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Abstract 

     MafB is a basic leucine zipper transcription factor that plays important roles in 

development and differentiation processes. During osteoclastogenesis, its expression is 

downregulated at the transcriptional level via the JNK and p38 MAP kinase pathways. 

In the present study, we demonstrated that MafB protein stability is regulated by JNK 

and identified a phosphorylation site, Thr62. The expression of a constitutively active 

form of JNK (a fusion protein MKK7 1-JNK1 1) promoted the degradation of MafB 

in COS7 cells, and a T62A substitution significantly reduced the instability of MafB. 

The introduction of a four-fold (T58A/T62A/S70A/S74A) substitution in an acidic 

transcription-activating domain almost protected the instability resulting from the 

activation of JNK. Furthermore, treatment with proteasome inhibitors increased the 

MafB level, and a high-molecular-weight smear, characteristic of polyubiquitination, 

was observed in lysates from cells in which MafB, ubiquitin, and MKK7 1-JNK1 1 

were co-expressed. These results suggest that phosphorylation of MafB by JNK confers 

susceptibility to proteasomal degradation. 

Keywords: JNK; MafB; phosphorylation; proteasome; stability; ubiquitin 
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Introduction 

     Maf family proteins are novel transcription factors and share a conserved basic 

region and leucine zipper (bZIP) motif that mediate DNA binding and dimer formation 

(Fig. 1A). The Maf group comprises 4 large Maf subfamilies (MafA/L-Maf, 

MafB/kreisler, c-Maf, and neural retina leucine zipper [NRL]) that contain an acidic 

transcription-activating domain (TAD) located at their N-terminus and 3 small Maf 

proteins that contain only the bZIP region (MafF, MafG, and MafK). These factors act 

as key regulators of terminal differentiation in many tissues such as the bone, brain, 

kidney, lens, pancreas, retina, and in blood [1]. Moreover, the large Maf proteins have 

been directly implicated in carcinogenesis, as demonstrated in cell culture, animal 

models and human cancers [2]. Of these factors, MafB is expressed in a wide variety of 

tissues [3,4], and gene inactivation studies or mutant analysis of MafB have 

demonstrated its important roles in the development and differentiation processes of the 

gonads, hematopoietic system, hindbrain, pancreatic islets, and renal cells [5-11]. 

Investigation of the molecular mechanisms of gene regulation by MafB is, however, a 

new undertaking. A recent study reported that MafB was phosphorylated by p38 
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mitogen-activated protein (MAP) kinase [12] and glycogen synthase kinase 3 (GSK3) 

[13], and SUMO-1 modification of MafB regulated MafB-driven macrophage 

differentiation [14]. It was also shown that during osteoclastogenesis, the expression 

levels of MafB were significantly reduced by the receptor activator of nuclear factor-kB 

ligand (RANKL). Furtherore, RANKL downregulated MafB expression at least on the 

transcriptional level via the c-Jun N-terminal kinase (JNK) and p38 MAP kinase 

pathways [15]. The present study demonstrates that MafB is phosphorylated by JNK 

and degraded through the ubiquitin-proteasome pathway in COS7 cells. 

Materials and Methods 

Plasmid construction 

     Bacterial expression vectors for the synthesis of N-terminal thioredoxin 

(Trx)·His·S-tagged mouse MafB and human c-Jun (residues 1—79) proteins were 

obtained by polymerase chain reaction (PCR) and subsequent cloning into the pET32a 

vector (Merck). Single and multiple phosphorylation mutants of mouse MafB were 

generated by PCR-based site-directed mutagenesis [16] using KOD-Plus-DNA 

polymerase (Toyobo), followed by subcloning and sequencing of the whole reading 
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frame. For mammalian expression vectors for hemagglutinin (HA) epitope-tagged 

mouse MafB (wild and phosphorylation mutants), a consensus Kozak sequence was 

introduced at the 5’ terminus of MafB using PCR. PCR fragments were cloned into the 

pcDNA
TM

3.1/Zeo (-) (Invitrogen) vector. An N-terminal Myc-tagged 

ubiquitin-encoding construct was generated by PCR-mediated cloning and subcloning 

into the pcDNA
TM

3.1/Zeo (-) vector. The plasmids pEF-Flag-MKK7 1-JNK1 1 and 

pEF-Flag-MKK7 1-JNK1 1 (kinase negative (KN)), which has the Lys434-Lys435 → 

Met-Met mutation of JNK, were used as the constitutively active form and the 

kinase-negative form of JNK, respectively [17]. 

Cell culture and transfections 

     COS7 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal calf serum (FCS). Cells were transfected with the 

indicated expression plasmids by using the linear 25-kDa polyethylenimine (PEI) 

“Max” (Polysciences Inc.) as the polycationic vector for nucleic acid delivery, 

essentially as described by Roseanne et al. [18] in adherent cell condition. For 

transfection of COS7 cells in a 10-cm plate, 48 g of PEI and 12 g of plasmid DNA 
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were used. The cells were harvested after 24-h incubation. 

Immunoprecipitation and phosphatase treatment 

     COS7 cells in a 10-cm plate were transfected with MafB wild or mutant plasmid. 

Total cell lysates were prepared by lysing cells on ice in 2 ml of 

radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris [pH 8.0], 500 mM NaCl, 

1% NP-40, 0.5% deoxycholic acid sodium salt, and 0.1% sodium dodecyl sulfate 

[SDS]) supplemented with protease inhibitors CelLytic
TM

M (Sigma), phosphatase 

inhibitors (20 mM sodium -glycerophosphate and 1 mM sodium orthovanadate), and 5 

mM N-ethylmaleimide followed by brief sonication. Lysates were cleared by 

centrifugation (20,800 × g for 30 min). Because the MafB protein has 2 internal His6 

sequences, MafB proteins were purified by incubating for 2 h at 4℃ with 20 l of 

Ni-NTA agarose (Qiagen). The beads were washed 3 times in RIPA buffer and then 

washed twice in calf intestine alkaline phosphatase (CIAP) buffer (50 mM Tris [pH 

8.0]). The beads were resuspended in up to 200 l of CIAP buffer and 1 mM 

phenylmethanesulfonyl fluoride. The reaction was carried out (1 h, 37℃) in a tube 

containing 10 l of the beads by the addition of 3 units of CIAP (Toyobo), and it was 
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arrested by the addition of 4×  SDS sample buffer. A SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) western blot analysis was then performed using 

horseradish peroxidase (HRP)-conjugated anti-HA rat monoclonal antibody 3F10 

(Roche). 

In vitro protein kinase assays 

     According to the manufacture’s recommendations, N-terminal thioredoxin 

(Trx)·His·S-fusion recombinant proteins were purified from Escherichia coli BL21 

(DE3) extracts by using Ni-NTA agarose. COS7 cells cultured in the 10-cm plate were 

transiently transfected with pEF-Flag-MKK7 1-JNK1 1 or KN. After a 24-h 

incubation period following transfection, Flag-tagged kinases were purified from cell 

extracts as described [19], using the mouse anti-Flag antibody M2 (Sigma) bound to 

protein G-agarose (Roche). M2 immunoprecipitated Flag-MKK7 1-JNK1 1 or KN 

was used to phosphorylate 3 g of Trx·His·S-MafB fusion proteins that carry the 

indicated substitutions of the putative MAP kinase phosphorylation site. Trx·His·S-c-Jun 

(1-79) fusion protein was used as a positive control. The kinase reaction was carried out 

as described [19] at 30℃ for 20 min, and it was arrested by the addition of 4× SDS 
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sample buffer. Samples were analyzed by 8% SDS-PAGE and autoradiography. 

Metabolic labeling and pulse-chase experiments 

     Metabolic labeling and pulse-chase experiments were performed essentially as 

described in [20]. In brief, 24-h post-transfection cells (24-well plate) were washed and 

preincubated for 30 min in Met/Cys-free DMEM supplemented with 5% dialyzed FCS, 

after which they were labeled for 1 h with 2.32 MBq Tran
35

S-Label No thaw Metabolic 

Labeling Reagent (MP Biomedical Inc.) in 0.4 ml of the medium per well. The cells 

were washed and then chased in DMEM supplemented with 10% FCS for 1, 2, or 4 h. 

They were then homogenized with QIAshredder homogenizer (Qiagen) in RIPA buffer 

supplemented with protease inhibitors, phosphatase inhibitors, and 5 mM 

N-ethylmaleimide. The lysates were precleared with protein-G agarose (Roche) and 

incubated overnight at 4℃ with anti-HA mouse monoclonal antibody 12C5 (Roche) 

and protein-G agarose. The beads were washed 3 times in RIPA buffer. 

Immunoprecipitates were eluted by boiling in SDS sample buffer. The eluted proteins 

were resolved by 7.5% SDS-PAGE, and the gel was dried. The radioactivity in cellular 

HA-MafB was analyzed using a Fuji BAS1500 imaging analyzer system (Fujifilm). 
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Proteasomal and lysosomal inhibition 

     Twenty-four hours after the transfection, the stability of the MafB was analyzed 

by incubating the cells in a 12-well plate for 6 h in the presence of a proteasome 

inhibitor (50 M MG132 [Merck] or 20 M clasto-lactacystin -lactone (also known as 

Omuralide) [Merck]) or lysosomal inhibitor (20 mM ammonium chloride [Sigma] or 

100 M chloroquine [Sigma]). After the treatment, the cells were lysed in SDS sample 

buffer and subjected to 7.5% SDS-PAGE and western blot analysis. 

Ubiquitination assay 

     HA-MafB wild or mutant expression vector was cotransfected into COS7 cells in 

a 10-cm plate with a Myc-ubiquitin expression vector and kinase expression vectors as 

indicated in Fig. 6. Cells were lysed 24 h later with RIPA buffer supplemented with 

protease inhibitors, phosphatase inhibitors, and 5 mM N-ethylmaleimide and briefly 

sonicated. Insoluble materials were removed by centrifugation. The HA-tagged proteins 

were immunoprecipitated with 3F10-conjugated agarose beads (Roche) for 4 h at 4℃. 

The beads were washed 3 times with RIPA buffer, boiled in SDS sample buffer, and 

then subjected to western blot analysis. Myc-tagged ubiquitin conjugates were detected 
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using an HRP-conjugated rabbit anti-Myc antibody (Sigma). 

Results and Discussion 

MafB is phosphorylated by JNK 

     Exogenously expressed HA-MafB was detected as a band of approximately 

50-kDa by western blot analysis. When the purified HA-MafB protein was treated with 

CIAP, the mobility of the band shifted to more rapidly migrating forms, indicating that 

the overexpressed MafB protein was phosphorylated in COS7 cells (Fig. 1B). The 

MafB protein has 10 putative MAP kinase phosphorylation sites (Ser/Thr-Pro) (Fig. 1A). 

To examine whether MafB acts as a substrate for JNK and to identify the residue(s) that 

could be phosphorylated by JNK, 1 of the 10 putative MAP kinase phosphorylation sites 

was chosen, and 12 MafB mutants carrying substitutions of Ser and Thr residues 

(conforming to the MAP kinase consensus sites) for Ala were constructed. 

Trx·His·S-MafB (wild and mutants) fusion recombinant proteins were prepared, and an 

in vitro protein kinase assay was performed. For the constitutively active form and the 

kinase-negative form of JNK, pEF-Flag-MKK7 1-JNK1 1 and KN plasmids, 

respectively, were used. MafB was phosphorylated by Flag-MKK7 1-JNK1 1 but not 
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KN at the phosphoacceptor site Thr62 (Fig. 1C). To investigate whether MafB is indeed 

phosphorylated directly by JNK in living cells, the MafB 10A mutant carrying 

substitutions of Ser and Thr residues of all Ser/Thr-Pro sites for Ala and the 9AT62 

mutant (the 10A mutant but carrying Thr62 site) were expressed in COS7 cells together 

with Flag-MKK7 1-JNK1 1. Western blot analysis indicated that the purified 9AT62 

mutant was more immunoreactive for phosphothreonine antibody than the 10A mutant 

(Fig. 1. D and E). These results indicate that Thr62 site of the MafB protein is 

phosphorylated by JNK in COS7 cells. In addition, the sequences surrounding mouse 

MafB Thr62 are strikingly conserved among large Maf proteins (Fig. 2). 

Activation of JNK promoted the degradation of MafB in COS7 cells 

     To examine the effects of JNK activation on MafB in COS7 cells, transfections 

were performed with HA-MafB and increasing amounts of Flag-MKK7 1-JNK1 1 

plasmids. Interestingly, the concentration of HA-MafB decreased owing to the 

activation of JNK in a dose-dependent manner (Fig. 3. A and B). However, in transient 

transfection, co-overexpression may alter the expression levels from the different 

cotransfected plasmid. Therefore, we measured the half-life of HA-MafB to assess 
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whether HA-MafB is modified by a constitutively active form or a kinase-negative form 

of JNK. Metabolic labeling and pulse-chase experiments showed that 
35

S-labeled 

HA-MafB disappeared more rapidly in cells cotransfected with the kinase-active form 

than in cells cotransfected with the kinase-negative form (Fig. 3. C and D). These 

results indicate that the rate of MafB protein degradation is regulated by the activation 

of JNK. 

Mutation in the JNK target site on MafB protects the instability of MafB 

     The effects of mutating the phosphorylation site (conforming to the MAP kinase 

consensus site) on stability were investigated. HA-MafB wild, HA-MafB carrying a 

T62A substitution, the 4A mutant (HA-MafB with T58A, T62A, S70A, and S74A 

substitutions), the 6A mutant (HA-MafB with S14A, T58A, T62A, S70A, S74A, and 

T103A substitutions), and the 10A mutant were introduced into COS7 cells and 

subjected to western blot analysis. Fig. 4 shows that the introduction of a mutation 

(T62A) into the JNK target site on the MafB protein reduced the instability of MafB 

resulting from the activation of JNK; the introduction of the four-fold substitutions 

almost protected the instability, which was similar to the effects of the six-fold and the 
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ten-fold substitutions. These results suggest that the phosphorylation status of the Thr62 

site is associated with stability. However, additional phosphorylation status of the Thr58, 

Ser70, and Ser74 sites may be also needed for enhancing stability. 

MafB is degraded by ubiquitin-dependent pathway 

     Eukaryotic cells contain 2 major systems for protein degradation: the proteasome, 

an ATP-dependent proteolytic complex that mostly degrades ubiquitinated proteins, and 

the lysosomal apparatus, a membrane-enclosed vacuole containing multiple acid 

proteases. To determine whether the degradation of MafB is due to proteasomal or 

lysosomal activity, we analyzed the effect of 2 proteasome inhibitors (MG132 or 

clasto-lactacystin -lactone [also known as Omuralide]) and 2 lysosomal inhibitors 

(ammonium chloride or chloroquine) on the degradation of exogenously expressed 

HA-MafB protein (Fig. 5. A and B). Both MG132 and Omuralide induced a marked 

increase in the HA-MafB protein levels in the cells transfected with both a 

constitutively active and a kinase-negative form of JNK. Neither ammonium chloride 

nor chloroquine exerted any effect. As a positive control for lysosomal degradation, we 

assessed the protein levels of beta-site amyloid precursor protein cleaving enzyme 
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(BACE), a protein known to be degraded by the lysosome [21]. Treatment with 

lysosomal inhibitors resulted in an increase in BACE protein levels (data not shown). 

Under these conditions, the amount of actin was constant. These results suggest that 

MafB is degraded by the proteasome. To examine the relationship between exogenously 

expressed HA-MafB protein stability and phosphorylation status in COS7 cells, COS7 

cells were transfected with plasmids expressing HA-MafB wild or T62A mutant and 

Flag-MKK7 1-JNK1 1 or KN and treated with or without MG132. Western blot 

analysis indicates that MG132 slightly reduced the instability of the T62A mutant owing 

to the activation of JNK, but not statistically significant. These results suggest that the 

phosphorylation status of the Thr62 site is associated with the degradation caused by the 

proteasome. 

     An important component of proteasome-mediated degradation is the proper 

targeting of the protein to be degraded by the ubiquitin conjugation complex. This 

process results in the attachment of multiple ubiquitin chains to the target protein. To 

determine whether MafB was ubiquitinated, HA-MafB was expressed in COS7 cells 

with Myc-ubiquitin and Flag-MKK7 1-JNK1 1 and purified from the 
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HA-MafB-containing cell extracts using anti-HA-agarose. A high-molecular-weight 

smear, characteristic of polyubiquitination, was observed in lysates from cells in which 

HA-MafB, Myc-ubiquitin, and Flag-MKK7 1-JNK1 1 were co-expressed, 

demonstrating that MafB is degraded by the ubiquitin-proteasome pathway (Fig. 6). A 

high-molecular-weight smear was also observed in lysates from cells in which the T62A 

mutant, Myc-ubiquitin and Flag-MKK7 1-JNK1 1 were co-expressed. However, this 

smear was weaker than that of HA-MafB wild, and the input of the T62A mutant had 

approximately 4 times more HA-MafB protein than that of HA-MafB wild (compared 

input lanes 3 with 5). Thus, the overexpressed T62A mutant is less sensitive to 

proteasomal degradation owing to the activation of JNK. 

     Some regulatory proteins have been reported to be ubiquitinated depending on 

their phosphorylation status [22,23]. Several previous studies have reported 

post-translational processes in the regulation of MafA, which is a member of the large 

Maf family of proteins. For example, quail and chicken MafA were shown to be 

phosphorylated by the extracellular signal-regulated kinase (ERK), and the 

phosphorylation status of MafA influenced the transactivation potential, and the 
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phosphorylation also induced the degradation of MafA by the proteasome [24,25]. In 

addition, p38 MAP kinase was shown to be a major regulator of mouse MafA protein 

stability under both basal and high-glucose conditions as well as during oxidative stress 

[26]. Another study showed quail and mouse MafA to be constitutively phosphorylated 

by GSK3, and the phosphorylation induced ubiquitination and degradation of MafA 

[13,27]. Furthermore, SUMO-1 and SUMO-2 modifications of MafA have been shown 

to reduce the transcriptional activity of MafA in pancreatic -cells [28]. 

     In the present study, it was found that MafB was phosphorylated by JNK and a 

phosphorylation site, Thr62, was identified in TAD. Activation of JNK promoted the 

degradation of MafB in COS7 cells, while the introduction of a mutation into the JNK 

target site on MafB significantly reduced the instability of MafB. This degradation 

occurred via the ubiquitin-proteasome pathway. However we cannot exclude indirect 

effects of JNK-mediated MafB degradation such as destabilizing factors induced or 

activated by JNK. Short motifs that mediate phosphorylation-dependent recognition by 

an E3 ubiquitin ligase are known as phosphodegrons. The degron is generally found 

within the TAD of transcription factors [29]. This is in accordance with our result. 
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Because introduction of a mutation into the Thr62 site on the MafB protein partially 

protected the instability of MafB and the phosphorylation status of the Thr58, Ser70, 

and Ser74 sites was also associated with the stability, E3 ubiquitin ligase(s) induced or 

activated by JNK may recognize these phosphodegrons. 

     We attempted to observe the effect of Itch in one of the E3 ubiquitin ligases 

activated by JNK [30] on the stability of MafB. Exogenously expressed Itch did not 

enhance the destabilization of MafB by the activation of JNK (data not shown). We also 

investigated whether MafB phosphorylation affects its transcriptional activity. However, 

because MafB was degraded by the activation of JNK, it was not apparent whether 

MafB phosphorylation affects its transcriptional activity. Expression levels of MafB are 

significantly reduced by RANKL during osteoclastogenesis at the mRNA and protein 

levels, and RANKL downregulates MafB expression via the JNK and p38 MAP kinase 

pathways [16]. During osteoclastogenesis, RANKL may regulate MafB expression via 

the ubiquitin-proteasome pathway. 
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Legends to Figures. 

Fig. 1. MafB Thr62 is phosphorylated by JNK. (A) Schematic representation of mouse 
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MafB. The putative MAP kinase phosphorylation sites (S/T-P) are indicated on MafB 

structure (TAD: transcription activation domain, H: histidine repeat [His8, His6]). (B) 

Phosphatase treatment. Purified HA-MafB wild or the 10A mutant (HA-MafB with 

S14A, T58A, T62A, S70A, S74A, T103A, S170A, S178A, S315A, and S318A 

substitutions) were treated with or without CIAP and subjected to SDS-PAGE and 

western blot analysis using HRP-conjugated anti-HA antibody 3F10. (C) In vitro protein 

kinase assays. Either Flag-MKK7 1-JNK1 1 (a constitutively active form) or 

Flag-MKK7 1-JNK1 1 (KN) (a kinase-negative form) was used to phosphorylate 

Trx·His·S-MafB fusion proteins carrying the indicated substitutions of the putative 

MAP kinase phosphorylation site. Trx·His·S-c-Jun (1-79) fusion protein was used as a 

positive control. Samples were analyzed by SDS-PAGE and autoradiography. Arrow: 

Trx·His·S-MafB fusion protein. Arrow head: Trx·His·S-c-Jun (1-79) fusion protein. (D) 

Phosphorylation of the MafB T62 site in COS7 cells. The 9AT62 mutant (HA-MafB 

with S14A, T58A, S70A, S74A, T103A, S170A, S178A, S315A, and S318A 

substitutions) or the 10A mutant was co-expressed with Flag-MKK7 1-JNK1 1 or KN 

in COS7 cells. Twenty-four hours after the transfection, the cells were incubated for 6 h 
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in the presence of 50 M MG132 to protect HA-MafB from proteasomal degradation. 

Each HA-MafB mutant was purified by Ni-NTA agarose and subjected to SDS-PAGE 

and western blot analysis using anti-phospho-Thr mouse monoclonal antibody PTR-8 

(BioMakor). Inputs were also examined by western blot analysis using HRP-conjugated 

3F10, anti-phospho-c-Jun (Ser63) II (Cell Signaling Technology), and anti-actin 

(Sigma) antibodies. (E) The amounts of phospho-Thr HA-MafB. Western blots were 

visualized and quantitatively analyzed using the Densitograph AE-6930 Lumino CCD 

and Lane analyzer 10H (ATTO). The values of HA-MafB with phospho-Thr were 

normalized to HA-MafB. The value of the KN-transfected cells in each independent 

experiment couple was set as 100%. The results are expressed as mean ± S.D. of 3 

independent experiments. *P ＜ 0.05; NS, nonsignificant (P ＞ 0.05) compared with 

the KN-transfected cells (paired t-test). 

Fig. 2. Sequence comparison of the TAD of large Maf proteins surrounding Thr62. 

Asterisks represent amino acid residues that are conserved with respect to mouse MafB 

protein. S/T-P sites are underlined. Both chicken and quail MafA are the same as mouse 

MafA except for P47A, T75G, and G76Q substitutions. 
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Fig. 3. Activation of JNK-promoted degradation of MafB. (A) COS7 cells in a 12-well 

plate were transfected with pcDNA-HA-MafB plasmids (0.25 g) and increasing 

amounts of pEF-Flag-MKK7 1-JNK1 1 plasmids (0, 0.03, 0.08, 0.25 and 0.75 g). 

Empty pEF-Flag vector was used to equalize the total amount of transfected DNA (1 

g). Western blot analysis was performed using HRP-conjugated 3F10, 

anti-phospho-c-Jun, and anti-actin antibodies. (B) The amounts of HA-MafB. Western 

blots were visualized and quantitatively analyzed. The values were normalized to the 

level of actin in the same sample. The value of the pEF-Flag-MKK7 1-JNK1 1 (0 

g)-transfected cells in each independent experiment was set as 100%. The results are 

expressed as mean ± S.D. of 3 independent experiments. (C) Turnover of HA-MafB. 

COS7 cells transiently expressing HA-MafB with Flag-MKK7 1-JNK1 1 or KN were 

metabolically labeled for 1 h and chased for the indicated time points. Cells were then 

lysed and immunoprecipitated with anti-HA mouse monoclonal antibody 12C5. (D) The 

radioactivity of HA-MafB. The results are expressed as percentages (± S.D., n = 2) of 

HA-MafB radioactivity at the 0-h time point. 

Fig. 4. Effect of mutation in the phosphorylation site on the stability of MafB. (A) 
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COS7 cells in a 12-well plate were transfected with the plasmid for expressing 

HA-MafB wild or mutants carrying the indicated substitution(s) (0.4 g), and either 

Flag-MKK7 1-JNK1 1 or KN (0.6 g). Western blot analysis was performed using 

HRP-conjugated 3F10, anti-phospho-c-Jun, and anti-actin antibodies. T62A (HA-MafB 

with T62A substitution), 4A mutant (HA-MafB with T58A, T62A, S70A, and S74A 

substitutions), 6A mutant (HA-MafB with S14A, T58A, T62A, S70A, S74A, and 

T103A substitutions), 10A mutant (HA-MafB with S14A, T58A, T62A, S70A, S74A, 

T103A, S170A, S178A, S315A, and S318A substitutions) (B) The amounts of 

HA-MafB. Western blots were visualized and quantitatively analyzed. The values were 

normalized to the level of actin in the same sample. The value of the KN-transfected 

cells in each independent experiment couple was set as 100%. The results are expressed 

as mean ± S.D. of 3 independent experiments *P ＜ 0.05; NS, nonsignificant (P ＞ 

0.05) compared with the KN-transfected cells (paired t-test). 

Fig. 5. MafB is degraded by the ubiquitin-proteasome pathway. (A) Treatment of 

proteasome and lysosomal degradation inhibitors. COS7 cells in a 12-well plate were 

transfected with pcDNA-HA-MafB (0.4 g) and/or either pEF-Flag-MKK7 1-JNK1 1 
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or KN (each 0.6 g). Twenty-four hours after the transfection, the cells were incubated 

for 6 h in the presence of a proteasome inhibitor (MG132 or Omuralide), or a lysosomal 

inhibitor (ammonium chloride or chloroquine). Western blot analysis was performed 

using HRP-conjugated 3F10, anti-phospho-c-Jun, and anti-actin antibodies. (B) The 

amounts of HA-MafB. Western blots were visualized and quantitatively analyzed. The 

values were normalized to the level of actin in the same sample. The value of the 

vehicle (DMSO) only-treated cells in each independent experiment couple was set as 

100%. The results are expressed as mean ± S.D. of 3 independent experiments *P ＜ 

0.05; NS, nonsignificant (P ＞ 0.05) compared with the DMSO only-treated cells 

(paired t-test). (C) Effect of MG132 on T62A mutant. COS7 cells were transfected with 

plasmids expressing HA-MafB wild or T62A mutant and either Flag-MKK7 1-JNK1 1 

or KN. Twenty-four hours after the transfection, the cells were incubated for 6 h in the 

presence or absence of MG132. Western blot analysis was performed using 

HRP-conjugated 3F10, anti-phospho-c-Jun, and anti-actin antibodies. (D) The amounts 

of HA-MafB. Western blots were visualized and quantitatively analyzed. The values 

were normalized to the level of actin in the same sample. The value of the DMSO 
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only-treated cells in each independent experiment couple was set as 100%. The results 

are expressed as mean ± S.D. of 3 independent experiments *P ＜ 0.05; NS, 

nonsignificant (P ＞ 0.05) compared with the DMSO only-treated cells (paired t-test). 

Fig. 6. Ubiquitination assay. COS7 cells in a 10-cm plate were transfected with plasmid 

for expressing HA-MafB wild or the mutant (each 3 g), either Flag-MKK7 1-JNK1 1 

or KN (each 4.5 g), and/or Myc-ubiquitin (each 4.5 g). Empty pcDNA™3.1/Zeo (-) 

vector was used to equalize the total amount of transfected DNA (12 g). Cell lysates 

were immunoprecipitated with the 3F10 conjugated agarose beads. The beads were 

washed and subjected to western blot analysis. Myc-tagged ubiquitin conjugates were 

detected using an HRP-conjugated anti-Myc antibody. Cell lysates were also analyzed 

by western blot analysis using HRP-conjugated 3F10, anti-phospho-c-Jun, and 

anti-actin antibodies. A bracket indicates the polyubiquitinated HA-MafB. 
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Abstract 

     MafB is a basic leucine zipper transcription factor that plays important roles in 

development and differentiation processes. During osteoclastogenesis, its expression is 

downregulated at the transcriptional level via the JNK and p38 MAP kinase pathways. 

In the present study, we demonstrated that MafB protein stability is regulated by JNK 

and identified a phosphorylation site, Thr62. The expression of a constitutively active 

form of JNK (a fusion protein MKK7 1-JNK1 1) promoted the degradation of MafB 

in COS7 cells, and a T62A substitution significantly reduced the instability of MafB. 

The introduction of a four-fold (T58A/T62A/S70A/S74A) substitution in an acidic 

transcription-activating domain almost protected the instability resulting from the 

activation of JNK. Furthermore, treatment with proteasome inhibitors increased the 

MafB level, and a high-molecular-weight smear, characteristic of polyubiquitination, 

was observed in lysates from cells in which MafB, ubiquitin, and MKK7 1-JNK1 1 

were co-expressed. These results suggest that phosphorylation of MafB by JNK confers 

susceptibility to proteasomal degradation. 

Keywords: JNK; MafB; phosphorylation; proteasome; stability; ubiquitin 
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Introduction 

     Maf family proteins are novel transcription factors and share a conserved basic 

region and leucine zipper (bZIP) motif that mediate DNA binding and dimer formation 

(Fig. 1A). The Maf group comprises 4 large Maf subfamilies (MafA/L-Maf, 

MafB/kreisler, c-Maf, and neural retina leucine zipper [NRL]) that contain an acidic 

transcription-activating domain (TAD) located at their N-terminus and 3 small Maf 

proteins that contain only the bZIP region (MafF, MafG, and MafK). These factors act 

as key regulators of terminal differentiation in many tissues such as the bone, brain, 

kidney, lens, pancreas, retina, and in blood [1]. Moreover, the large Maf proteins have 

been directly implicated in carcinogenesis, as demonstrated in cell culture, animal 

models and human cancers [2]. Of these factors, MafB is expressed in a wide variety of 

tissues [3,4], and gene inactivation studies or mutant analysis of MafB have 

demonstrated its important roles in the development and differentiation processes of the 

gonads, hematopoietic system, hindbrain, pancreatic islets, and renal cells [5-11]. 

Investigation of the molecular mechanisms of gene regulation by MafB is, however, a 

new undertaking. A recent study reported that MafB was phosphorylated by p38 
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mitogen-activated protein (MAP) kinase [12] and glycogen synthase kinase 3 (GSK3) 

[13], and SUMO-1 modification of MafB regulated MafB-driven macrophage 

differentiation [14]. It was also shown that during osteoclastogenesis, the expression 

levels of MafB were significantly reduced by the receptor activator of nuclear factor-kB 

ligand (RANKL). Furtherore, RANKL downregulated MafB expression at least on the 

transcriptional level via the c-Jun N-terminal kinase (JNK) and p38 MAP kinase 

pathways [15]. The present study demonstrates that MafB is phosphorylated by JNK 

and degraded through the ubiquitin-proteasome pathway in COS7 cells. 

Materials and Methods 

Plasmid construction 

     Bacterial expression vectors for the synthesis of N-terminal thioredoxin 

(Trx)·His·S-tagged mouse MafB and human c-Jun (residues 1—79) proteins were 

obtained by polymerase chain reaction (PCR) and subsequent cloning into the pET32a 

vector (Merck). Single and multiple phosphorylation mutants of mouse MafB were 

generated by PCR-based site-directed mutagenesis [16] using KOD-Plus-DNA 

polymerase (Toyobo), followed by subcloning and sequencing of the whole reading 
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frame. For mammalian expression vectors for hemagglutinin (HA) epitope-tagged 

mouse MafB (wild and phosphorylation mutants), a consensus Kozak sequence was 

introduced at the 5’ terminus of MafB using PCR. PCR fragments were cloned into the 

pcDNA
TM

3.1/Zeo (-) (Invitrogen) vector. An N-terminal Myc-tagged 

ubiquitin-encoding construct was generated by PCR-mediated cloning and subcloning 

into the pcDNA
TM

3.1/Zeo (-) vector. The plasmids pEF-Flag-MKK7 1-JNK1 1 and 

pEF-Flag-MKK7 1-JNK1 1 (kinase negative (KN)), which has the Lys434-Lys435 → 

Met-Met mutation of JNK, were used as the constitutively active form and the 

kinase-negative form of JNK, respectively [17]. 

Cell culture and transfections 

     COS7 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal calf serum (FCS). Cells were transfected with the 

indicated expression plasmids by using the linear 25-kDa polyethylenimine (PEI) 

“Max” (Polysciences Inc.) as the polycationic vector for nucleic acid delivery, 

essentially as described by Roseanne et al. (18) in adherent cell condition. For 

transfection of COS7 cells in a 10-cm plate, 48 g of PEI and 12 g of plasmid DNA 
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were used. The cells were harvested after 24-h incubation. 

Immunoprecipitation and phosphatase treatment 

     COS7 cells in a 10-cm plate were transfected with MafB wild or mutant plasmid. 

Total cell lysates were prepared by lysing cells on ice in 2 ml of 

radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris [pH 8.0], 500 mM NaCl, 

1% NP-40, 0.5% deoxycholic acid sodium salt, and 0.1% sodium dodecyl sulfate 

[SDS]) supplemented with protease inhibitors CelLytic
TM

M (Sigma), phosphatase 

inhibitors (20 mM sodium -glycerophosphate and 1 mM sodium orthovanadate), and 5 

mM N-ethylmaleimide followed by brief sonication. Lysates were cleared by 

centrifugation (20,800 × g for 30 min). Because the MafB protein has 2 internal His6 

sequences, MafB proteins were purified by incubating for 2 h at 4℃ with 20 l of 

Ni-NTA agarose (Qiagen). The beads were washed 3 times in RIPA buffer and then 

washed twice in calf intestine alkaline phosphatase (CIAP) buffer (50 mM Tris [pH 

8.0]). The beads were resuspended in up to 200 l of CIAP buffer and 1 mM 

phenylmethanesulfonyl fluoride. The reaction was carried out (1 h, 37℃) in a tube 

containing 10 l of the beads by the addition of 3 units of CIAP (Toyobo), and it was 
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arrested by the addition of 4×  SDS sample buffer. A SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) western blot analysis was then performed using 

horseradish peroxidase (HRP)-conjugated anti-HA rat monoclonal antibody 3F10 

(Roche). 

In vitro protein kinase assays 

     According to the manufacture’s recommendations, N-terminal thioredoxin 

(Trx)·His·S-fusion recombinant proteins were purified from Escherichia coli BL21 

(DE3) extracts by using Ni-NTA agarose. COS7 cells cultured in the 10-cm plate were 

transiently transfected with pEF-Flag-MKK7 1-JNK1 1 or KN. After a 24-h 

incubation period following transfection, Flag-tagged kinases were purified from cell 

extracts as described [19], using the mouse anti-Flag antibody M2 (Sigma) bound to 

protein G-agarose (Roche). M2 immunoprecipitated Flag-MKK7 1-JNK1 1 or KN 

was used to phosphorylate 3 g of Trx·His·S-MafB fusion proteins that carry the 

indicated substitutions of the putative MAP kinase phosphorylation site. Trx·His·S-c-Jun 

(1-79) fusion protein was used as a positive control. The kinase reaction was carried out 

as described [19] at 30℃ for 20 min, and it was arrested by the addition of 4× SDS 
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sample buffer. Samples were analyzed by 8% SDS-PAGE and autoradiography. 

Metabolic labeling and pulse-chase experiments 

     Metabolic labeling and pulse-chase experiments were performed essentially as 

described in [20]. In brief, 24-h post-transfection cells (24-well plate) were washed and 

preincubated for 30 min in Met/Cys-free DMEM supplemented with 5% dialyzed FCS, 

after which they were labeled for 1 h with 2.32 MBq Tran
35

S-Label No thaw Metabolic 

Labeling Reagent (MP Biomedical Inc.) in 0.4 ml of the medium per well. The cells 

were washed and then chased in DMEM supplemented with 10% FCS for 1, 2, or 4 h. 

They were then homogenized with QIAshredder homogenizer (Qiagen) in RIPA buffer 

supplemented with protease inhibitors, phosphatase inhibitors, and 5 mM 

N-ethylmaleimide. The lysates were precleared with protein-G agarose (Roche) and 

incubated overnight at 4℃ with anti-HA mouse monoclonal antibody 12C5 (Roche) 

and protein-G agarose. The beads were washed 3 times in RIPA buffer. 

Immunoprecipitates were eluted by boiling in SDS sample buffer. The eluted proteins 

were resolved by 7.5% SDS-PAGE, and the gel was dried. The radioactivity in cellular 

HA-MafB was analyzed using a Fuji BAS1500 imaging analyzer system (Fujifilm). 
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Proteasomal and lysosomal inhibition 

     Twenty-four hours after the transfection, the stability of the MafB was analyzed 

by incubating the cells in a 12-well plate for 6 h in the presence of a proteasome 

inhibitor (50 M MG132 [Merck] or 20 M clasto-lactacystin -lactone (also known as 

Omuralide) [Merck]) or lysosomal inhibitor (20 mM ammonium chloride [Sigma] or 

100 M chloroquine [Sigma]). After the treatment, the cells were lysed in SDS sample 

buffer and subjected to 7.5% SDS-PAGE and western blot analysis. 

Ubiquitination assay 

     HA-MafB wild or mutant expression vector was cotransfected into COS7 cells in 

a 10-cm plate with a Myc-ubiquitin expression vector and kinase expression vectors as 

indicated in Fig. 6. Cells were lysed 24 h later with RIPA buffer supplemented with 

protease inhibitors, phosphatase inhibitors, and 5 mM N-ethylmaleimide and briefly 

sonicated. Insoluble materials were removed by centrifugation. The HA-tagged proteins 

were immunoprecipitated with 3F10-conjugated agarose beads (Roche) for 4 h at 4℃. 

The beads were washed 3 times with RIPA buffer, boiled in SDS sample buffer, and 

then subjected to western blot analysis. Myc-tagged ubiquitin conjugates were detected 
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using an HRP-conjugated rabbit anti-Myc antibody (Sigma). 

Results and Discussion 

MafB is phosphorylated by JNK 

     Exogenously expressed HA-MafB was detected as a band of approximately 

50-kDa by western blot analysis. When the purified HA-MafB protein was treated with 

CIAP, the mobility of the band shifted to more rapidly migrating forms, indicating that 

the overexpressed MafB protein was phosphorylated in COS7 cells (Fig. 1B). The 

MafB protein has 10 putative MAP kinase phosphorylation sites (Ser/Thr-Pro) (Fig. 1A). 

To examine whether MafB acts as a substrate for JNK and to identify the residue(s) that 

could be phosphorylated by JNK, 1 of the 10 putative MAP kinase phosphorylation sites 

was chosen, and 12 MafB mutants carrying substitutions of Ser and Thr residues 

(conforming to the MAP kinase consensus sites) for Ala were constructed. 

Trx·His·S-MafB (wild and mutants) fusion recombinant proteins were prepared, and an 

in vitro protein kinase assay was performed. For the constitutively active form and the 

kinase-negative form of JNK, pEF-Flag-MKK7 1-JNK1 1 and KN plasmids, 

respectively, were used. MafB was phosphorylated by Flag-MKK7 1-JNK1 1 but not 
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KN at the phosphoacceptor site Thr62 (Fig. 1C). To investigate whether MafB is indeed 

phosphorylated directly by JNK in living cells, the MafB 10A mutant carrying 

substitutions of Ser and Thr residues of all Ser/Thr-Pro sites for Ala and the 9AT62 

mutant (the 10A mutant but carrying Thr62 site) were expressed in COS7 cells together 

with Flag-MKK7 1-JNK1 1. Western blot analysis indicated that the purified 9AT62 

mutant was more immunoreactive for phosphothreonine antibody than the 10A mutant 

(Fig. 1. D and E). These results indicate that Thr62 site of the MafB protein is 

phosphorylated by JNK in COS7 cells. In addition, the sequences surrounding mouse 

MafB Thr62 are strikingly conserved among large Maf proteins (Fig. 2). 

Activation of JNK promoted the degradation of MafB in COS7 cells 

     To examine the effects of JNK activation on MafB in COS7 cells, transfections 

were performed with HA-MafB and increasing amounts of Flag-MKK7 1-JNK1 1 

plasmids. Interestingly, the concentration of HA-MafB decreased owing to the 

activation of JNK in a dose-dependent manner (Fig. 3. A and B). However, in transient 

transfection, co-overexpression may alter the expression levels from the different 

cotransfected plasmid. Therefore, we measured the half-life of HA-MafB to assess 
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whether HA-MafB is modified by a constitutively active form or a kinase-negative form 

of JNK. Metabolic labeling and pulse-chase experiments showed that 
35

S-labeled 

HA-MafB disappeared more rapidly in cells cotransfected with the kinase-active form 

than in cells cotransfected with the kinase-negative form (Fig. 3. C and D). These 

results indicate that the rate of MafB protein degradation is regulated by the activation 

of JNK. 

Mutation in the JNK target site on MafB protects the instability of MafB 

     The effects of mutating the phosphorylation site (conforming to the MAP kinase 

consensus site) on stability were investigated. HA-MafB wild, HA-MafB carrying a 

T62A substitution, the 4A mutant (HA-MafB with T58A, T62A, S70A, and S74A 

substitutions), the 6A mutant (HA-MafB with S14A, T58A, T62A, S70A, S74A, and 

T103A substitutions), and the 10A mutant were introduced into COS7 cells and 

subjected to western blot analysis. Fig. 4 shows that the introduction of a mutation 

(T62A) into the JNK target site on the MafB protein reduced the instability of MafB 

resulting from the activation of JNK; the introduction of the four-fold substitutions 

almost protected the instability, which was similar to the effects of the six-fold and the 
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ten-fold substitutions. These results suggest that the phosphorylation status of the Thr62 

site is associated with stability. However, additional phosphorylation status of the Thr58, 

Ser70, and Ser74 sites may be also needed for enhancing stability. 

MafB is degraded by ubiquitin-dependent pathway 

     Eukaryotic cells contain 2 major systems for protein degradation: the proteasome, 

an ATP-dependent proteolytic complex that mostly degrades ubiquitinated proteins, and 

the lysosomal apparatus, a membrane-enclosed vacuole containing multiple acid 

proteases. To determine whether the degradation of MafB is due to proteasomal or 

lysosomal activity, we analyzed the effect of 2 proteasome inhibitors (MG132 or 

clasto-lactacystin -lactone [also known as Omuralide]) and 2 lysosomal inhibitors 

(ammonium chloride or chloroquine) on the degradation of exogenously expressed 

HA-MafB protein (Fig. 5. A and B). Both MG132 and Omuralide induced a marked 

increase in the HA-MafB protein levels in the cells transfected with both a 

constitutively active and a kinase-negative form of JNK. Neither ammonium chloride 

nor chloroquine exerted any effect. As a positive control for lysosomal degradation, we 

assessed the protein levels of beta-site amyloid precursor protein cleaving enzyme 
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(BACE), a protein known to be degraded by the lysosome [21]. Treatment with 

lysosomal inhibitors resulted in an increase in BACE protein levels (data not shown). 

Under these conditions, the amount of actin was constant. These results suggest that 

MafB is degraded by the proteasome. To examine the relationship between exogenously 

expressed HA-MafB protein stability and phosphorylation status in COS7 cells, COS7 

cells were transfected with plasmids expressing HA-MafB wild or T62A mutant and 

Flag-MKK7 1-JNK1 1 or KN and treated with or without MG132. Western blot 

analysis indicates that MG132 slightly reduced the instability of the T62A mutant owing 

to the activation of JNK, but not statistically significant. These results suggest that the 

phosphorylation status of the Thr62 site is associated with the degradation caused by the 

proteasome. 

     An important component of proteasome-mediated degradation is the proper 

targeting of the protein to be degraded by the ubiquitin conjugation complex. This 

process results in the attachment of multiple ubiquitin chains to the target protein. To 

determine whether MafB was ubiquitinated, HA-MafB was expressed in COS7 cells 

with Myc-ubiquitin and Flag-MKK7 1-JNK1 1 and purified from the 
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HA-MafB-containing cell extracts using anti-HA-agarose. A high-molecular-weight 

smear, characteristic of polyubiquitination, was observed in lysates from cells in which 

HA-MafB, Myc-ubiquitin, and Flag-MKK7 1-JNK1 1 were co-expressed, 

demonstrating that MafB is degraded by the ubiquitin-proteasome pathway (Fig. 6). A 

high-molecular-weight smear was also observed in lysates from cells in which the T62A 

mutant, Myc-ubiquitin and Flag-MKK7 1-JNK1 1 were co-expressed. However, this 

smear was weaker than that of HA-MafB wild, and the input of the T62A mutant had 

approximately 4 times more HA-MafB protein than that of HA-MafB wild (compared 

input lanes 3 with 5). Thus, the overexpressed T62A mutant is less sensitive to 

proteasomal degradation owing to the activation of JNK. 

     Some regulatory proteins have been reported to be ubiquitinated depending on 

their phosphorylation status [22,23]. Several previous studies have reported 

post-translational processes in the regulation of MafA, which is a member of the large 

Maf family of proteins. For example, quail and chicken MafA were shown to be 

phosphorylated by the extracellular signal-regulated kinase (ERK), and the 

phosphorylation status of MafA influenced the transactivation potential, and the 
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phosphorylation also induced the degradation of MafA by the proteasome [24,25]. In 

addition, p38 MAP kinase was shown to be a major regulator of mouse MafA protein 

stability under both basal and high-glucose conditions as well as during oxidative stress 

[26]. Another study showed quail and mouse MafA to be constitutively phosphorylated 

by GSK3, and the phosphorylation induced ubiquitination and degradation of MafA 

[13,27]. Furthermore, SUMO-1 and SUMO-2 modifications of MafA have been shown 

to reduce the transcriptional activity of MafA in pancreatic -cells [28]. 

     In the present study, it was found that MafB was phosphorylated by JNK and a 

phosphorylation site, Thr62, was identified in TAD. Activation of JNK promoted the 

degradation of MafB in COS7 cells, while the introduction of a mutation into the JNK 

target site on MafB significantly reduced the instability of MafB. This degradation 

occurred via the ubiquitin-proteasome pathway. However we cannot exclude indirect 

effects of JNK-mediated MafB degradation such as destabilizing factors induced or 

activated by JNK. Short motifs that mediate phosphorylation-dependent recognition by 

an E3 ubiquitin ligase are known as phosphodegrons. The degron is generally found 

within the TAD of transcription factors [29]. This is in accordance with our result. 
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Because introduction of a mutation into the Thr62 site on the MafB protein partially 

protected the instability of MafB and the phosphorylation status of the Thr58, Ser70, 

and Ser74 sites was also associated with the stability, E3 ubiquitin ligase(s) induced or 

activated by JNK may recognize these phosphodegrons. 

     We attempted to observe the effect of Itch in one of the E3 ubiquitin ligases 

activated by JNK [30] on the stability of MafB. Exogenously expressed Itch did not 

enhance the destabilization of MafB by the activation of JNK (data not shown). We also 

investigated whether MafB phosphorylation affects its transcriptional activity. However, 

because MafB was degraded by the activation of JNK, it was not apparent whether 

MafB phosphorylation affects its transcriptional activity. Expression levels of MafB are 

significantly reduced by RANKL during osteoclastogenesis at the mRNA and protein 

levels, and RANKL downregulates MafB expression via the JNK and p38 MAP kinase 

pathways [16]. During osteoclastogenesis, RANKL may regulate MafB expression via 

the ubiquitin-proteasome pathway. 
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Legends to Figures. 

Fig. 1. MafB Thr62 is phosphorylated by JNK. (A) Schematic representation of mouse 
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MafB. The putative MAP kinase phosphorylation sites (S/T-P) are indicated on MafB 

structure (TAD: transcription activation domain, H: histidine repeat [His8, His6]). (B) 

Phosphatase treatment. Purified HA-MafB wild or the 10A mutant (HA-MafB with 

S14A, T58A, T62A, S70A, S74A, T103A, S170A, S178A, S315A, and S318A 

substitutions) were treated with or without CIAP and subjected to SDS-PAGE and 

western blot analysis using HRP-conjugated anti-HA antibody 3F10. (C) In vitro protein 

kinase assays. Either Flag-MKK7 1-JNK1 1 (a constitutively active form) or 

Flag-MKK7 1-JNK1 1 (KN) (a kinase-negative form) was used to phosphorylate 

Trx·His·S-MafB fusion proteins carrying the indicated substitutions of the putative 

MAP kinase phosphorylation site. Trx·His·S-c-Jun (1-79) fusion protein was used as a 

positive control. Samples were analyzed by SDS-PAGE and autoradiography. Arrow: 

Trx·His·S-MafB fusion protein. Arrow head: Trx·His·S-c-Jun (1-79) fusion protein. (D) 

Phosphorylation of the MafB T62 site in COS7 cells. The 9AT62 mutant (HA-MafB 

with S14A, T58A, S70A, S74A, T103A, S170A, S178A, S315A, and S318A 

substitutions) or the 10A mutant was co-expressed with Flag-MKK7 1-JNK1 1 or KN 

in COS7 cells. Twenty-four hours after the transfection, the cells were incubated for 6 h 
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in the presence of 50 M MG132 to protect HA-MafB from proteasomal degradation. 

Each HA-MafB mutant was purified by Ni-NTA agarose and subjected to SDS-PAGE 

and western blot analysis using anti-phospho-Thr mouse monoclonal antibody PTR-8 

(BioMakor). Inputs were also examined by western blot analysis using HRP-conjugated 

3F10, anti-phospho-c-Jun (Ser63) II (Cell Signaling Technology), and anti-actin 

(Sigma) antibodies. (E) The amounts of phospho-Thr HA-MafB. Western blots were 

visualized and quantitatively analyzed using the Densitograph AE-6930 Lumino CCD 

and Lane analyzer 10H (ATTO). The values of HA-MafB with phospho-Thr were 

normalized to HA-MafB. The value of the KN-transfected cells in each independent 

experiment couple was set as 100%. The results are expressed as mean ± S.D. of 3 

independent experiments. *P ＜ 0.05; NS, nonsignificant (P ＞ 0.05) compared with 

the KN-transfected cells (paired t-test). 

Fig. 2. Sequence comparison of the TAD of large Maf proteins surrounding Thr62. 

Asterisks represent amino acid residues that are conserved with respect to mouse MafB 

protein. S/T-P sites are underlined. Both chicken and quail MafA are the same as mouse 

MafA except for P47A, T75G, and G76Q substitutions. 
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Fig. 3. Activation of JNK-promoted degradation of MafB. (A) COS7 cells in a 12-well 

plate were transfected with pcDNA-HA-MafB plasmids (0.25 g) and increasing 

amounts of pEF-Flag-MKK7 1-JNK1 1 plasmids (0, 0.03, 0.08, 0.25 and 0.75 g). 

Empty pEF-Flag vector was used to equalize the total amount of transfected DNA (1 

g). Western blot analysis was performed using HRP-conjugated 3F10, 

anti-phospho-c-Jun, and anti-actin antibodies. (B) The amounts of HA-MafB. Western 

blots were visualized and quantitatively analyzed. The values were normalized to the 

level of actin in the same sample. The value of the pEF-Flag-MKK7 1-JNK1 1 (0 

g)-transfected cells in each independent experiment was set as 100%. The results are 

expressed as mean ± S.D. of 3 independent experiments. (C) Turnover of HA-MafB. 

COS7 cells transiently expressing HA-MafB with Flag-MKK7 1-JNK1 1 or KN were 

metabolically labeled for 1 h and chased for the indicated time points. Cells were then 

lysed and immunoprecipitated with anti-HA mouse monoclonal antibody 12C5. (D) The 

radioactivity of HA-MafB. The results are expressed as percentages (± S.D., n = 2) of 

HA-MafB radioactivity at the 0-h time point. 

Fig. 4. Effect of mutation in the phosphorylation site on the stability of MafB. (A) 
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COS7 cells in a 12-well plate were transfected with the plasmid for expressing 

HA-MafB wild or mutants carrying the indicated substitution(s) (0.4 g), and either 

Flag-MKK7 1-JNK1 1 or KN (0.6 g). Western blot analysis was performed using 

HRP-conjugated 3F10, anti-phospho-c-Jun, and anti-actin antibodies. T62A (HA-MafB 

with T62A substitution), 4A mutant (HA-MafB with T58A, T62A, S70A, and S74A 

substitutions), 6A mutant (HA-MafB with S14A, T58A, T62A, S70A, S74A, and 

T103A substitutions), 10A mutant (HA-MafB with S14A, T58A, T62A, S70A, S74A, 

T103A, S170A, S178A, S315A, and S318A substitutions) (B) The amounts of 

HA-MafB. Western blots were visualized and quantitatively analyzed. The values were 

normalized to the level of actin in the same sample. The value of the KN-transfected 

cells in each independent experiment couple was set as 100%. The results are expressed 

as mean ± S.D. of 3 independent experiments *P ＜ 0.05; NS, nonsignificant (P ＞ 

0.05) compared with the KN-transfected cells (paired t-test). 

Fig. 5. MafB is degraded by the ubiquitin-proteasome pathway. (A) Treatment of 

proteasome and lysosomal degradation inhibitors. COS7 cells in a 12-well plate were 

transfected with pcDNA-HA-MafB (0.4 g) and/or either pEF-Flag-MKK7 1-JNK1 1 
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or KN (each 0.6 g). Twenty-four hours after the transfection, the cells were incubated 

for 6 h in the presence of a proteasome inhibitor (MG132 or Omuralide), or a lysosomal 

inhibitor (ammonium chloride or chloroquine). Western blot analysis was performed 

using HRP-conjugated 3F10, anti-phospho-c-Jun, and anti-actin antibodies. (B) The 

amounts of HA-MafB. Western blots were visualized and quantitatively analyzed. The 

values were normalized to the level of actin in the same sample. The value of the 

vehicle (DMSO) only-treated cells in each independent experiment couple was set as 

100%. The results are expressed as mean ± S.D. of 3 independent experiments *P ＜ 

0.05; NS, nonsignificant (P ＞ 0.05) compared with the DMSO only-treated cells 

(paired t-test). (C) Effect of MG132 on T62A mutant. COS7 cells were transfected with 

plasmids expressing HA-MafB wild or T62A mutant and either Flag-MKK7 1-JNK1 1 

or KN. Twenty-four hours after the transfection, the cells were incubated for 6 h in the 

presence or absence of MG132. Western blot analysis was performed using 

HRP-conjugated 3F10, anti-phospho-c-Jun, and anti-actin antibodies. (D) The amounts 

of HA-MafB. Western blots were visualized and quantitatively analyzed. The values 

were normalized to the level of actin in the same sample. The value of the DMSO 
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only-treated cells in each independent experiment couple was set as 100%. The results 

are expressed as mean ± S.D. of 3 independent experiments *P ＜ 0.05; NS, 

nonsignificant (P ＞ 0.05) compared with the DMSO only-treated cells (paired t-test). 

Fig. 6. Ubiquitination assay. COS7 cells in a 10-cm plate were transfected with plasmid 

for expressing HA-MafB wild or the mutant (each 3 g), either Flag-MKK7 1-JNK1 1 

or KN (each 4.5 g), and/or Myc-ubiquitin (each 4.5 g). Empty pcDNA™3.1/Zeo (-) 

vector was used to equalize the total amount of transfected DNA (12 g). Cell lysates 

were immunoprecipitated with the 3F10 conjugated agarose beads. The beads were 

washed and subjected to western blot analysis. Myc-tagged ubiquitin conjugates were 

detected using an HRP-conjugated anti-Myc antibody. Cell lysates were also analyzed 

by western blot analysis using HRP-conjugated 3F10, anti-phospho-c-Jun, and 

anti-actin antibodies. A bracket indicates the polyubiquitinated HA-MafB. 



Figure
Click here to download high resolution image

http://ees.elsevier.com/yabbi/download.aspx?id=187445&guid=2dbbf1dd-bbf4-425b-ae49-2b2e9b80a981&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/yabbi/download.aspx?id=187453&guid=4619eea8-5de1-417a-950b-46593fca2cda&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/yabbi/download.aspx?id=187438&guid=d41e362e-1e10-406b-928d-71db15a5432b&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/yabbi/download.aspx?id=187439&guid=8972472f-e357-4750-ad1f-9d8b78fc5cb4&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/yabbi/download.aspx?id=187440&guid=38267c25-cd32-4263-908b-fb5c7f3e2a0f&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/yabbi/download.aspx?id=187448&guid=7616c4d6-26c7-412c-acae-582a6d39238f&scheme=1



