Activated macrophages promote Wnt signaling through TNF- α in gastric tumor cells. ## K. Oguma, H. Oshima and M. Oshima The canonical Wnt signaling pathway (Wnt/ β -catenin pathway) operates by stabilizing β catenin. The activation of Wnt/ β -catenin signaling plays a key role in gastrointestinal tumorigenesis as well as in normal intestinal stem cells. It has been suggested that the promotion of Wnt/ β -catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in promotion of Wnt/ β -catenin activity in gastric tumorigenesis. We found β -catenin nuclear accumulation in macrophage infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in $Apc^{\Delta 716}$ mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/ β -catenin signaling, which thus leads to tumor development. Importantly, the conditioned medium of activated macrophages promoted Wnt/ β -catenin signaling in gastric cancer cells, which was suppressed by the inhibition of tumor necrosis factor (TNF)- α (Fig. 1). Furthermore, treatment with TNF- α induces GSK3 β phosphorylation, which resulted in the stabilization of β -catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear β -catenin accumulation. These results suggest that macrophage-derived TNF- α promotes Wnt/ β -catenin signaling through inhibition of GSK3 β , which may contribute to tumor development in the gastric mucosa. Accordingly, the present results suggest that suppression of macrophage infiltration and its activation by anti-inflammatory drugs or inhibitors for PGE2 pathway is a possible strategy for chemoprevention against gastric cancer. racrophage-CM Fig. 1. FACS analyses of GFP intensity corresponding to Wnt activity of control gastric cancer cells (*left*) and stimulated cancer cells with conditioned medium derived from activated macrophages (*right*). Reference: Oguma K, et al. EMBO J, 27: 1671, 2008.