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We investigate the confining properties of the QCD vacuum with Nf � 2 flavors of dynamical quarks,
and compare the results with the properties of the quenched theory. We use nonperturbatively O�a�
improved Wilson fermions to keep cutoff effects small. We focus on color magnetic monopoles. Among
the quantities we study are the monopole density and the monopole screening length, the static potential
and the profile of the color electric flux tube. We furthermore derive the low-energy effective monopole
action. Marked differences between the quenched and dynamical vacuum are found.
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I. INTRODUCTION

The dynamics of the QCD vacuum, and color confine-
ment, in particular, becomes more transparent and ame-
nable to quantitative investigation in the maximally
Abelian gauge (MAG) [1,2]. In this gauge the relevant
degrees of freedom are color electric charges, color mag-
netic monopoles, ‘‘photons’’ and ‘‘gluons’’ [3]. The latter
appear to become massive [4,5] due to a yet unresolved
mechanism, resulting in an Abelian effective theory at
large distances. There is evidence that the monopoles
condense in the low temperature phase of the theory
[2,6], causing a dual Meissner effect which constricts
the color electric fields into flux tubes, in accord with
the dual superconductor picture of confinement.

The dynamics of monopoles has been studied in detail
in quenched lattice simulations. It turns out that in the
MAG the string tension is accounted for almost entirely
by the monopole part of the Abelian projected gauge field
[7,8], and that the low-energy effective monopole action is
able to reproduce both the string tension and the low-
lying glueball masses [9]. Furthermore, many of the
nonperturbative features of the vacuum, such as the to-
pological charge density [10–12] and spontaneous chiral
symmetry breaking [13], can be traced back to monopole
excitations.

Very little is known about the dynamics of monopoles
in the full theory. So far the investigations have concen-
trated mainly on the static potential. While the effect of
sea quarks is clearly visible at short distances, even for
relatively heavy quark masses [14–16], no significant
04=70(7)=074511(15)$22.50 70 0745
changes have been observed in the long-range behavior
of the potential and the string tension. In contrast, the
critical temperature of the chiral phase transition was
found to depend noticeably on the mass of the dynamical
quarks [17–19], which indicates that sea quarks have a
visible effect on the nonperturbative properties of the
vacuum as well.

It will be interesting now to see how the microscopic
properties of the vacuum react to the introduction of
dynamical color electric charges. In this paper we shall
study the effect of sea quarks on the dynamics of mono-
poles and the confining potential, and on the effective
monopole action. The paper is organized as follows. In
Sec. II we present the details of our simulations, as well as
the gauge fixing procedure and Abelian projection. In
Sec. III we discuss the gross properties of the vacuum,
such as the monopole density and the magnetic screening
length, and the static potential. Furthermore, the problem
of Gribov copies is addressed. Section IV is devoted to a
detailed study of the static and dynamical properties of
the color electric flux tube. In Sec. V we derive the
effective monopole action, employing an extended
Swendsen method [20]. Finally, in Sec. VI we conclude.
Preliminary results of this work have been reported in
Ref. [21].
II. SIMULATION DETAILS

Our studies are based on gauge field configurations
with Nf � 2 flavors of dynamical quarks generated by
11-1  2004 The American Physical Society
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the QCDSF-UKQCD collaboration, using the Wilson
gauge field action and nonperturbatively O�a� improved
Wilson fermions [22]:

SF � S�0�F �
i

2
�gcSWa5

X
s

� �s����F���s� �s�; (1)

where S�0�F is the ordinary Wilson fermion action. Our data
sample and run parameters are listed in Table I. We will
compare the results with the outcome of quenched simu-
lations on lattices of similar size and lattice spacing. The
parameters of our quenched runs are also given in Table I.

We fix the MAG [25] by maximizing the functional

F�U� �
1

12V

X
s;�

X3
i�1

jUii�s;��j
2 (2)

with respect to local gauge transformations g of the
lattice gauge field,

U�s; �� ! Ug�s; �� � g�s�yU�s;��g�s
 �̂�: (3)

To do so, we use a simulated annealing (SA) algorithm
[26], in which the gauge transformed link variables Ug

are thermalized according to the probability distribution

p�Ug� � expfF�Ug�=Tg; (4)

where T is an auxiliary ‘‘temperature’’ which is gradually
decreased after every Monte Carlo sweep from T � 5 to
T � 0:04. To do so, we use 7500 sweeps on the 16332
lattice and 10 000 sweeps on the 24348 lattice. Every
sweep consists of a heat bath update of each of the three
SU(2) subgroups of the link matrices. After the final
temperature has been reached, several local gauge trans-
formations are applied until F�U� has attained its maxi-
TABLE I. Parameter values of our dynamical (Nf � 2) [22]
and quenched (Nf � 0) gauge field configurations. The im-
provement coefficient cSW was computed in [23]. The quenched
r0=a values have been taken from [24]. We have used r0 �
0:5 fm to set the scale.

Nf � 2
! Volume � cSW m�=m# r0=a a [fm]

5.20 16332 0.1355 2.0171 0.6014(73) 5.04(4) 0.0972(8)
5.25 24348 0.13575 1.9603 0.6012(73) 5.49(3) 0.0911(5)
5.29 24348 0.1355 1.9192 0.7029(49) 5.57(2) 0.0898(3)
5.29 16332 0.135 1.9192 0.7586(22) 5.24(4) 0.0954(7)
5.29 16332 0.134 1.9192 0.8311(26) 4.81(5) 0.104(1)

Nf � 0
! Volume r0=a a [fm]

5.8 24348 3.67 0.137(2)
6.0 16332 5.37 0.091(1)
6.0 24348 5.37 0.091(1)
6.2 24348 7.38 0.068(2)
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mum value within machine precision. It is known [8,27]
that the MAG is plagued by Gribov copies. This shows in
the occurrence of local maxima of F�U�. As a result,
gauge noninvariant observables will, in general, depend
on how close one gets to the global maximum. Although
the SA algorithm performs much better than the iterative
local maximization procedure used in SU(3) gauge the-
ory so far, it is not always able to find the global maxi-
mum. We shall estimate the systematic error due to this
problem in Sec. III.

The functional F�U� is invariant under local U�1� 
U�1� gauge transformations and global Weyl transforma-
tions. From the (gauge fixed) SU(3) link variables we
derive Abelian link variables [2,28]

u�s; �� � diag�u1�s; ��; u2�s; ��; u3�s;���;

ui�s; �� � exp�i�i�s; ���
(5)

with

�i�s;�� � arg�Uii�s; ��� �
1

3

X3
j�1

arg�Ujj�s;���jmod2�;

�i�s;�� 2
�
�

4

3
�;

4

3
�
�
: (6)

The Abelian link variables u�s; �� take values in U�1� 
U�1�. Under a general gauge transformation they trans-
form as

u�s;�� ! d�s�yu�s; ��d�s
 �̂�;

d�s� � diagfexp�i�1�s��; exp�i�2�s��;

exp��i��1�s� 
 �2�s���g:

(7)

The monopole currents reside on links of the dual
lattice and are defined by

ki�
�s; �� �

1

2�

X
�2@f�s
�̂;��

arg�ui���� � 0;�1;�2; (8)

where ui��� is the product of Abelian parallel transport-
ers around the plaquette �, and f�s
 �̂; �� is the ele-
mentary cube perpendicular to the �-direction with
origin s
 �̂, with � inheriting its orientation from
@f�s
 �̂; ��. (Note that we differ here from the original
and correct normalization of the monopole currents [3].)
The phases are chosen such thatX

i

arg�ui���� � 0 jarg�ui���� � arg�uj����j � 2�:

(9)

Because of that,

X3
i�1

ki�
�s; �� � 0: (10)
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FIG. 2. The same as in Fig. 1, but on the 16332 lattice at ! �
5:29, � � 0:135. The bin size is 60.
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III. GROSS PROPERTIES OF THE VACUUM AND
STATIC POTENTIAL

Let us first look at the global changes of the QCD
vacuum upon introducing dynamical color charges. Our
smallest quark masses are of the order of the strange
quark mass.

A. Monopole density

The monopole currents, which are conserved, form
clusters of closed loops on the dual lattice. In case of
the pure SU(2) gauge theory it was observed that these
clusters fall into two different classes [29,30]: ‘‘small’’
(ultraviolet) clusters which are of limited extent in lattice
units, and ‘‘large’’ (infrared) clusters which percolate
through the lattice and typically wrap around the bounda-
ries. If the size of the lattice is large enough, a gap opens
between the small and the large clusters, clearly separat-
ing the two. In general, each configuration accommodates
at least one large cluster [30]. In Fig. 1 we show the
histogram h�L� of monopole currents of length L on the
24348 lattice. We observe two distinct clusters. For com-
parison we show the same quantity on the 16332 lattice in
Fig. 2. Both lattices have a similar lattice spacing and
quark mass. On the smaller volume no gap is observed.
For the long-distance properties of the vacuum all that
matters is the existence of long, percolating monopole
loops. Whether they combine to one cluster or not is of
secondary importance.

On smaller lattices we call a monopole cluster infrared
if it forms the largest cluster or if the monopole loop
wraps around the boundary. It has been shown in the pure
SU(2) gauge theory [31] that the corresponding monopole
density does not depend on the lattice volume and scales
properly, while the total monopole density diverges in the
continuum limit.

We define the monopole density by

# �
1

12V

X
i

X
s;�

jki�
�s;��j: (11)

In Fig. 3 we show the total monopole density as well as
the density of monopoles belonging to the infrared clus-
ter. In the former case the sum over s; � extends over the
20000

200

2

0.02
0 5000 10000 15000

h(
L)

L

FIG. 1. The histogram of closed monopole loops of length L
in full QCD on the 24348 lattice at ! � 5:29, � � 0:1355. The
bin size is 200.
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full lattice, while in the latter case it extends over the
links of the infrared clusters only. The quenched result is
entered at m�=m# � 1. In the dynamical vacuum both
densities are about a factor of 2 larger than in the
quenched case. The total monopole density appears to
increase with decreasing quark mass, while the density of
infrared monopoles shows little variation, apart from the
initial jump.

How can one explain the increase of the monopole
density in the dynamical vacuum? It has been
known for some time that monopoles are induced by
(anti-)instantons [10,11], at least partially. The fermion
determinant introduces an attraction between instantons
and anti-instantons, and the force increases with decreas-
ing quark mass [32]. The effect is, very likely, that the
vacuum becomes solidly packed with instantons and anti-
instantons, while isolated instantons are suppressed. As a
result the density of (anti-)instantons increases, and con-
sequently the density of monopoles.

One should be aware that the total monopole density is
not universal but depends, in general, on the action
chosen, and that after integrating out the fermions the
effective gluonic action may be more noisy than the
Wilson gauge field action at the same lattice spacing.
This would mainly affect the total monopole density,
and to a lesser extent the infrared cluster.
0 0.2 0.4 0.6 0.8 1
(mπ/mρ)

2

0

0.5

1

1.5

ρ⋅
r 03

FIG. 3. The monopole density in full and quenched QCD. The
quenched results refer to ! � 6:0 and are listed at m�=m# � 1.
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B. Static potential

From the Abelian projected link variables ui�s;�� we
extract the Abelian static quark-antiquark-potential. In
order to improve the overlap with the ground state, we
smear the spacelike links according to

ui�s; j� ! �ui�s; j� 

X
k�j

ui�s; k�ui�s
 k̂; j�ui�s
 |̂; k�y:

(12)

We apply 30 smearing sweeps with � � 2. The Abelian
potential Vab�R� is given by

Vab�R� � lim
T!1

log
�

hWab�R; T�i
hWab�R; T 
 1�i

�
; (13)

where

Wab�R; T� �
1

3
ReTrWC; WC �

Y
s;�2C

u�s; ��; (14)

and C is a (orientated) loop of spatial extent R and
temporal extent T.

The ratio on the right hand side of (13) reaches a
plateau at T � 5, so that we will take T � 5 throughout
this section. We fit Vab�r� by the ansatz

Vab�r� � V0
ab 
 �abr�

�ab

r
: (15)

The potential was calculated for on axis and off axis
directions r̂ � 1=

���
2

p
�1; 1; 0� and 1=

���
3

p
�1; 1; 1�. At small

r rotational symmetry is broken on the lattice, and we
exclude the first four data points from our fits. The
nonAbelian static potential was extracted from the
nonAbelian Wilson loop using a corresponding
procedure.

In Figs. 4 and 5 we show the Abelian and nonAbelian
static potential for some data set. The self-energy contri-
butions have been subtracted. The ratios of Abelian and
0 0.5 1 1.5 2 2.5
r/r

0

-2

-1

0
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)r
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-V
0

SU(3)

V
ab

-V
0

ab

FIG. 4. Comparison of the Abelian and nonAbelian potential
in full QCD on the 16332 lattice at ! � 5:29, � � 0:135. The
solid lines are fits of the form (15).
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nonAbelian string tensions are given in Table II. As our
determination of the nonAbelian string tension was not
accurate enough, we took these numbers from the litera-
ture:

����
�

p
r0 � 1:142�5� in full QCD [33] (

����
�

p
r0 depends

only weakly on the dynamical quark mass) and
����
�

p
r0 �

1:16�1� in the quenched theory [34]. The Abelian string
tension turns out to be very close to the nonAbelian one in
full QCD, while in the quenched case it is noticeably
smaller. But the ratio of �ab to � may increase in the
continuum limit [31].

The Abelian link variables can be decomposed into a
‘‘singular’’ monopole part and a photon part according to
the definition [35,36]:

�i�s; �� � �mon
i �s; �� 
 �ph

i �s;��; (16)

�mon
i �s; �� � �2�

X
s0
D�s� s0�r���

� mi�s
0; �;��; (17)

where D�s� � ��1�s� is the lattice Coulomb propagator,
r���
� is the lattice backward derivative, and mi�s; �; ��

counts the number of Dirac strings piercing the plaquette

ui�s;�; �� � ui�s;��ui�s
 �̂; ��uyi �s
 �̂; ��uyi �s; ��:

(18)
TABLE II. The Coulomb term, the Abelian and monopole
part of the string tension, as well as the monopole screening
length in full and quenched QCD. The quenched result is
shown in the last row and refers to the 16332 lattice at ! � 6:0.

m�=m# �ab �ab=� �mon=�ab )=r0 �ab=#)

0.6014(73) 0.12(1) 0.90(4) 0.80(4) 0.484(19) 2.1(2)
0.7029(49) 0.10(1) 0.96(3) 0.87(3) 0.466(26) 2.6(3)
0.7586(22) 0.11(1) 0.99(6) 0.83(8) 0.521(17) 2.3(2)
0.8311(26) 0.11(1) 0.99(6) 0.88(5) 0.482(17) 2.5(2)
1 0.09(1) 0.83(3) 0.84(3) 0.662(34) 3.2(3)
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FIG. 6. Decomposition of the Abelian potential into mono-
pole and photon parts on the 16332 lattice at ! � 5:29, � �
0:135 in full QCD. The solid lines are fits of the form (15).
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FIG. 8. Data and fit of the magnetic flux on the 16332 lattice
in full and quenched QCD.
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If one computes ki��s;�� from �mon
i �s;�� one recovers

almost all monopole currents found by the definition (8),
hence the notation monopole part [13].

Similarly, from Wilson loops composed of the mono-
pole (photon) part of the link variables one can derive the
monopole (photon) contribution to the static Abelian
potential. In Figs. 6 and 7 we show both contributions.
The string tension of the monopole part �mon is given in
Table II, while the photon contribution to the potential is
short-range. Within the uncertainties [of O�a2� correc-
tions] all string tensions are very similar, in the dynami-
cal as well as in the quenched theory. The quenched
theory results for �ab=� and �mon=�ab agree within error
bars with results obtained in [37].

The next quantity we looked at is the magnetic screen-
ing length ). This is defined by the exponential decay of
the magnetic flux ��r� through a sphere of radius r
around the monopole. On a periodic lattice this can be
written
0 0.5 1 1.5 2 2.5
r/r

0

0

1

2

3

4

5

V
(r

)r
0

V
ab

V
mon

V
ph

FIG. 7. The same as in Fig. 6, but for the quenched theory at
! � 6:0.
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��r� � �0 exp
�
�
L
2)

�
sinh

�
L� 2r

2)

�
; (19)

where L is the effective length of the box, which is taken
to be a free parameter. Some numerical data are shown in
Fig. 8, together with a fit of Eq. (19). The fitted values of )
for all data sets are given in Table II. The length L turns
out to be slightly larger than the extent of the lattice, as
expected. We notice that the screening length is about
30% lower in the dynamical vacuum as compared to the
quenched case. This does not come unexpected. In a
three-dimensional model of a monopole gas with screen-
ing [30] the Abelian string tension turns out to be pro-
portional to the product of monopole density and
screening length, i.e. �ab / #). Though this model is an
oversimplification of the underlying dynamics, it is in
qualitative agreement with our findings.

C. Gribov copies

We shall now try to quantify the error that is made by
fixing to a local maximum of F�U� instead of the global
one. We follow the procedure suggested in [8]. The test
runs are done on the 16332 lattice at ! � 5:29, � � 0:135
using a total ofO�50� configurations.We create 20 random
gauge copies for each configuration, employing the SA
algorithm. Then we randomly pick n gauge copies out of
each set (of 20) and select the copy with the highest value
of F�U� to compute our observable O. Obviously the
result will depend on n, and the true result is obtained
at n! 1. The approach to n � 1 may be fitted by [38]

hOi�n� � hOi�1� 

const.
n

: (20)

In Fig. 9 we show the monopole density as a function of n.
We see that # reaches a plateau at n � 10. By taking only
one gauge copy into account one introduces a systematic
error of the order of 3%. The effect of Gribov copies is
slightly stronger in case of the Abelian static potential, as
-5
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FIG. 11. The Abelian string tension on the 16332 lattice at
! � 5:29, � � 0:135, and its dependence on the number of
Gribov copies, together with the result of the iterative gauge
fixing ( � ).
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FIG. 9. The monopole density on the 16332 lattice at ! �
5:29, � � 0:135, and its dependence on the number of Gribov
copies.
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can be inferred from Figs. 10 and 11. Here the systematic
error is about 6%, while iterative gauge fixing might lead
to a discrepancy of O(20%).

IV. COLOR ELECTRIC FLUX TUBE

Studies of the pure SU(2) gauge theory in the MAG
[39– 41] have shown that the expectation values of the
static color electric field and the monopole currents sat-
isfy, to a good accuracy, the classical equations of motion
and dual Ampère’s law, in agreement with the dual su-
perconductor picture of confinement.

In this section we present first results of the micro-
scopic structure of the color electric flux tube in full QCD
and in the pure SU(3) gauge theory. It is expected that
long-range forces between quarks remain to exist in the
dynamical theory as well, because the color charge of
0 0.5 1 1.5 2 2.5
r/r

0

0
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2
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4

5

6

V
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)r
0

iter.
n=1
n=20

FIG. 10. The Abelian static potential on the 16332 lattice at
! � 5:29, � � 0:135, and its dependence on the number of
Gribov copies. Also shown is the result of the iterative gauge
fixing.
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quarks cannot be screened locally by Higgs scalars (made
out of gluons).

A. Observables

We will primarily be concerned with local Abelian
operators

O �s� � diag�O1�s�;O2�s�;O3�s�� 2 U�1� U�1�: (21)

For C-parity even operators, such as the action density
and the monopole density, the correlator of O�s� with the
Abelian Wilson loop WC is given by [42]

hO�s�iW �
1

3

hTrO�s�TrWCi

hTrWCi
�

1

3
hTrOi: (22)

For C-parity odd operators O, such as the color electric
field and the monopole current, we have

hO�s�iW �
hTr�O�s�WC�i

hTrWCi
; (23)

in analogy to the case of SU(2) [39,40,43,44].
The action density #W

A , the color electric field EW
i , the

monopole current kW and the monopole density #W
M ,

induced by the Wilson loop, are then given by

#W
A �s� �

!
3

X
�>�

hdiagfcos��1�s;�; ���;

cos��2�s;�; ���; cos��3�s; �; ���giW ;

(24)

where �i�s;�; �� � arg�ui�s;�; ��� is the plaquette angle,

EW
j �s� � ihdiag��1�s; 4; j�; �2�s; 4; j�; �3�s; 4; j��iW ;

(25)

kW ��s;�� � 2�ihdiag�k1��s; ��; k2��s; ��; k3��s; ���iW ;

(26)
-6
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FIG. 12. The action density #W
A �s�r40 of the Abelian flux tube

as a function of x � s1, y � s2 at z � s3 � 0 on the 16332
lattice in full (top) and quenched QCD (bottom) at ! � 5:20,
� � 0:1355 and ! � 6:0, respectively.

FIG. 14. Distribution of the color electric field ~EW in full
(top) and quenched QCD (bottom) in the (x,y) plane for the
same lattices as in Fig. 12. The magnitude of EW is indicated
by the length of the arrows.
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and

#W
M �s� �

1

4

X
�

hdiag�jk1�
�s; ��j; jk2�

�s;��j; jk3�
�s;��j�iW ;

(27)

respectively. Out of the three ‘‘color’’ components of the
observables only two are independent. In the following
we shall take the average of the three components.

As before, we take C to be a loop of spatial extent R
and temporal extent T. The four corners of the loop are
placed at ��R=2; 0; 0; 0�, �R=2; 0; 0; 0�, ��R=2; 0; 0; T� and
-1.5 -1 -0.5 0 0.5 1 1.5
y/r

0

0

100

200

300

ρ A
 r

04

full
quenched

FIG. 13. The action density #W
A �s�r40 of Fig. 12 plotted across

the flux tube at x � 0.
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�R=2; 0; 0; T�, and s4 � T=2 will be taken throughout this
section.

B. Abelian flux tube

Let us first consider the profile of the Abelian flux tube.
We take R � 10, which on our lattices corresponds to a
spatial separation of the static sources of � 1 fm, and
T � 6. We checked the T dependence of part of our
results by comparing the numbers to T � 5 and found
only insignificant changes, albeit for R � 6, which justi-
-2 -1 0 1 2
y/r

0

0

0.5

1

1.5

2

E
xr 02

full
quenched
fit(full)
fit(quenched)

FIG. 15. The color electric field EW
1 of Fig. 14 plotted across

the flux tube at x � 0.
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lattices as in Fig. 12.
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fies our choice. The spatial links are smeared as described
in (12).

In the following we shall also use the notation x � s1,
y � s2 and z � s3. In Figs. 12 and 13 we show the action
density #W

A �s� in full and quenched QCD, respectively. It
appears that the action density in full QCD is higher than
in the quenched case, while their shapes are quite similar.

We estimate the width 3 of the Abelian flux tube by
fitting our data at x � 0 to the function

#A�r?� � const. exp���r? � 4�2=32�; (28)
FIG. 17. The solenoidal monopole current kW r30 in the (y,z) plan
quenched QCD (right) for the same lattices as in Fig. 12.

074511
where r? is the distance of s from the line connecting the
static sources at s4 � T=2, and 4 is a displacement pa-
rameter of O�a� accounting for a small shift of the true
action density from its entry at s. We obtain 3 �
0:29�1� fm, both in full and quenched QCD. This is a
surprisingly small number, much smaller than any hadron
radius. It tells us, in particular, that already at interquark
distances * 0:5 fm the string model of hadrons becomes
effective.

In Figs. 14 and 15 we show the distribution of the color
electric field EW

1 in and around the flux tube. The electric
field is purely longitudinal in a narrow region between the
sources of diameter � six lattice spacings and practically
zero outside. We fit EW

1 at x; z � 0 and for y=r0 > 0:5 to
an exponential:

EW
1 � const. exp��y=5�: (29)

For the penetration length we find 5 � 0:15�1� fm in full
QCD and 5 � 0:17�1� fm in the quenched case. Whether
the flux tube indeed narrows down in full QCD needs to
be confirmed with higher statistics.

In Fig. 16 we show the monopole density #W
M �s�. We see

again that outside the flux tube the monopole density is
more than 2 times larger in full QCD than in the
quenched case. Inside the flux tube the monopole density
is strongly suppressed. This indicates that the expectation
value of the dual Higgs field vanishes inside the flux tube,
in agreement with the dual superconductor model of the
vacuum. In this model we furthermore expect that the
monopole currents form a solenoidal (i.e. azimuthal)
supercurrent which constricts the color electric field
into flux tubes, thereby satisfying the dual Ampère law:

~k � ~r ~EW : (30)

In Fig. 17 we show the transverse components of the
monopole current at x � 0 in the (y,z) plane (i.e. perpen-
dicular to the flux tube), and in Fig. 18 we compare the
left hand side and right hand side of Eq. (30). In the latter
e (i.e. perpendicular to the flux tube) at x � 0 in full (left) and
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FIG. 18. Test of dual Ampère’s law in full (top) and quenched
QCD (bottom) for the same lattices as in Fig. 12.
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action density #W

A r40 on the (quenched) 16332 lattice at ! �
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figure R � 6 was used in order to reduce the errors. We
find that the dual Ampère law is approximately satisfied
in both full and quenched QCD. So far this has only been
verified in the pure SU(2) gauge theory [39,40].

C. Monopoles versus photons

Further insight into the confinement mechanism can be
obtained by probing the flux tube in terms of the mono-
pole and photon part of the Abelian gauge field separately.
To do so, we simply have to replace the lattice Abelian
gauge field �i�s;�� in the various probes by �mon

i �s; ��
and �ph

i �s; ��, respectively. We have done calculations in
full QCD (here on the 24348 lattice at ! � 5:29, � �
0:1355) and in the quenched theory. To enhance the
signal, the monopole and photon fields are smeared as
before. Qualitatively, we find no difference between full
QCD and the quenched theory.

In Fig. 19 we show the action density #W
A of the

monopole and photon part of the gauge field. We see
that the action density originates almost entirely from
074511
the monopole part, while the photon contributes a
Coulomb field around the static charges only. The width
of the flux tube is unchanged: 3 � 0:29�1� fm as before.
In Figs. 20 and 21 we show the distribution of the color
electric field. We see that the monopole part of the field
has no sources. The sources show up in the photon part
only. We furthermore see that outside the flux tube the
monopole and photon parts of the electric field largely
cancel, while they add in the interior of the tube. We have
attempted to fit the photon field by a Coulomb ansatz.
While the transverse component could be well fitted, we
failed for the longitudinal component (i.e. parallel to the
flux tube).

D. String breaking

In the presence of dynamical quarks we expect that the
flux tube (string) breaks if the static charges are separated
far enough. It has been estimated that this will happen
at a distance of �1:2 fm for our quark masses of mq �

100 Mev [14,45]. This does not mean that the string state
vanishes from the spectrum of the transfer matrix. It only
ceases to be the state of lowest energy in the correspond-
ing channel. In QCD string breaking has so far only been
observed at finite temperature close to the deconfining
phase transition [46], but never at zero temperature [14–
16,47], at least on the basis of Wilson loops. In Ref. [48] it
has been claimed that string breaking has been observed
in zero temperature QCD with two flavors of dynamical
quarks using a Multichannel Ansatz.
-9



FIG. 20. Distribution of the monopole (top) and photon part
of the color electric field ~EW (bottom) on the 16332 lattice at
! � 6:0. For better visibility the monopole part is enhanced by
a factor of 2 relative to the photon part.
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The recent finding [49] of string breaking from Wilson
loops in the case of adjoint quarks in three-dimensional
SU(2) gauge theory indicates that this should be possible
in QCD at zero temperature too. Though our prime mo-
tivation for the following investigation was to detect
string breaking and shed some light on the dynamics
that drives it, we like to stress that the unbroken string
is of quite some interest as well from the point of view of
the confinement problem.

The calculations in this section are done on the 24348
lattice at ! � 5:29, � � 0:1355. On this lattice m�=m# �
-1.5 -1 -0.5 0 0.5 1 1.5
y/r

0

0

0.5

1

1.5

2

E
xr 02

abelian
monopole
photon

2

FIG. 21. Monopole and photon part of the color electric field EW
1

(right).
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0:7. The difference to our previous calculation is that we
consider large Wilson loops. We take R � 18, which cor-
responds to a separation of the static charges of � 1:6 fm,
and T � 10. It is important to choose T large as well in
order to increase the chance of string breaking [50]. In
Fig. 22 we show the monopole part of the color electric

field ~EW . The restriction to the monopole part allowed us
to obtain a clean signal even at x � 0. We do not observe
any sign of string breaking. Furthermore, the flux tube
does not show any broadening effect. A fit of the form (28)
gives 3 � 0:30�3� fm at x � 0. The same result, within
the error bars, was found at R � 10. If the long-range
properties of QCD were described by the effective string
action with the Nambu-Goto term, we would have ex-
pected the square of the transverse extension of the flux
tube, 32, to increase logarithmically with R [51]:

32�R1� � 32�R2� �
1

�
log
R1

R2
(31)

In [52] it was found for the three-dimensional Z�2� gauge
theory that the mean square width of the flux tube agrees
with (31) starting from R � 0:6 fm. In contrast, our re-
sults at R1 � 0:9 fm and R2 � 1:6 fm definitely disagree
with Eq. (31) but show a constant width of the Abelian
flux tube. A similar observation has been made in the
pure SU(2) gauge theory [53]. Our results and those of
Ref. [53] thus indicate that either the Abelian flux tube
has a constant width or the tube broadening starts at
larger distances than explored in this work and in
Ref. [53].

It is perhaps not surprising that we do not observe any
string breaking (yet) [48]. String breaking is expected to
occur if exp��2Esl�R
 T��> exp���RT�, where Esl is
the binding energy of the static-light meson. This is only
the case if T * 3 fm [16].
V. EFFECTIVE MONOPOLE ACTION

We have seen that the vacuum undergoes several
changes if dynamical color electric charges are intro-
-3 -2 -1 0 1 2 3
x/r

0

-4

-2

0

2

4

6

E
xr 0

abelian
monopole
photon

in the (y,z) plane at x � 0 (left) and parallel to the flux tube
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TABLE III. The monopole currents ki�s;�� entering Eq. (33).

i ki�s;�� i ki�s;��

1 k�s; �� 14 k�s
 2�̂
 �̂
 #̂; ��
2 k�s
 �̂; �� 15 k�s
 �̂
 2�̂
 #̂; ��
3 k�s
 �̂; �� 16 k�s
 2�̂
 #̂
 �̂;��
4 k�s
 �̂
 �̂; �� 17 k�s
 2�̂
 �̂
 #̂
 �̂;��
5 k�s
 �̂
 #̂; �� 18 k�s
 �̂
 2�̂
 #̂
 �̂;��
6 k�s
 2�̂; �� 19 k�s
 2�̂
 2�̂; ��
7 k�s
 2�̂; �� 20 k�s
 2�̂
 2#̂; ��
8 k�s
 �̂
 �̂
 #̂
 �̂; �� 21 k�s
 3�̂; ��
9 k�s
 �̂
 �̂
 #̂; �� 22 k�s
 3�̂; ��
10 k�s
 �̂
 #̂
 �̂; �� 23 k�s
 2�̂
 2�̂
 #̂; ��
11 k�s
 2�̂
 �̂; �� 24 k�s
 �̂
 2�̂
 2#̂; ��
12 k�s
 �̂
 2�̂; �� 25 k�s
 2�̂
 2#̂
 �̂; ��
13 k�s
 2�̂
 #̂; ��

0 0.2 0.4 0.6 0.8
b(fm)

0

0.5

1
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2

2.5
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1

FIG. 23. The monopole self-coupling G1, as a function of the
physical length scale b. The symbols are: n � 1 ( � ),n � 2
(�), n � 3 (�), n � 4 (�) in full QCD, and n � 1 ( � ), n � 2
(�), n � 3 (�), n � 4 ( 4 ) in quenched QCD.

FIG. 22. The monopole part of the color electric field ~EW on
the 24348 lattice. Only the region �18 � x � 17, �10 � y � 9
is shown.
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duced. We shall study now how this will affect the effec-
tive monopole action.

There are three types of monopole currents (8), of
which two are independent. For simplicity we take into
account only one of them, thus integrating out the other
two [54]. For the time being, we assume the form of the
effective monopole action in full QCD to be the same as
in the quenched theory [55]. It is composed of 27 types of
two-point interactions, one four-point interaction and one
six-point interaction:

S�k� �
X29
i�1

GiSi�k�; (32)

where Gi are the coupling constants which need to be
determined. This we will do by employing an extended
Swendsen method [20]. In this section we shall write
k�s; �� instead of k��s;�� for the sake of simplicity.
Explicitly, we then have:

Two-point interaction for parallel currents

Si�k� �
X
s

X4
��1

k�s; ��ki�s; ��; i � 1; � � � ; 25; (33)

where the ki�s; �� are given in Table III.
Two-point interaction for orthogonal currents

S26�k� �
X
s

X
���

k�s; ��k�s� �̂� 2�̂; ��; (34)

S27�k� �
X
s

X
�����

k�s; ��k�s� �̂� 2�̂� 2�̂; ��: (35)

Four-point interaction

S28�k� �
X
s

" X4
���4

k�s;��2
#

2

: (36)

Six-point interaction

S29�k� �
X
s

" X4
���4

k�s;��2
#

3

: (37)
074511
The calculations are done on the 24348 lattices listed in
Table I, both in full and quenched QCD. After fixing the
gauge fields to the MAG, we employ a type-II block spin
transformation [56] with up to n � 4 blocking steps. The
final outcome is an action at the physical length scale b �
na. We believe that the monopole action is effective at
scales 0:4 & b & 0:8 fm.

In Fig. 23 we show the self-couplingG1 as a function of
b. We see that in full QCD G1 is systematically smaller
than in the quenched theory for all values of b. In Fig. 24
we plot the self-coupling G1 as a function of m�=m# for
our smallest b value. We find that G1 decreases with
decreasing quark mass.

A necessary condition for monopole condensation is
G1 � ln7. This is achieved for b * 0:27 fm in full QCD
and for b * 0:35 fm in the quenched theory. In Fig. 25 we
show the coupling constants G2 and G3. We see that in
full QCD G2 is systematically smaller than in the
quenched theory for all values of b, as in the case of
-11
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FIG. 24. The dependence of G1 on the ratio m�=m# for b �
0:09 fm. The entry at m�=m# � 1 corresponds to the quenched
theory.
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G1, while G3 shows the opposite behavior. The other
coupling constants show little difference between full
and quenched QCD. In Fig. 26 we show, as an example,
G28 and G29. Because the magnetic charge of the mono-
poles is in almost all cases �1, and G1 is the dominant
0 0.1 0.2 0.3 0.4 0.5
b(fm)

0

0.2

0.4

0.6

0.8

1

G
2

0 0.2 0.4 0.6 0.
b(fm)

0

0.2

0.4

0.6

0.8

1

G
3

FIG. 25. The coupling constantsG2 andG3 as a function of b.
The symbols are as in Fig. 23.
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coupling constant, the monopole action can be approxi-
mated by G1L, where L is the length of the monopole
loop. As a result, a smaller self-couplingG1 will give rise
to a larger value of L and a larger monopole density, and
vice versa. This is to say that both observations, namely,
that the monopole density increases and the self-coupling
decreases with decreasing quark mass, are consistent
with each other.

To shed further light on the dynamics of the monopoles
we have looked at the coupling G of two (n � 1) parallel
monopole currents, k�s; �� and k�s0; ��, as a function of

the distance d �
������������������������������P
��s� � s0��

2
q

between them. In

Fig. 27 we show G together with the lattice Coulomb
propagator. We see that at distances d * 2 the interaction
becomes weaker than Coulomb in both full and quenched
QCD. This is consistent with the screening effect dis-
cussed in Sec. III. We do not see any difference between
full QCD and quenched QCD though.

We may parameterize the effective monopole action by

S�k� � SCoulomb 
 Sself 
 S4�point 
 S6�point 
 Sadd;

(38)

where
0 0.2 0.4 0.6 0.8
b(fm)

-0.1

-0.08

-0.06

-0.04

-0.02

0

G
28

0 0.2 0.4 0.6 0.8
b(fm)

-0.0005

0

0.0005

0.001

G
29

FIG. 26. The coupling constants G28 and G29 of the four-
point and six-point interactions, respectively, as a function of
b. The symbols are as in Fig. 23.
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FIG. 28. The self-coupling Gself and the Coulomb coupling
gm as a function of b. The symbols are as in Fig. 23.
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SCoulomb �
g2

m

2

X
s;s0

X4
��1

k�s;����1�s� s0�k�s0; ��;

Sself � GselfS1�k�; S4�point � G4�pointS28�k�;

S6�point � G6�pointS29�k�;

(39)

and Sadd includes 12 additional two-point interaction
terms. In Fig. 28 we show the self-coupling Gself and
the Coulomb coupling gm. It is interesting to see that in
full QCDGself is smaller than in the quenched case, while
the Coulomb coupling is almost unchanged. Corrections
to the Coulomb interaction are found to be very small in
the infrared region.
VI. CONCLUSIONS

We have performed a detailed study of the dynamics of
the QCD vacuum, thereby focussing on the Abelian de-
grees of freedom in the MAG. Our main objective was to
find out how the vacuum reacts to the introduction of
dynamical color electric charges (quarks). The monopole
074511
density was found to increase by more than a factor of 2 if
we decrease the quark mass from m�=m# � 1 (the
quenched limit) to m�=m# � 0:6, both for the total num-
ber of monopoles and for the monopoles in the infrared
clusters. Related to that, we found that the magnetic
screening length decreased by 30% over that range. The
string tension, the static potential and the structure of the
flux tube, on the other hand, remained almost the same.
We verified the dual Ampère law in full QCD and in the
pure SU(3) gauge theory. This result lends further support
to the dual superconductor model of the vacuum in full
and quenched QCD. The width of the Abelian flux tube
was found to be 3 � 0:29�1� fm in both cases. Another
characteristic feature of the flux tube is the penetration
length. We obtained 5 � 0:15�1� fm in full QCD and 5 �
0:17�1� fm in the quenched case. This results in a dual
photon mass of 1.3(1) GeV and 1.2(1) GeV, respectively.
Decomposing the Abelian gauge field into monopole and
photon parts allowed us to study flux tubes up to a length
of �1:6 fm in full QCD. No signal of string breaking was
found. Comparing flux tubes of various lengths R, it
turned out that the width of the flux tube does not depend
on R, contrary to the prediction of the Nambu-Goto
effective string theory. The effective monopole action
-13
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was determined. In full QCD the monopole self-coupling
was found to be systematically smaller than in the
quenched theory. The main contributions to the effective
monopole action are found to be the self-interaction and
the Coulomb interaction.
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T. Suzuki, Nucl. Phys. (Proc. Suppl.) 119, 703 (2003);
V. Bornyakov, H. Ichie, Y. Koma, Y. Mori, Y. Nakamura,
M. Polikarpov, G. Schierholz, T. Streuer, and T. Suzuki,
Nucl. Phys. (Proc. Suppl.) 119, 712 (2003).

[47] K. Schilling, Nucl. Phys. (Proc. Suppl.) 83, 140
(2000).

[48] UKQCD Collaboration, P. Pennanen and C. Michael,
hep-lat/0001015; C. Bernard, T. DeGrand, C. DeTar,
S. Gottlieb, U. M. Heller, J. Hetrick, P. Lacock, K.
Orginos, R. L. Sugar, and D. Toussaint, Phys. Rev. D
64, 074509 (2001).

[49] S. Kratochvila and P. de Forcrand, Nucl. Phys. B671, 103
(2003).

[50] H. D.Trottier, Phys. Rev. D 60, 034506 (1999).
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