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 2 

Abstract Populations of the Heike firefly, Luciola lateralis, a representative species of Japan’s traditional 16 

agricultural landscape (known as satoyama), have recently experienced rapid declines in many areas of 17 

Japan. Owing to the popularity of this firefly, many local communities have increased conservation 18 

efforts through the restoration of aquatic habitat complexes in satoyama. To provide fundamental 19 

parameters to predict population dynamics of the firefly, we conducted a mark–recapture study in 20 

restored paddy fields, and we estimated adult population parameters such as population size, survival, 21 

recruitment, sex ratio, and body size. We found that capture probability generally decreased as the season 22 

advanced, probably because of seasonal changes in detectability and/or firefly behavior. The daily 23 

survival rate of adults decreased over the season and may be related to a seasonal decline in adult body 24 

size. Adult population exhibited a highly male-biased sex ratio. Firefly abundance in the restored paddy 25 

fields doubled during the 4-year study period. Our analysis showed that adult detectability, recruitment, 26 

and survival rate are seasonally variable and could affect population size estimates obtained by a simple 27 

flash census. The mark–recapture technique can provide precise estimates of adult L. lateralis population 28 

characteristics and, thus, is a valuable method for predicting firefly populations and assessing the success 29 

of the restoration program. 30 

 31 
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Introduction 33 

 34 

The traditional agricultural landscape of Japan, called satoyama, provided a variety of habitat types for 35 

wildlife and helped maintain the rich biodiversity of Japanese rural areas (Washitani 2001; Kobori and 36 

Primack 2003). The aquatic habitat complex, consisting of a network of paddy fields, ponds, and creeks 37 

connected to adjacent streams, harbored numerous aquatic organisms (Washitani 2001; Takeda et al. 38 

2006). However, recent intensification of agriculture as well as the abandonment of paddy fields in rural 39 

areas have altered the rural wetland landscape drastically, threatening formerly common freshwater 40 

aquatic fishes, amphibians, and aquatic insects, including dragonflies, fireflies, and water beetles (Kadoya 41 

et al. 2009 and references therein). Declines in the populations of these species have prompted public 42 

interest in conserving and restoring biodiversity in satoyama (Washitani 2001; Takeda et al. 2006). 43 

Fireflies (Coleoptera: Lampyridae) are among the most representative insects of Japanese satoyama 44 

(Kato 2001). The two species most familiar to the public, the Genji firefly (Luciola cruciata 45 

Motschulsky) and the Heike firefly (L. lateralis Motschulsky), have an exceptional life cycle that is 46 

intimately connected to aquatic habitats: Genji and Heike firefly larvae inhabit mainly creeks and paddy 47 

fields, respectively. Since these fireflies use both aquatic and terrestrial environments throughout their life 48 

cycles, conservation of fireflies would result in extensive conservation of biodiversity in the satoyama 49 

landscape (Takeda et al. 2006). In addition, the Genji and Heike fireflies, with their unique luminescence, 50 

have become the objects of exceptionally high social interest in Japan and have had a prominent influence 51 

on Japanese culture (Minami 1961; Ohba 1988; Mitsuishi 1996; Takada 2010). Therefore, these fireflies 52 

are regarded as appropriate flagship species to facilitate citizen participation in conservation of the 53 

satoyama landscape (Takeda et al. 2006). 54 

In recent decades, firefly populations have declined rapidly in many areas of Japan, possibly because 55 

of the artificial modification of land and rivers, eutrophication and pollution of water environments, and 56 

habitat destruction caused by cementing of irrigation ditches (Ohba 1988; Mitsuishi 1996). As a result, 57 

many local communities have initiated conservation efforts for this firefly by restoring aquatic 58 

ecosystems in the satoyama landscape. Long-term population monitoring has also been conducted to 59 

assess the effects of restoration (Mitsuishi 1996; Yuma 2007; Matsuda et al. 2008).  60 
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Most numerical studies on firefly populations involve a simple flash counting method, i.e., counting 61 

illuminating individuals from a fixed observation point for a fixed duration (Hori et al. 1978; Yuma and 62 

Ono 1985; Lewis and Wang 1991; Cratsley and Lewis 2005; Takeda et al. 2006; Yuma 2007). Such a 63 

simple observation method provides significant information regarding long-term population fluctuations 64 

(Mitsuishi 1996; Yuma 2007; Matsuda et al. 2008) and habitat requirements of the firefly (Shibue et al. 65 

1995; Takeda et al. 2006; Tomita et al. 2006). However, the population size determined by this method 66 

depends on population parameters such as discovery rate, adult recruitment, and survival (Yuma 2007). 67 

These parameters can vary across the season, as has been demonstrated for many insects (Stoks 2001b; 68 

Koji & Nakamura 2002; Schtickzelle et al. 2002; Tikkamäki & Komonen 2011; Kudô et al. 2011). 69 

Therefore, detailed demographic data, which can be obtained by the mark–recapture method, are required 70 

to verify the reliability of flash counting method for quantifying firefly population size. Although 71 

mark-recapture technique is laborious and time-consuming, if designed properly, it can provide 72 

fundamental parameters to predict the persistence of focal populations. Such quantitative demographic 73 

information is essential to the design and evaluation of firefly conservation plans. 74 

In this study, we described the adult population parameters of L. lateralis in restored paddy fields. 75 

Hori et al. (1978) conducted a mark–recapture study on a population of L. cruciata and reported adult 76 

population parameters such as survival rate, population structure, recruitment, and dispersal. However, no 77 

such study has been conducted on L. lateralis, which has a life cycle that appears to be different from that 78 

of L. cruciata (Mitsuishi 1996). By using the mark–recapture method, we estimated seasonal changes in 79 

survival probability, recruitment, population size, sex ratio, and body size as well as annual population 80 

changes in a population of L. lateralis. 81 

 82 

 83 

Material and methods 84 

 85 

Study species 86 

 87 

Luciola lateralis females lay eggs from June to August on mosses and moist surfaces of plants on 88 



 5 

irrigation ditch walls and/or paddy field ridges (Minami 1961; Mitsuishi 1996). The newly hatched larvae 89 

drop into the water and prey on freshwater snails, most commonly Austropeplea ollula (Gould), Physa 90 

acuta Draparnaud, and Semisulcospira libertina (Gould). Larvae pass through four instars before 91 

hibernation. In spring, they resume feeding and molt once, then the fully grown larvae climb up the 92 

earthen bank and burrow underground, where they pupate. New adults emerge in June and fly above the 93 

rice fields and irrigation ditches before mating on suitable nearby lower vegetation. The adults do not 94 

feed and consume only moisture. 95 

 96 

Study site 97 

 98 

The study site (0.5 ha) was located in Kitadan Valley, Kanazawa, central Japan (36°32ʹ′N, 136°42ʹ′E) at an 99 

elevation of approximately 60 m. Mean annual precipitation at the nearby Kanazawa weather station is 100 

approximately 2500 mm, and mean annual temperature is 14.3 °C with a monthly range from 3.6 °C 101 

(February) to 26.6 °C (August). Both sides of the valley are steeply sloped and covered with deciduous 102 

secondary forests of Quercus serrata Murray and Q. variabilis Blume. According to interviews with local 103 

farmers, Kitadan Valley had been formerly managed as terraced paddies, but the paddy fields were 104 

abandoned in the mid-1980s. In 2002, the Kakuma Nature School of Kanazawa University and local 105 

volunteers began restoring of the valley to previous conditions. By 2003, five rice paddy parcels and six 106 

shallow ponds (i.e., parcels without rice culture) had been restored by resuming paddy cultivation. During 107 

the study period, restored parcels gradually increased from 23 (2005) to 38 (2008) (Table 1). No 108 

insecticides, herbicides, or fungicides were applied throughout the study period. The study site was 109 

divided into 10 (2005) to 13 (2008) sections, each of which included several restored parcels. 110 

 111 

Mark–recapture survey 112 

 113 

From 2005 to 2008, mark–recapture censuses of fireflies were conducted at 3- to 14-day intervals from 114 

June (late May in 2008) to August (Table 1). Each section was searched for illuminating adult fireflies 115 

from 8 PM to 10 PM, and all available individuals in each section were netted and kept in separate nylon 116 
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mesh bags. Captured fireflies were examined after all of the sections were surveyed, and capture date, 117 

section, sex, and body length (measured to the nearest 0.1 mm using calipers) were recorded for each 118 

individual. Each firefly was given a unique color code of four dots painted on the elytra using lacquer 119 

paint. The fireflies were then released in the section where they were captured. Throughout the study 120 

period, the same person conducted the mark–recapture censuses. 121 

 122 

Data analysis 123 

 124 

Population sizes were estimated for each year using the POPAN formulation of the Jolly–Seber model 125 

(Schwarz and Arnason 1996) as implemented in the MARK 5.1 program (White and Burnham 1999). 126 

POPAN estimates three primary parameters, survival probability (φ), capture probability (p), and 127 

proportional recruitment (pent). The derived parameters are daily recruitment (Bi), daily population size 128 

(Ni), and total population size (Ntot). The primary parameters may be constant (.), be sex-dependent (g), 129 

respond to time in factorial (t) or linear (T) manners, or display additive (g+t, g+T, …) or interactive (g*t, 130 

g*T, …) effects. Capture probability may also depend on daily relative humidity or air temperature (Ohba 131 

1988; Yuma and Hori 1990). We used data for daily relative humidity and air temperature at 8 PM, which 132 

were recorded at the Kanazawa Local Meteorological Observatory (http://www.jma-net.go.jp/kanazawa/).  133 

We first conducted a goodness-of-fit (GOF) test on the saturated model [φ (g*t) p (g*t) pent (g*t)] 134 

using the RELEASE program in MARK. The Jolly–Seber model assumes the independence of 135 

individuals and homogenous capture and survival probabilities among individuals regardless of previous 136 

capture history (Williams et al. 2002; Amstrup et al. 2005). Since the GOF test indicated a lack of fit of 137 

the models in 2006 and 2007, we computed a dispersion parameter, 

€ 

ˆ c  (Lebreton et al. 1992), to account 138 

for the extra-binomial variation in these models. Next, we fitted progressively simpler models with 139 

different combinations of the parameters mentioned above. The values of the Akaike information criterion 140 

for small samples (AICc) (or the quasi-likelihood adjusted QAICc in the case of overdispersion) were 141 

used for model selection, and the model with the minimum AICc (or QAICc) value was chosen as the 142 

optimal model for inference (Lebreton et al. 1992; Burnham and Anderson 2002). We modeled survival 143 

and capture probabilities using a logit link function, proportional recruitment using a multinomial logit 144 
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link function (probabilities sum to 1), and population size using a log link function. The mean daily 145 

survival rate of fireflies (φʹ′) was calculated as an arithmetic mean from estimated daily values, and the 146 

mean lifespan of fireflies (L) was derived as L = -1/ln φʹ′. 147 

Adult body length was analyzed using a linear mixed-effects model with “sex” and “date at first 148 

capture” as factors and “year” as a random effect (Pinheiro and Bates 2000). The linear mixed model was 149 

fitted with the restricted maximum likelihood method using R 2.10.1 (R Development Core Team 2009). 150 

 151 

 152 

Results 153 

 154 

A total of 3544 fireflies were marked and observed 7214 times, meaning that each individual was 155 

captured an average of 2.04 times (Table 2). Females were recaptured less frequently than males (

€ 

χ 2-test; 156 

2005: 

€ 

χ 2 = 6.7, df = 1, P = 0.01; 2006: 

€ 

χ 2 = 26.3, df = 1, P < 0.001; 2007: 

€ 

χ 2 = 40.2, df = 1, P < 157 

0.001; 2008: 

€ 

χ 2 = 50.1, df = 1, P < 0.001). 158 

Goodness-of-fit tests indicated that the totally time-dependent model [φ (g*t) p (g*t) pent (g*t)] 159 

adequately fitted the data in 2005 and 2008 (2005: 

€ 

χ 2 = 138.90, df = 123, P = 0.155; 2008: 

€ 

χ 2 = 77.36, 160 

df = 89, P = 0.806). For data sets in 2006 and 2007, however, the GOF statistic showed a lack of fit 161 

(2006: 

€ 

χ 2 = 154.99, df = 115, P = 0.01; 2007: 

€ 

χ 2 = 276.46, df = 154, P < 0.001). To correct for this 162 

overdispersion, we used a dispersion parameter in the remaining analyses (2006: 

€ 

ˆ c  = 1.348; 2007: 

€ 

ˆ c  = 163 

1.795). 164 

According to the model selection results (Table 3), capture probabilities of the most parsimonious 165 

models were time-dependent in factorial (2006 and 2008) or linear (2007) manners or depended on 166 

relative humidity (2005). In 2006 and 2008, capture probabilities differed between sexes and were 167 

consistently higher in males (Fig. 1). Capture probabilities decreased from June to mid-July, despite 168 

considerable daily variation. In 2007, male capture probabilities were higher than female capture 169 

probabilities at the beginning of the season but gradually decreased to the same level as females as the 170 

season advanced. In 3 of the 4 study years (2006, 2007, 2008), daily survival probability showed a linear 171 

temporal trend, with lower survival later in the season (Table 3; Fig. 2). In 2005, a model that assumes 172 
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daily variation in survival probabilities outperformed the other models. In all years, a model that included 173 

an additive sex effect on survival probability was preferred over the other models. Daily survival 174 

probabilities were higher in males in 2005, 2007, and 2008 and higher in females in 2006 (Fig. 2). Mean 175 

life span (L) was 4.11–6.05 days and 3.65–5.65 days for males and females, respectively (Table 4). The 176 

period between the first and last captures ranged from 1 to 27 days for males and from 1 to 23 days for 177 

females. Proportional recruitment was time dependent in a factorial manner (Table 3) and differed 178 

between sexes in 2005, 2007, and 2008, with slightly higher recruitment in males. 179 

The daily estimates of recruitment and population size are shown in Fig. 3. Adult fireflies first 180 

appeared at late May (2008) or mid-June (2005). Number of individuals increased until early July and 181 

then decreased consistently until mid-August. Males were consistently more abundant than females. Male 182 

and female population sizes followed a similar temporal pattern and exhibited a relatively constant sex 183 

ratio (approximately 70–80% male) throughout the flight season (Fig. 4). The estimated total population 184 

size (male and female combined) increased from 1302 (2005) to 2799 (2007) (Table 4). Total population 185 

sex ratios were male-biased; 70.5–75.9% of L. lateralis were males. 186 

Luciola lateralis females were significantly larger than males (F1, 3547 = 2190.45, P < 0.001). Day of 187 

season significantly affected body length (F1, 3547 = 122.10, P < 0.001), and fireflies were smaller as the 188 

season progressed (Fig. 5). The relationship between body length and season was stronger for females 189 

than for males (F1, 3547 = 33.94, P < 0.001; Fig. 5). 190 

 191 

 192 

Discussion 193 

 194 

Seasonal changes in adult population parameters 195 

 196 

The intensive mark–recapture study revealed adult population characteristics of the Heike firefly, L. 197 

lateralis, such as seasonal changes in number, sex ratio, and survival rate. The adult population peaked in 198 

late June and then decreased gradually until mid-August. Recruitment patterns were more gradual than 199 

they were in the closely related firefly L. cruciata, which appeared briefly from mid-June to mid-July 200 

(Hori et al. 1978; A. Nakamura unpublished data). 201 
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The model selection results showed that capture probabilities varied across the season. In 3 of the 4 202 

study years (2006, 2007, and 2008), capture probabilities generally decreased as the season advanced. 203 

The declining capture probability late in the season may be the result of lower detectability because of 204 

denser ground cover vegetation or seasonal changes in firefly behavior, as exhibited in L. cruciata (Yuma 205 

and Hori 1990) and several species of the genus Photinus (Lewis and Wang 1991; Cratsley and Lewis 206 

2005). Yuma and Hori (1990) showed that the location of L. cruciata females shifted from lower 207 

vegetation to tree canopy as the season advanced. Given that such a seasonal habitat shift is observed for 208 

L. lateralis, it could affect capture probabilities. 209 

In every year studied, body lengths of new adults decreased over the course of the season. The same 210 

tendency was observed for several firefly species of the genera Luciola (Iguchi 2001; Ho et al. 2010) and 211 

Photinus (Cratsley and Lewis 2005). Yuma (1981) examined the body size of L. cruciata larvae that 212 

climbed up the bank of a river to pupate and suggested that larger larvae climbed earlier and smaller 213 

larvae climbed later in the season. Seasonal variation in the adult body length of L. lateralis may also be 214 

explained by different timing of larval climbing. 215 

In 3 of the 4 study years (2006, 2007, and 2008), daily survival rates decreased continuously over the 216 

season. Although the reason for this tendency is unknown, one possibility is the seasonal decline in adult 217 

body size. Body size variation has been shown to affect the survival of many insect species (Palmer 1985; 218 

Ohgushi 1996; Munguía-Steyer et al. 2010). Luciola lateralis is a capital breeder, an organism in which 219 

adults depend entirely on resources derived from the larval period. Therefore, larger individuals that 220 

emerged early in the season may have larger resource reserves and may survive longer than smaller 221 

individuals. Causes and consequences of the seasonal variation in L. lateralis body size remain to be 222 

determined. 223 

 224 

Sex ratio 225 

 226 

Mark–recapture data showed that total population sex ratios in L. lateralis were highly male-biased in 227 

every year. Populations of diploid insects often exhibit significantly male-biased operational sex ratios 228 

(Stoks 2001a and references therein), and several hypotheses have been proposed to explain this 229 

phenomenon (e.g. Frey and Leong 1993; Nylin et al 1995; Maxwell 1998; Underwood and Shapiro 1999; 230 
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Stoks 2001a, b; Adamski 2004). For L. lateralis populations, a higher number of males may reflect sex 231 

ratio differences at emergence, probably because of male-biased primary sex ratios or mortality 232 

differences during preadult stages. Throughout the season, recruitment (i.e., number of new individuals in 233 

the population from reproduction and/or immigration) was larger in males than in females. Because the 234 

study site was well isolated from neighboring paddy fields and damp areas, the number of immigrants 235 

from outside seems minimal, and recruitment values likely represent the number of newly emerged adults. 236 

Male-biased adult recruitment also was found in the L. cruciata population in Kyoto, central Japan (Hori 237 

et al. 1978). Yuma (1981) determined the sexes of L. cruciata larvae based on body length–weight 238 

relationships and found male-biased (3:1) sex ratios in mature climbing larvae of the same population. 239 

Moriya et al. (2009) reared field-collected L. cruciata climbing larvae until emergence as adults and 240 

reported a male-biased (3:1) sex ratio in new adults. If L. lateralis has a male-biased sex ratio at adult 241 

emergence, then the sex ratio must have shifted from even (1:1) toward male-biased during the period of 242 

development. Further investigation will be needed to examine mortality differences between sexes during 243 

the preadult stages. 244 

 245 

Annual population changes 246 

 247 

Luciola lateralis abundance in the restored paddy fields doubled during the 4-year study period. No data 248 

were found that verified the occurrence of L. lateralis in the study site before rice paddy restoration. 249 

However, the preliminary abundance survey in and around Kitadan Valley revealed that although L. 250 

lateralis fireflies occurred mainly in paddy fields, a few individuals were also observed in nearby damp 251 

areas (A. Nakamura unpublished data). Therefore, a low-density population of L. lateralis likely existed 252 

in the study area prior to restoration activities and grew rapidly following restoration of the terraced rice 253 

paddies. Shibue et al. (1996) examined the relationship between L. lateralis abundance and duration of 254 

paddy fields abandonment, and indicated that length of abandonment affected negatively the firefly 255 

abundance. These results suggest that rice cultivation is an important way to recover L. lateralis 256 

abundance. Abundance and distributional patterns of aquatic fireflies have often been explained by 257 

factors such as larval prey abundance (Ohba 1988; Mitsuishi 1996; Takeda et al. 2006; Tomita et al. 258 

2006), ditch hydrological conditions (e.g., ditch width and current velocity) (Shibue et al. 1995, 1996), 259 
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water quality (e.g., pH and dissolved oxygen [DO]) (Takeda et al. 2006), water pollution by 260 

agrochemicals (Ohba 1988; Mitsuishi 1996), ditch structural conditions (e.g., artificial alterations and 261 

bankside vegetation cover) (Shibue et al. 1996; Takeda et al. 2006), riverbed conditions (e.g., dominance 262 

of gravel deposition) (Tomita et al. 2006), relative light intensity (Shibue et al. 1996), and rainfall amount 263 

(Yuma 2007). Takeda et al. (2006) examined the relative importance of environmental factors on L. 264 

cruciata and indicated that abundance increased with increasing pH, DO, and prey abundance and 265 

decreased with water depth and the proportion of artificially modified ditch length. Habitat requirements 266 

of the L. lateralis firefly are not well understood and must be investigated further to collect reliable 267 

information about key habitat variables affecting conservation of this firefly. 268 

 269 

Implications for conservation 270 

 271 

A firefly abundance survey by flash counting is a simple method for both professional and amateur 272 

observers and, if properly designed, provides a reliable estimate of relative population size (Yuma 2007). 273 

However, this commonly employed monitoring method may also be subject to errors, because discovery 274 

rate, adult recruitment, and survival were temporally variable for L. lateralis. In particular, results of the 275 

present study suggest two notable points for the L. lateralis abundance survey. First, capture probability 276 

declined later in the season and the flash census could underestimate population size. Therefore, to obtain 277 

comparable data from many sites by flash counting, observations must be conducted concurrently, 278 

preferably earlier in the season. Considering recruitment of adults throughout the season, monitoring 279 

should be extended over the entire flight period of the firefly. Second, capture probability was lower for 280 

females, implying a possible underestimation of female population size compared with male population 281 

size by the flash census method. For the duration of each nightly mating period, L. lateralis males emit 282 

flashes while in flight, whereas lighting females generally remain stationary on perches in lower 283 

vegetation (Mitsuishi 1996). Thus, more males were likely to be found than females, and sex ratios 284 

obtained from the flash count would overestimate the actual male-biased sex ratio. Capture probabilities 285 

must be considered in the estimate of the population sex ratio. 286 

Hori et al. (1978) compared estimates of L. cruciata population obtained by the mark–recapture and 287 

flash census methods, and found the flash count underestimated the population size if the count exceeded 288 
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100. Given that such underestimation occurs for L. lateralis whose flash displays is weaker than L. 289 

cruciata (Minami 1961), reliable estimation of the large population requires the mark–recapture 290 

approach. 291 

The present study revealed adult demographic factors such as survival and recruitment, which are 292 

temporally variable. The next step will be to gain a mechanistic understanding of L. lateralis demography 293 

to reliably predict the success of the restoration program. Future studies should explore underlining 294 

mechanisms of the male-biased sex ratio and seasonal variations in adult survival and body size. 295 

Furthermore, studies should address the role of reproductive and preadult mortality processes on 296 

population growth. 297 

 298 
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Table 1 Total number of restored rice paddies and shallow ponds, number of sections, census period, and 

number of sampling events during the study period 

Year Number of rice 
paddies 

Number of ponds Number of 
sections 

Census period Number of 
sampling events 

2005 15 8 10 Jun 14–Aug 18 39 
2006 18 11 12 Jun 8–Aug 16 37 
2007 22 13 13 Jun 2–Aug 16 36 
2008 23 15 13 May 29–Aug 7 26 
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Table 2 Total number of marked beetles, number of releases after (re)capture, and percentage of 

recaptured individuals of Luciola lateralis during the study period 

Year Sex Number of marked 
individuals 

Number of releases 
after (re)capture 

Number of recaptured 
individuals  

Recapture 
ratio (%) 

2005 Male 341 740 204 59.8 
 Female 185 315 89 48.1 
2006 Male 578 1250 341 59.0 
 Female 327 525 135 41.3 
2007 Male 775 1835 492 63.5 
 Female 365 624 159 43.6 
2008 Male 756 1619 415 54.9 
 Female 217 306 60 27.6 
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Table 3 Summary of model selection statistics for survival rate (φ), recapture probability (p), proportional 

recruitment (pent), and total number of individuals (N) of adult Luciola lateralis 

Year Modela (Q)AICc ∆(Q)AICc np 
2005 φg+t pRH pentg+t Ng 3334.42 0.00 66 
 φt pRH pentg+t Ng 3334.95 0.53 65 
 φt pg+RH pentg+t Ng 3335.25 0.84 66 
 φg+t pg+RH pentg+t Ng 3336.60 2.18 67 
 φt pRH pentt Ng 3336.61 2.20 65 
2006 φg+T pg+t pentt Ng 3579.23 0.00 55 
 φg+T pg+t pentg+t Ng 3580.46 1.24 56 
 φT pg+t pentt Ng 3581.14 1.91 54 
 φg*T pg+t pentt Ng 3581.33 2.10 56 
 φT pg+t pentg+t Ng 3582.39 3.16 55 
2007 φg+T pg*T pentg+t Ng 4004.95 0.00 36 
 φg*T pg*T pentt Ng 4005.30 0.34 36 
 φg*T pg+T pentt Ng 4005.87 0.92 35 
 φg*T pg*T pentg+t Ng 4006.81 1.85 37 
 φg*T pg+T pentg+t Ng 4007.72 2.76 36 
2008 φg+T pg+t pentg+t Ng 4416.03 0.00 52 
 φg+T pg+t pentt Ng 4416.43 0.40 51 
 φg+T pg*t pentt Ng 4417.24 1.21 52 
 φg+T pt pentt Ng 4417.87 1.84 50 
 φg*T pg+t pentg+t Ng 4418.06 2.03 53 
Five best-supported models are shown in order of Akaike’s information criterion (AICc) or AICc adjusted 

for quasi-likelihood (QAICc). AICc-based (or QAICc-based) differences from the best model [∆(Q)AICc] 

and number of estimated parameters (np) are also shown 

 

ag = sex; t = time; T = linear trend of sampling date; RH = relative humidity; + = additive effect of two 

variables; * = effect of the interaction of two variables 
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Table 4 Annual changes in estimates of mean life span, population size (with lower and upper 95% 

confidence intervals), and proportion of males during the study period 

Year Mean life span (days)  Total population size  Proportion of 

males (%)  Male Female  Male Female  

2005 4.11 3.65  945 (854–1037) 357 (309–406)  72.6 

2006 4.66 5.65  1553 (1449–1657) 652 (577–726)  70.5 

2007 6.05 5.52  2030 (1876–2183) 769 (679–860)  72.5 

2008 5.86 3.95  1998 (1761–2235) 633 (506–760)  75.9 
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Figure legends 

Fig. 1 Seasonal change in daily estimates (±95% confidence intervals) of capture probability for male 

(filled circles) and female (open circles) Luciola lateralis. In 2005, difference in capture probability by 

gender was not observed in the best-supported model 

 

Fig. 2 Temporal changes in daily estimates (±95% confidence intervals) of survival probability for male 

(filled circles) and female (open circles) Luciola lateralis 

 

Fig. 3 Estimates of daily recruitment (left) and population size (right) of male (filled circles) and female 

(open circles) Luciola lateralis using the best-supported model. Error bars indicate 95% confidence 

intervals 

 

Fig. 4 Seasonal change in the proportion of males in adult L. lateralis populations. Filled circles and 

filled triangles, 2005 and 2006, respectively; open circles and open triangles, 2007 and 2008, 

respectively 

 

Fig. 5 Relationships between date of first capture and body size in male (filled circles, solid line) and 

female (open circles, dashed line) Luciola lateralis. n = 3554 beetles in 4 years. Regression lines result 

from a linear mixed-effect model 
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Fig. 5 

 

 


