

−
�2Fim

f
	��q

cosh �qlA

sinh �qlA
+

f

2
��1 −

flAeflA

eflA − 1
��A

−
�qeflA/2

sinh �qlA
�1 −

flA

eflA − 1
��B� , �B5�

GB
�im� =

�2Fim

f
	��q

cosh �qlA

sinh �qlA
+

f

2
��1 −

flA

eflA − 1
��B

−
�qe−flA/2

sinh �qlA
�1 −

flAeflA

eflA − 1
��A�

−
�2Fim

f
	��q

cosh �qlB

sinh �qlB
+

f

2
��1 −

flBeflB

eflB − 1
��B

−
�qe−flB/2

sinh �qlB
�1 −

flB

eflB − 1
��A� . �B6�

The terms GA
��̃� and GB

��̃�, which are derived from the step
stiffness and suppress the step wandering, are given by

GA
��̃� = − D�

�2�̃

kBT
q2	��q

cosh �qlB

sinh �qlB
+

f

2
��A

−
�qe−flB/2

sinh �qlB
�B� − D�

�2�̃

kBT
q2	��q

cosh �qlA

sinh �qlA
−

f

2
��A

−
�qeflA/2

sinh �qlA
�B� , �B7�

GB
��̃� = − D�

�2�̃

kBT
q2	��q

�Bcosh �qlA

sinh �qlA
+

f

2
��B

−
�qe−flA/2

sinh �qlA
�A� − D�

�2�̃

kBT
q2	��q

cosh �qlB

sinh �qlB

−
f

2
��B −

�qeflB/2

sinh �qlB
�A� . �B8�

The terms GA
�U� and GA

�U�, which are derived from the step-
step repulsive interaction potential, are given by
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GA
�U� = − �D�g	��q

cosh �qlB

sinh �qlB
+

f

2
� −

�qe−flB/2

sinh �qlB
���A

− �B� − �D�g	��q
cosh �qlA

sinh �qlA
−

f

2
� −

�qeflA/2

sinh �qlA
�B�

���A − �B� , �B9�

GB
�U� = − �D�g	��q

�Bcosh �qlA

sinh �qlA
+

f

2
� −

�qe−flA/2

sinh �qlA
���B

− �A� − �D�g	��q
cosh �qlB

sinh �qlB
−

f

2
� −

�qeflB/2

sinh �qlB
�

���B − �A� . �B10�
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