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Abstract 

From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which 

consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone 

exhibited similar proliferation rate and migration capacity as the parental clone. However, 

the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, 

accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 

clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, 

CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, 

but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone 

injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those 

receiving CCR5 antagonist, than in wild-type mice. The reduced tumor formation was 

associated with attenuated accumulation of CCR5-positive fibroblasts expressing 

connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce 

fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under 

hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer 

metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone 

cavity. 
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1. Introductions 

Distant organ metastasis is the primary cause of morbidity and mortality among 

cancer patients [1, 2]. Nearly three quarters of advanced breast cancer patients have bone 

metastasis, which worsens patients’ quality of life and reduces their life expectancy [3]. 

Bone metastasis proceeds by the interaction between cancer cells and the bone 

microenvironments composed of osteoclasts (OCs), osteoblasts (OBs), the mineralized 

bone matrix, hematopoietic cells, and endothelial cells [4]. The interplay favors cancer cell 

survival presumably by inducing bone destruction, where OC activation has a crucial role 

[5]. Thus, bisphosphonates and the monoclonal antibody targeting the receptor activator of 

NF-κB (RANK) ligand, are used to treat bone metastasis, by inhibiting OC activation and 

eventually controlling bone metastasis. However, these drugs are palliative, rather than 

curative. Moreover, they sometimes cause severe adverse effects including avascular 

necrosis of jaws [6, 7]. A novel strategy against bone metastasis is, therefore, required to be 

developed based on the understanding of the molecular and cellular mechanisms underlying 

bone metastasis. 

Metastasis proceeds through the interaction between cancer cells and various types 

of host resident cells. Thus, experiments using animal models are still required to elucidate 

molecular and cellular mechanisms favoring metastasis. Intra-cardiac injection of either 

human or mouse mammary cancer cell lines has been used as a bone metastasis model [8, 

9]. However, this procedure cannot reproduce the initial step of breast cancer metastasis, 

tumor growth at the primary site and intravasation from the primary tumor sites. In order to 

overcome this problem, several groups reported the establishment of human breast cancer 

cell lines, which can metastasize to bone upon their injection into the mammary fat pad 

(MFP) of immune-deficient mice [10]. This model, however, can still not be used to explore 

the interaction of tumor cells with host immune cells, which have a profound impact on the 

metastasis process. Thus, it is necessary to establish a mouse breast cancer cell line, which 

can metastasize to bone upon orthotopic injection into MFP of immunocompetent mice. 

Using a murine triple-negative breast cancer cell line, 4T1 [11], we have 

established a 4T1.3 subclone, which can metastasize with high frequency to bone upon 
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orthotopic injection into the MFP of immunocompetent female BALB/c mice. Hence, the 

use of this subclone can recapitulate the process of bone metastasis under clinically relevant 

conditions. Subsequent analysis demonstrated that the higher bone metastasis capacity of 

the 4T1.3 clone was not due to accelerated primary tumor growth or from enhanced 

migration to bone, but based on its higher ability to grow in bone microenvironments. 

Moreover, we showed that the 4T1.3 clone exhibited enhanced expression of a CC 

chemokine, CCL4. We further demonstrated that 4T1.3 clone-derived CCL4 did not exert 

an autocrine effect, but mainly acted on intra-bone fibroblasts expressing a specific receptor 

for CCL4, CCR5. Furthermore, we showed that CCL4-stimulated fibroblasts delivered 

growth signals to promote and support cancer cell growth in bone. Thus, these observations 

have unraveled a hitherto unknown important role of intra-bone fibroblasts in the bone 

metastasis process 
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2. Materials and Methods 

 

2.1 Establishment of a subclone with high capacity to metastasize to bone (Fig. 1A) 

Primary tumors were resected 1 week after WT mice received 1.0 x 105 parental 4T1 cells 

in 50 µl HBSS orthotopically at the secondary MFP. Four weeks after inoculation, the mice 

were sacrificed to remove femora and tibiae. The bones were flushed with complete 

medium, and the obtained cells were cultured for 4 to 6 weeks in complete medium 

containing 30 µM 6-thioguanine. The resultant cells were orthotopically injected again at 

the secondary MFP of a new mouse, and this cycle was repeated three times to obtain the 

4T1.3 cell line. The parental clone was re-named as the 4T1.0 clone. 

 

2.2 Bone metastasis models 

In the orthotopic injection model, 4T1.0 or 4T1.3 cell suspensions (2.0 x 105 cells in 100 µl 

HBSS) were injected into the secondary MFP. Primary tumors were resected and mice were 

sacrificed, 1 week and 4 weeks after the tumor injection, respectively. In the BM injection 

model, 4T1.0 or 4T1.3 cell suspensions (5.0 x 103 cells in 20 µl HBSS) were injected into 

BM cavity of tibiae as previously described [12]. In another series of experiments, 4T1.0 or 

4T1.3 cell suspensions were similarly injected into MFP or tibia of BM chimeric mice, 

which were generated from WT and CCR5 KO mice as previously described [13]. 

 

2.4 Statistical analysis 

The means + SD were calculated for all parameters determined. Statistical significance was 

evaluated using one-way ANOVA, followed by Tukey-Kramer posthoc test or 

Mann-Whitney’s U test. p values less than 0.05 were considered statistically significant. 

 

Supplementary methods provided detailed information on mice, cell lines, DNA microarray 

analysis, in vitro cell proliferation assay, measurement of primary tumor growth, short-term 

migration assay, immunohistochemical analysis, immunofluorescence analysis, in vivo 
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truncated RANTES/CCL5 gene transduction, shRNA treatment, clinical database analysis, 

and quantitative (q)RT-PCR analysis. 
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3. Results 

3.1 4T1-derived 4T1.3 clone exhibited enhanced capacity to metastasize to bone. 

We obtained 4T1.3 clone from a mouse triple-negative breast cancer cell line, 4T1 cells, by 

repetitive selection of the cells which survived in the bone cavity after the injection into 

MFP (Fig. 1A). 4T1.3 clone metastasized to bone with high frequency when injected into 

MFP, in contrast with the parental 4T1.0 clone, which did not cause bone metastasis (Fig. 

1B and S1A). Under in vitro anchorage-dependent culture conditions, 4T1.0 and 4T1.3 

clones exhibited similar proliferation and survival rates (Fig. 1C). Moreover, both clones 

grew at a similar rate in MFP (Fig. 1D) and formed metastasis foci in lungs at a similar 

frequency (Fig. S1B), when injected into MFP. In a short-term migration assay reflecting 

the extravasation step, both clone migrated to BM with similar efficiency (Fig. 1E). On the 

contrary, 4T1.3 clone formed a larger tumor focus than 4T1.0 clone, when injected into 

bone (Fig. 1F, 1G, and Fig. S2). Thus, the higher capacity of 4T1.3 clone to metastasize to 

bone cavity, can be ascribed mainly to its greater ability to grow and/or survive in the bone 

cavity. 

 

3.2 4T1.3 clones exhibited a mesenchymal-like phenotype with resistance to anoikis. 

To determine the molecular mechanisms underlying the higher capacity of 4T1.3 clone to 

metastasize to bone, we systematically analyzed gene expression patterns by DNA 

microarray. Gene set enrichment analysis (GSEA) detected enrichment in stem cell-related 

genes in the 4T1.3 clone (Fig. 2A). 4T1.3 clone consistently expressed a higher level of 

CD44 than 4T1.0 clone (Fig. 2B). 4T1.3 clone displayed a round shape in contrast to 4T1.0 

clone with an elongated form (Fig. 1A). Moreover, E-cadherin expression was depressed 

while N-cadherin and Twist expression was reciprocally enhanced in 4T1.3 clone, 

compared with 4T1.0 clone (Fig. 2C). Furthermore, under anchorage-independent 

conditions, 4T1.3 clone survived better than 4T1.0 clone (Fig. 2D). Thus, 4T1.3 clone 

gained resistance to anoikis together with some of the characteristics of stem and/or 

mesenchymal cell phenotypes.  
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3.3 Involvement of enhanced CCL4 expression in 4T1.3 clone in bone metastasis 

process 

Given the potential involvement of chemokines in metastasis [14], we analyzed the DNA 

microarray data by focusing on the expression of chemokine-related molecules. We 

observed that the expression of several chemokines was enhanced in 4T1.3 clone, compared 

with 4T1.0 clone (Fig. S3). qRT-PCR analysis unraveled enhanced expression of CCL4 

(∆∆Ct: -4.808±0.212) and to a lesser degree, CCL3 (∆∆Ct: -2.897±0.196) but not CCL5 

mRNA in 4T1.3 clone, compared with 4T1.0 clone (Fig. 3A). Consistent with that, 4T1.3 

clone constitutively expressed CCL4, but not CCL3, protein whereas both chemokines were 

barely detected in 4T1.0 clone (Fig. 3B). However, the expression of CCR5, a specific 

high-affinity receptor for CCL4, was not detected at the mRNA and protein levels in 4T1.3 

clone (Fig. 3C and 3D). This contrasts with the previous report that murine breast cancer 

cells expressed CCR5 [15]. On the other hand, the expression of CCR1, a high-affinity 

receptor for CCL3 and CCL5 but not CCL4, was enhanced in 4T1.3 clone compared with 

4T1.0 clone (Fig. 3C and 3D). We next examined the effect of abrogating CCL4 expression 

on the bone metastasis capacity of the 4T1.3 clone. CCL4 shRNA treatment did selectively 

reduce CCL4 expression in 4T1.3 clone (Fig. S4). CCL4 shRNA-treated 4T1.3 clone 

exhibited reduced tumor formation in bone, when injected into either MFP (data not shown) 

or the bone cavity, compared with scrambled (scr)-shRNA-treated 4T1.3 clone (Fig. 3E). 

CCL4 shRNA consistently did not reduce the in vitro cell proliferation rates, resistance to 

anoikis (Fig. 3F), and short-term migration capacity of 4T1.3 clone (Fig. 3G). Moreover, 

CCL4-shRNA treatment failed to reduce the expression of stem cell markers, CD24 and 

CD44 (Fig. 3H), suggesting that the stem cell phenotype was not essential for bone 

metastasis, in contrast with the previous report of a murine breast cancer cell line with an 

ability to metastasize to lung [16]. CCL4 shRNA treatment also did not reduce the mRNA 

expression of mesenchymal markers, N-cadherin and Twist (Fig. 3I). Given the lack of 

CCR5 expression in 4T1 cells, cancer cell-derived CCL4 could act in rather a paracrine 

than an autocrine manner, to promote bone metastasis. 
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3.4 Involvement of CCR5-expressing non-cancerous cells in bone metastasis process 

The absence of CCR5 expression by 4T1.3 clone prompted us to investigate the roles of 

CCR5-expressing non-cancerous cells in bone metastasis process. Indeed, 4T1.3 clone 

formed smaller tumor focus in CCR5 KO mice compared with WT mice, when injected into 

the bone cavity (Fig. 4A and S5A). In order to exclude the effects of persistent CCR5 

deficiency from birth, we transduced the gene of tRANTES/CCL5, with a potent CCR5 

inhibitory activity, before intra-bone injection of 4T1.3 clone. This treatment efficiently 

reduced intra-bone tumor formation by 4T1.3 clone injection (Fig. 4B and S5B). Moreover, 

4T1.3 clone exhibited markedly reduced tumor formation in WT mice transplanted with 

CCR5 KO mouse-derived BM cells compared with WT mice transplanted with WT-derived 

BM cells (Fig. 4C, S6A, and S6B). These observations suggest that CCR5-expressing 

non-cancerous cells in bone, particularly radio-sensitive ones, were involved in tumor 

formation induced by intra-bone injection of 4T1.3 clone. 

 

3.5 Increase in type I collagen-positive cells but neither OCs nor OBs after intra-bone 

injection of 4T1.3 clone 

Presumed crucial involvement of OCs and OBs in bone metastasis stimulated us to examine 

the numbers of these cells in BM. Unexpectedly, CD51-positive OC numbers in BM were 

similar in mice injected with 4T1.0 and 4T1.3 clones and did not decrease when CCL4 

shRNA-treated 4T1.3 clone was injected (Fig. 4D and S7). Flow cytometric analysis further 

revealed that intra-bone injection of either 4T1.0 or 4T1.3 clone did not increase the 

numbers of OCs defined as CD51+CD45+CD11b+Ly6C+ in bone cavity, compared with 

untreated mice (Fig. 4E). Likewise, intra-bone injection of 4T1.0 or 4T1.3 clone did not 

increase the numbers of OBs defined as RANKL+CD3-CD45-B220- in bone cavity, 

compared with untreated mice (Fig. 4E). On the contrary, intra-bone injection of 4T1.3 but 

not 4T1.0 clone, markedly increased type I collagen-positive cell numbers in bone cavity 

(Fig. 4F). Moreover, type I collagen-positive cell numbers were decreased upon intra-bone 

injection of CCL4-shRNA-treated 4T1.3 clone, compared with scr-shRNA-treated 4T1.3 

clone (Fig. 4F). Furthermore, type I collagen-positive cells were selectively increased in 
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4T1.3-injected mice whose BM cells were derived from WT mice (Fig. 4F). This was 

similar to the increase seen in tumor formation. These observations indicate that 4T1.3 

clone induced intra-bone tumor formation together with the accumulation of type I 

collagen-expressing cells in a CCR5-dependent manner. 

 

3.6 4T1.3 clone-derived CCL4 interact with CCR5-expressing fibroblasts resulting in 

4T1.3 growth and survival in bone marrow by producing CTGF/CCN2  

We next examined the phenotypes of type I collagen-expressing cells in more detail. Type I 

collagen-expressing cells expressed abundantly α-smooth muscle actin (SMA) but not an 

OB marker, RANKL, and an osteocyte marker, podoplanin [17] (Fig. 5A). Moreover, the 

same cell population expressed CCR5 (Fig. 5A). Thus, type I collagen-expressing cells 

exhibited α-SMA, a characteristic feature of cancer-associated fibroblasts (CAFs), which 

are presumed to contribute to tumor development and progression by producing a myriad of 

growth factors [18-20]. Hence, we next examined the mRNA expression of growth factors 

in total BM cells of mice which received intra-bone injection of 4T1.0 or 4T1.3 clone. 

Among the growth factors that we examined, CTGF/CCN2 mRNA expression was 

selectively enhanced in 4T1.3-injected mice (Fig. 5B). Moreover, type I collagen and 

CTGF/CCN2 mRNA expression was coincidentally detected in a CCR5-positive population 

of BM cells in mice which received intra-bone injection with 4T1.3 clone (Fig. 5C). A 

double-color immunofluorescence analysis consistently detected CTGF/CCN2 expression 

in type I collagen-positive cells (Fig. 5D). Furthermore, CTGF/CCN2 expression was 

enhanced in BM of WT mice injected with 4T1.3 clone, but not those injected with 

CCL4-shRNA-treated 4T1.3 clone or those injected with 4T1.0 clone (Fig. 5E). An analysis 

using BM chimeric mice further demonstrated that CTGF/CCN2 expression was selectively 

increased in 4T1.3-injected mice whose BM cells were derived from WT mice (Fig. 5E). 

Thus, increased tumor formation together with increased type I collagen-positive cell 

numbers and enhanced CTGF/CCN2 expression in bone, occurred upon intra-bone injection 

of CCL4-overexpressing 4T1.3 clone. In addition, CCL4 induced a fibroblast cell line, 

NIH3T3, to express CTGF/CCN2, type I collagen, and α-SMA (Fig. 6A), and to proliferate 
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(Fig. 6B). Finally, CTGF increased in vitro cell proliferation of 4T1.3 clones under 

anchorage-independent and hypoxic conditions, resembling the conditions in the bone 

cavity (Fig. 6C). However, these properties were not observed on 4T1.0 clone (Fig. 6C). 

Thus, 4T1.3 clone-derived CCL4 can induce fibroblasts to accumulate in bone cavity and to 

eventually express CTGF/CCN2, which can favor growth and/or survival of 4T1.3 clone 

therein. Moreover, the analysis of PrognoScan database [21] on CCL4 expression 

(GSE1379) revealed that high CCL4 expression was associated with shorter relapse-free 

survival among patients with breast cancer (Fig.6D), suggesting that CCL4 can act as a 

pro-metastatic mediator. 
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4. Discussion 

Metastasis, spread of cancer, is based on a multi-step process consisting of tumor 

growth at a primary site, intravasation, survival in the circulation, extravasation, and 

colonization [22]. We did not see any differences in the growth rates at the primary sites 

between 4T1.3 and its parental 4T1.0 clone. Moreover, both clones formed similar numbers 

of metastatic foci of similar sizes in lungs when injected into the MFP and displayed similar 

migration efficiency to bone cavity in short-term migration assay. Thus, the higher capacity 

of 4T1.3 clone to develop bone metastasis, can be ascribed to its higher ability to survive 

and/or grow in bone. This assumption is supported by the observation that 4T1.3 clone 

formed a greater tumor mass than the parental 4T1.0 clone, when injected directly into bone 

cavity. Moreover, we proved that 4T1.3 clone expressed a chemokine, CCL4, but did not 

express a high-affinity receptor for CCL4, CCR5. Furthermore, we revealed that abrogation 

of CCL4 expression reduced intra-bone tumor formation with little impact on in vitro 

proliferation of 4T1.3 clone. Thus, it is probable that 4T1.3 clone-derived CCL4 can 

support its own growth in bone cavity in rather a paracrine than an autocrine manner. 

CCL3/macrophage inflammatory protein (MIP)-1α and CCL4/MIP-1β, as the 

mostly related chemokines, exhibited similar biological activities such as the induction of 

chemotaxis and activation of various types of leukocytes, augmentation of chemotaxis of 

endothelial cells, and inhibition of human immunodeficiency virus entry [23]. Despite their 

similarity in biological activities and amino acid sequences, CCL3 and CCL4 utilize 

receptors in different ways; CCL3 binds CCR1 and CCR5 with a high affinity, whereas 

CCL4 binds only CCR5 with a high affinity [24]. This differential utilization of receptors 

may account for subtle differences in biological activities between CCL3 and CCL4, as 

evidenced by their opposing effects on hematopoietic stem/progenitor cells [25]. 

Several lines of evidence suggest that the interaction of CCR5 with another 

chemokine, CCL5, can have a crucial role in prostate cancer metastasis to bone [26, 27] and 

breast cancer metastasis to lung [15]. In these studies, CCL5 was produced by either 

osteocytes [27] or mesenchymal stem cells [15], but not cancer cells. Moreover, in contrast 

to our present study, cancer cells expressed abundantly functional CCR5 and exhibited 
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either enhanced motility and/or invasive capacity in response to CCL5. On the contrary, 

4T1.3 clone failed to exhibit enhanced CCL5 mRNA expression, compared with its parental 

clone and did not express CCR5. These differences may arise from the differences in types 

of cancer cells and/or the identity of the metastatic organ. Nevertheless, in the present bone 

metastasis model, it is likely that cancer cell-derived CCL4, but not CCL5, can promote 

bone metastasis. 

It is estimated that about 10 % of bone is physiologically renewed every year [28], 

as a consequence of a balance between the function of bone resorption accomplished by 

OCs and that of osteogenesis conducted by OBs. When cancer cells enter the bone cavity, 

they produce factors, which can enhance osteoclastogenesis, OC differentiation and 

activation, and eventually osteolysis, directly or indirectly through OBs [5]. Osteolysis can 

create new space and result in the release of several growth factors that are stored in bone to 

support cancer cell survival and growth in bone cavity [29]. In addition to well-known 

osteoclastogenic factors such as parathyroid hormone-related protein and RANK ligand, 

CCL3 can directly enhance osteoclastogenesis, independent of RANK ligand [30]. However, 

the roles of the CCL4-CCR5 interactions in osteoclastogenesis remain controversial. It was 

reported that CCL4 can enhance osteoclastogenesis [31], while a negative effect of CCR5 

on osteoclastogenesis was also reported [32]. Indeed, intra-bone injection of 4T1.3 failed to 

increase OC numbers. Thus, the 4T1.3 clone may accelerate intra-bone tumor formation 

independently of osteoclastogenesis.  

Type I collagen can be produced by stromal cells such as osteoblasts and 

osteocytes [33, 34] in addition to fibroblasts. However, under the present conditions, most 

type I collagen-positive cells expressed α-SMA, a characteristic feature of CAFs, [35, 36] 

but not an OB marker, RANKL and an osteocyte marker, podoplanin. These observations 

indicate that type I collagen was mainly produced by CAFs but it cannot completely 

excluded that other types of cells such as mesenchymal stem cells also produced type I 

collagen. 

Accumulating evidence indicates the crucial roles of CAFs in cancer development 

and progression, particularly metastasis [37-39]. Moreover, abundance of CAFs present in 
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the primary site of triple-negative breast cancer is associated with bone metastasis 

occurrence [40]. Furthermore, co-culture of breast cancer cells with CAFs increases 

metastasis to bone [40] and CAF-related protein expression was detected in bone metastatic 

lesion of human breast cancer [41]. However, the pathological relevance of CAFs in bone 

cavity, still remains elusive. We established that type I collagen-positive CAFs increased in 

bone under the conditions, in parallel with the sizes of tumor formed in bone upon 

intra-bone injection of 4T1.3 cells. These observations would indicate that CAFs in bone 

cavity have a hitherto unknown important role in bone metastasis by providing survival 

and/or growth cues to cancer cells, as has been similarly observed at other tumor sites. 

Several cellular sources of CAFs were proposed such as locally resident fibroblasts, 

cells undergoing EMT, and bone marrow-derived mesenchymal stem cells [35]. We 

observed that CAFs in bone also expressed CCR5, consistent with our previous reports [13, 

42]. Moreover, the analysis using chimeric mice revealed that radiosensitive 

CCR5-expressing BM cells could be a source of CAFs in this model. We previously 

demonstrated that CCR5-mediated signals were crucial for hematopoietic cell-derived 

fibrocyte trafficking [43]. Furthermore, bone marrow-derived mesenchymal stem cells also 

expressed CCR5 [44]. Thus, fibrocytes and/or mesenchymal stem cells may be a main 

source of CAFs in this bone metastatic process. 

We detected selective CTGF/CCN2 expression by fibroblasts. CTGF/CCN2 was 

originally identified as a factor with a mitogenic activity for fibroblasts but subsequent 

studies revealed that it has a variety of actions on myriad types of cells besides fibroblasts 

[45]. CTGF/CCN2 can promote tumor development and progression by inducing 

neovascularization in many types of cancer including breast cancer [46], and its enhanced 

expression is associated with poor prognosis of lung cancer patients [47]. CTGF/CCN2 

augmented in vitro proliferation and survival of 4T1.3 clone, but not 4T1.0 clone, under 

anchorage-independent and hypoxic conditions, which is prevalent in bone cavity. Thus, 

CTGF/CCN2 can selectively enhance survival of 4T1.3 clone in bone cavity. Moreover, 

CCR5 blockade reduced tumor formation in bone as well as fibroblast numbers and 

CTGF/CCN2 expression. These observations would indicate that cancer cell-derived CCL4 



                     Sasaki et al. 15 

  

induced CCR5-expressing CAFs to produce CTGF/CCN2, which was associated with 

enhanced proliferation of cancer cells. Thus, CCL4 may have pro-metastatic activity in 

breast cancer. Given the high frequency of bone metastasis in relapsed breast cancer 

patients, the association of high CCL4 expression with shorter relapse-free survival may 

support this assumption. Thus, the CCL4-CCR5 axis may provide a novel target for 

reducing bone metastasis, by suppressing the recruitment and functions of CAFs crucially 

involved in tumor growth in bone cavity. 
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Figure Legends 

Figure 1. 4T1-derived 4T1.3 clone exhibited enhanced capacity to metastasize to bone 

(A) Schematic representation of establishment of a highly bone-metastatic 4T1.3 clone, 

from a parental 4T1.0 clone. Insets indicate microscopic appearance of each clone under in 

vitro culture condition with a bar of 40 µm. (B) Tibial bones were collected 28 days after 

4T1.0 or 4T1.3 clone was injected into MFP of mice. The tissues were fixed for paraffin 

embedding to conduct IHC staining using anti-pan cytokeratin (pCyto) antibody to detect 

tumor focus formation. The incidence of metastasis focus formation was calculated (n=10). 

(C) In vitro proliferation rates and viabilities of 4T1.0 (●) or 4T1.3 clone (○). Each clone 

was cultured in a 100 mm dish at a cell density of 20 x 104 cells/ml. Cell numbers and 

survival rates were determined using trypan blue exclusion assay. Solid and dashed lines 

indicate the results of cell numbers and survival rates, respectively. All values represent 

mean ± SD (n=5). (D) 4T1.0 (●) or 4T1.3 clone (○) was injected into MFP of WT mice. 

Tumor volumes were determined at the indicated time points. All values represent mean ± 

SD (n=5). (E) Homing capacity to BM was determined by using short-term migration assay. 

After 9 Gy irradiation, PKH-labeled 4T1.0 (■) or 4T1.3 clone (□) was administered i.v. to 

mice. All BM cells were collected 3 hours later, to determine the PKH-positive cell 

numbers. All values represent mean + SD (n=3). n.s., not significant. (F) Five thousand 

4T1.0 or 4T1.3 clone was injected into the BM cavity of tibiae. Ten days after the injection, 

tibial bone was collected for IHC staining using anti-pCyto antibody to detect tumor focus 

formation. The ratios of pCyto-positive to BM whole areas were calculated. All values 

represent mean + SD (n=5). *, p<0.05. (G)  4T1.0 or 4T1.3 clone (5.0 x 103 cells) was 

injected into the BM cavity of tibiae. Seven days after the injection of 4T1.0 (●) or 4T1.3 

clone (○), total BM cells were stained with CD45 and CD326 to determine the tumor cell 

numbers. Tumor cells were defined as CD45-negative and CD326-positive. Each symbol 

and bar indicates each tumor number and the mean number of each group, respectively 

(n=8). *, p<0.05. 

  



                     Sasaki et al. 24 

  

Figure 2. 4T1.3 clone exhibited stem and/or mesenchymal cell phenotypes with 

resistance to anoikis (A) Total RNAs were extracted from 4T1.0 and 4T1.3 clones under 

in vitro culture conditions and were subjected to microarray analysis. GSEA identified the 

enrichment of the gene set of stem cells in 4T1.3 clone compared to 4T1.0 clone. (B) CD44 

and CD24 expression was determined by flow cytometric analysis. Representative results 

from 5 independent experiments are shown. (C) Expression of EMT-related genes by 4T1.0 

(■) or 4T1.3 clone (□) was determined. All values represent mean + SD (n=3). *, p<0.05. 

(D) In vitro proliferation ability of 4T1.0 (●) or 4T1.3 clone (○). Each clone (4.0 x 104 

cells/ml) was cultured under anchorage-independent conditions. Cell numbers and survival 

rates were determined using trypan blue exclusion assay. Solid and dashed lines indicate 

the results of cell numbers and survival rates, respectively. All values represent mean ± SD 

(n=5). *, p<0.05. 

 

Figure 3. Involvement of enhanced CCL4 expression in 4T1.3 clone in bone metastasis 

process (A) Total RNAs were extracted from 4T1.0 (■) or 4T1.3 clone (□), and were 

subjected to qRT-PCR. CCL3, CCL4, and CCL5 mRNA levels were normalized to GAPDH 

mRNA expression levels. All values represent mean + SD (n=3). (B) CCL3 and CCL4 

expression in 4T1.0 and 4T1.3 clones were determined by an immunofluorescence analysis. 

Representative results from 3 independent experiments are shown with bars of 10 µm. (C) 

Total RNAs were extracted from 4T1.0 (■) or 4T1.3 clone (□) and were subjected to 

qRT-PCR. CCR1 and CCR5 mRNA levels were normalized to GAPDH mRNA expression 

levels. All values represent mean + SD (n=3). n.d., not detected. (D) CCR1 and CCR5 

expression on 4T1.0 and 4T1.3 clones were determined by an immunofluorescence analysis. 

Representative results from 3 independent experiments are shown with bars of 10 µm. (E) 

CCL4-shRNA- or scr-shRNA-treated 4T1.3 clone (5 x 103 cells) was injected into the BM. 

Ten days later, tibial bones were collected and were subjected to HE and IHC staining using 

anti-pCyto antibody to detect tumor focus formation. Representative results from 5 

independent animals are shown in left panels with bars of 200 µm. Mean and SD were 

calculated on pCyto-positive to BM cavity area ratios (n=5) and are shown in the right 
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panel. **, p<0.01. (F) In vitro proliferation rates of CCL4-shRNA- (○) or 

scr-shRNA-treated 4T1.3 clone (●). Each clone was cultured under anchorage-dependent or 

-independent conditions. Cell numbers and survival rates were determined using trypan 

blue exclusion assay. Solid and dashed lines indicate the results of cell numbers and 

survival rates, respectively. All values represent mean ± SD (n=5). (G) Homing capacity to 

BM was determined by using short-term migration assay. After 9 Gy irradiation, 

PKH-labeled CCL4-shRNA- (■) or scr-shRNA-treated 4T1.3 clone (■) was administered 

i.v. to mice. All BM cells were collected 3 hours later, to determine the PKH-positive cell 

numbers. n.s., not significant. All values represent mean + SD (n=3). (H) CD44 and CD24 

expression was determined by using a flow cytometry as described in Materials and 

Methods. Representative results from 5 independent experiments are shown. (I) mRNA 

expression of EMT-related genes was determined on 4T1.0 (■), 4T1.3 (□), CCL4-shRNA- 

(■), scr-shRNA-treated 4T1.3 clone (■) as described in Materials and Methods. All values 

represent mean + SD (n=3). 

 

Figure 4. CCR5-expressing non-cancerous cells were crucially involved in increasing 

of type I collagen-positive cells after intra-bone injection of 4T1.3 clone  

(A) 4T1.3 clone (5.0 x103 cells) was injected into the tibial BM of WT or CCR5 KO mice. 

Seven days after the injection, tibial bones were collected for IHC staining using 

anti-pCyto antibody to detect tumor focus formation. pCyto-positive to BM cavity ratios 

were determined on each animal. All values represent mean + SD (n=4).. *, p<0.05. (B) 

4T1.3 clone (5.0 x103 cells) was injected into the tibial BM two weeks after 

tRANTES/CCL5-expressing or control vector was administered by using hydrodynamic 

method. Tibial bone tissues were collected for IHC staining using anti-pCyto antibody to 

detect tumor focus formation, 10 days after the tumor injection. pCyto-positive to BM 

cavity area ratios were determined on each animal. All values represent mean + SD (n=5). *, 

p<0.05. (C) 4T1.3 clone (5.0 x103 cells) was injected into the tibial BM of chimeric WT 

mice receiving WT (WT/WT) or CCR5 KO (CCR5 KO/WT) mouse-derived BM cells. 

Seven days after the injection, tibial bones were collected for IHC staining using 
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anti-pCyto antibody to detect tumor focus formation. pCyto-positive to BM cavity area 

ratios were determined. All values represent mean + SD (n=5). *, p<0.05. (D) 4T1.0, 4T1.3, 

CCL4-shRNA- or scr-shRNA-treated 4T1.3 clone (5.0 x103 cells) was injected into the 

tibial BM of WT mice. Ten days after the injection, tibial bones were collected for IHC 

staining using anti-CD51 antibody to detect mature OCs. CD51-positive to BM cavity 

ratios were determined on each animal. All values represent mean + SD (n=5). (E) 4T1.0 or 

4T1.3 clone (5.0 x103 cells) was injected into the tibial BM of WT mice. Seven days after 

the injection, total BM cells were stained with the various combinations of antibody to 

determine the numbers of OCs as defined as CD51+CD45+CD11b+Ly6C+ (left panel) and 

those of OBs as defined as RANKL+CD3-CD45-B220- (right panel). All values represent 

mean + SD (n=4). n.s., not significant. (F) 4T1.0, 4T1.3, CCL4-shRNA- or 

scr-shRNA-treated 4T1.3 clone (5 x 103 cells) was injected into the tibial BM of WT mice. 

4T1.3 clone was similarly injected into the BM of chimeric WT mice receiving WT or 

CCR5 KO mouse-derived BM cells. Seven days after the injection, tibial bones were 

collected and were subjected to IHC using anti-type I collagen to detect fibroblasts. The 

ratios of type I collagen-positive areas to BM cavity areas were determined on each animal 

and are shown. Each symbol indicates the ratio of each animal (n=4 to 7). *, p<0.05; **, 

p<0.01. 

 

Figure 5. CTGF/CCN2 production by fibroblasts in bone metastasis site (A) 

Phenotypes of type I collagen-positive cell population. 4T1.3 clone (5 x 103 cells) was 

injected into the tibial BM. Seven days after the injection, total BM cells were stained with 

anti-type I collagen, in the combination with anti-α-SMA (left panel), anti-RANKL (second 

left panel), anti-podoplanin (second right panel), or anti-CCR5 antibody (right panel). 

Immunofluorescence intensities among type I collagen-positive cell population were 

determined. Representative results from 4 independent experiments are shown. (B) Growth 

factor expression in bone derived from 4T1.0 or 4T1.3 clone-injected mice. 4T1.0 (■) or 

4T1.3 clone (□) (5 x 103 cells) was injected into tibial BM of WT mice. Seven days after the 

injection, tibial bones were collected and were subjected to qRT-PCR to determine the 
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mRNA expression levels of the indicated growth factors. All values represent mean + SD 

(n=6). *, p<0.05. (C) Growth factor expression in CCR5-expressing cells in BM derived 

from 4T1.0 or 4T1.3 clone-injected mice. 4T1.0 (■) or 4T1.3 clone (□) (5 x 103 cells) was 

injected into tibial BM of WT mice. Seven days after the injection, CCR5-positive and 

negative cells were purified from whole BM cells by a flow cytometry to extract total 

RNAs. The resultant total RNAs were subjected to qRT-PCR to determine the mRNA 

expression levels of the type I collagen and CTGF/CCN2. All values represent mean + SD 

(n=3). **, p<0.05; *, p<0.01. (C) Immunofluorescence detection of CTGF-expressing cells. 

4T1.3 clone (5 x 103 cells) was injected into the tibial BM of WT mice. Seven days after the 

injection, tibial bones were collected for immunofluorescence analysis. A double-color 

immunofluorescence analysis was conducted with the combination of anti-type I collagen 

and anti-CTGF/CCN2 antibodies. Signals were digitally merged. Representative results 

from 4 independent experiments are shown with bars of 10 µm. (E) CTGF/CCN2 

expression in bone. 4T1.0, 4T1.3, CCL4-shRNA- or scr-shRNA-treated 4T1.3 clone (5 x 

103 cells) was injected into the tibial BM of WT mice. 4T1.3 clone was similarly injected 

into the BM of chimeric WT mice receiving WT or CCR5 KO mouse-derived BM cells. 

Seven days after the injection, the BM cells were obtained to extract total RNAs. The 

resultant total RNAs were subjected to qRT-PCR to determine the mRNA expression levels 

of the indicated growth factors. All values represent mean + SD (n= 4 to 6). *, p<0.05; n.s., 

not significant.  

 

Figure 6. The interplay between CCL4 and CTGF/CCN2 expression by fibroblasts (A) 

Effects of CCL4 on a mouse fibroblast cell line, NIH3T3. NIH3T3 cells were incubated 

with CCL4 (100 ng/ml) for 3 days. Total RNAs were extracted and was subjected to 

qRT-PCR to detect type I collagen, αSMA, and CTGF/CCN2 expression. The results are 

shown with the ratio compared to medium treated sample. All values represent mean + SD 

(n=3). *, p<0.05; **, p<0.01. (B) CCL4-induced fibroblast proliferation. NIH3T3 cells 

were incubated in the presence of CCL4 (100 ng/ml) for 2 days. The results are shown with 

the ratio compared to medium treated sample. All values represent mean + SD (n=3). **, 
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p<0.01. (C) In vitro proliferation rates of 4T1.0 and 4T1.3 clones. Each clone (4.0 x 104 

cells/ml) was cultured under anchorage-independent and hypoxic (1 % O2) conditions with 

or without 10 ng/ml CTGF/CCN2 for 4 days. Cell numbers were determined using trypan 

blue. All values represent mean + SD (n=3). **, p < 0.01; n.s., not significant. (D) Effects 

of CCL4 expression on the prognosis of breast cancer patients. Relapse-free survival 

(GSE1379) of patients with breast cancer was analyzed based on CCL4 expression by 

analyzing the PrognoScan database. 
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Supplementary methods 

Mice 

Seven-week old specific pathogen-free BALB/c mice were purchased from Charles River 

Laboratories (Yokohama、Japan) and were designated as WT mice. CCR5-deficient (CCR5 

KO) mice were generated as previously described [1] and were backcrossed to BALB/c for 

more than eight generations. All mice were kept under the specific pathogen-free 

conditions. All the animal experiments in this study were approved by the Committee on 

Animal Experimentation of Kanazawa University and complied with the Guideline for the 

Care and Use of Laboratory Animals of Kanazawa University. 

 

Cells 

BALB/c-derived 4T1 (CRL-2539) mouse mammary carcinoma cells and 

NIH/Swiss-derived NIH3T3 (CRL-6361) mouse fibroblast cells were obtained from 

American Type Culture Collection. 4T1 and its subclone, 4T1.3, were cultured at 37°C 

under 5% CO2 in a complete medium consisting of RPMI 1640 supplemented with 10 % 

fetal bovine serum (FBS). NIH3T3 was cultured at 37°C under 5% CO2 in the complete 

medium consisting of DMEM supplemented with 10 % FBS. 

 

Reagents and antibodies 

Mouse CCL4 and human CTGF/CCN2 were obtained from Peprotech Inc. (Rocky Hill). 

Mouse anti-mouse pan cytokeratin (BioLegend) was used as the primary antibody for 

immunohistochemical analysis. The following antibodies were used as the primary 

antibodies for flow cytometry or immunofluorescence analysis; (PE)-labeled goat 

anti-mouse CCL3, goat anti-mouse CCL4, PE-labeled rat anti-mouse CCR1 and 

PE-labeled mouse anti-mouse α-smooth muscle actin (SMA) antibodies (R&D Systems); 

goat anti-mouse CCR5 antibody (Santa Cruz), PerCP/Cy5.5-labeled rat anti-mouse CD24, 

PE-labeled rat anti-mouse CCR5, allophycorin (APC)-labeled rat anti-mouse CD326 and 
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Alexa Fluor 488-labeled hamster anti-mouse podoplanin antibodies (BioLegend), 

FITC-labeled rat anti-mouse CD3, PerCP Cy5.5-labeled rat anti-mouse CD45 and 

PE-labeled rat anti-mouse CD51 antibodies (eBioscience), APC-labeled rat anti-mouse 

CD11b, PE-labeled rat-anti mouse CD44, APC-labeled rat anti-mouse B220, PE-labeled 

rat anti-mouse RANKL/TRANCE and rat anti-Ly6G antibodies (BD Biosciences), rat 

anti-mouse F4/80 antibody (Serotec), rabbit anti-mouse type I collagen antibody (Abcam).  

 

DNA microarray analysis 

Total RNAs were extracted from 4T1.0 or 4T1.3 cells using RNeasy Mini Kit (Qiagen), and 

their quality was confirmed by using an Agilent 2100 Bioanalyzer (Agilent Technologies). 

All samples showed RNA Integrity Numbers (RIN) of more than 8.0 and were subjected to 

microarray analysis according to the manufacturer’s instructions. In brief, RNA samples 

were labeled using the Low Input Quick Amp Labeling Kit (Agilent Technologies). 

Labeling of 100 ng of total RNA was performed using cyanine 3-CTP. Hybridization was 

performed using the Gene Expression Hybridization Kit (Agilent Technologies). cRNA 

samples (600 ng) were subjected to fragmentation (30 min at 60°C) and then hybridized on 

SurePrint G3 Mouse Gene Expression 8x60K Microarray Kit (G4852A, Agilent 

Technologies) in a rotary oven (10 rpm at 65°C for 17 h). Slides were washed in Agilent 

Gene Expression Wash Buffers 1 and 2 (Agilent Technologies) and scanned with an 

Agilent DNA Microarray Scanner (Agilent Technologies). To adjust for differences in the 

probe intensity distribution across different arrays, gene expression values were normalized 

with GeneSpring software (Agilent Technologies) using the 75th percentile value. 

Statistical analysis was performed using unpaired Student’s t-test, and Benjamini-Hochberg 

false discovery rate was applied as a multiple testing correction. p values lower than 0.05 

were considered statistically significant. 

 

Immunofluorescence analysis 
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4T1.0 and 4T1.3 cells were incubated on 8-strip chamber slides (Matsunami) for 24 hrs and 

were subsequently fixed with 4% paraformaldehyde to be permeabilized with PBS 

containing 0.4% Triton X-100 for 5 min at room temperature. The cells were then incubated 

with PE-labeled anti-mouse CCR1 or anti-mouse CCR5 antibody overnight at 4°C. For the 

intracellular CCL3 or CCL4 staining, 4T1.0 or 4T1.3 clones were incubated in RPMI 

supplemented with 0.1% GolgiStop reagent (BD Biosciences) for 6 h. Subsequently, with 

the help of the Intracellular Cytokine Staining Starter kit (BD Biosciences), intracellular 

CCL3 and CCL4 were stained with PE-labeled anti-mouse CCL3 antibody and with Alexa 

488-conjugated anti-mouse CCL4 antibody, respectively. The cells were counterstained 

with DAPI for 10 min at room temperature. Immunofluorescence was assessed by using a 

Keyence BZ-X700 (Keyence Japan). 

 

Immunohistochemical analyses of mouse bone tissues 

Resected mouse tibiae were fixed in Tissue-Tek Ufix (Sakura Fine Technical Co.) for 2 

days and were embedded in paraffin. The sections were cut at 3 μm thickness and were 

used for staining with hematoxylin and eosin solution, while those cut at 5 μm thickness 

were used for the following immunohistochemical analyses. The deparafinized slides were 

treated with either 0.1% trypsin solution for 15 min at 37 °C (anti-CD51, anti-pan 

cytokeratin) or autoclaved in 10 mmol/L citrate buffer (pH 6.0) for 5 min at 121oC 

(anti-type I collagen). After endogenous peroxidase activity was blocked using 0.3% H2O2 

for 30 minutes, the sections were incubated with Blocking One Histo (Nacalai Tesque) for 

15 minutes. The sections were incubated with the optimal dilution of anti-rabbit type I 

collagen antibody using Can Get Signal (TOYOBO Biochemicals) overnight in a 

humidified box at 4°C. On the other hand, in the case of anti-CD51 or pan cytokeratin 

staining, immunohistochemistry was performed using the MOM kit (Vector Laboratories) 

according to the manufacturer's instructions. The sections were incubated with the optimal 

dilutions of anti-pan-cytokeratin or anti-CD51 antibodies using Can Get Signal (TOYOBO 
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Biochemicals) overnight in a humidified box at 4°C. The resultant immune complexes were 

detected by using the peroxidase substrate 3, 3’-diaminobenzidine kit (Vector Laboratories), 

according to the manufacturer’s instructions. A double-color immunofluorescence analysis 

was conducted to detect CTGF/CCN2 and type I collagen by using PerkinElmer Opal kit 

(PerkinElmer) according to the manufacturer’s instruction. The samples were examined 

with a microscopy system (BZ-X700). Images were obtained with the BZ-X700 

microscope and were quantified by Keyence Analysis Software (Keyence). 

 

Flow cytometric analysis of BM cells 

For detection of OCs and OBs, single cell suspensions were prepared from tibial bones, 

which were treated sequentially by mincing with scissors, incubation with RPMI 1640 

containing 1 mg/ml collagenase type I, 1 mg/ml dispase and 40 µg/ml DNase I for 1 hr at 

37°C and erythrocyte depletion by using ammonium chloride lysing buffer. For the 

enumeration of the tumor cell numbers in BM, single cell suspensions were prepared from 

tibial bones, by sequentially flushing with the RPMI medium and removing erythrocytes 

with ammonium chloride lysis buffer. The resulting single cell suspensions were incubated 

with various combinations of antibodies or isotype-matched control immunoglobulins for 

30 minutes on ice. Dead cells were removed from acquired data with a fixable viability Dye 

(eBioscience). The stained cells were acquired on a FACSCanto System II (BD 

Biosciences) and analyzed using FlowJo software (Treestar). Tumor cells, OBs, and OCs 

were defined as CD45-CD326+ cells, RANKL+CD3-CD45-B220- cells, and 

CD51+CD45+CD11b+Ly6C+ cells, respectively. In other experiments, CCR5-positive or 

-negative bone marrow cells were sorted by using FACSAria cell sorter (BD Biosciences). 

The corresponding populations consisted of more than 95 % purity (data not shown). 

 

In vitro cell proliferation assay 

Either 4T1.0 or 4T1.3 cell suspensions were added to a 100-mm dish at a cell density of 20 
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x 104 cells/ml. At the indicated time intervals, cell numbers and survival rates were 

determined using trypan blue exclusion assay. In order to assess the cell proliferation under 

anchorage-independent conditions, cell suspensions (1.0 x 105 cells in 2.5 ml) were added 

to an EZ-BindShut® 60-mm Dish (IWAKI) and incubated at 37°C under hypoxic condition 

(1 % O2) for the indicated time intervals to determine cell proliferation and viability by 

using trypan blue exclusion assay. In another series of experiments, 4T1.0 or 4T1.3 cell 

suspensions (0.5 x 103 cells in 100 µL) or NIH3T3 cell suspensions (2.5 x 103 cells in 100 

µL) were incubated in each well of 96-multi-well culture plates (BD Biosciences) at 37 °C 

for 18 h. Then, mouse CCL4 or CTGF/CCN2 was added to each well at the indicated 

concentrations and the cells were further incubated for the indicated time intervals to 

determine cell proliferation by using the cell counting kit-8 (Dojindo Co. Ltd). The ratios 

of cell numbers were determined by comparing the OD value at day 0. 

 

Tumor growth at the primary site 

Mice received 2.0 x 105 4T1.0 or 4T1.3 cells in 100 µl HBSS orthotopically in the 

secondary MFP. Tumor growth was evaluated by measurement with calipers every 2 to 3 

days. Tumor volumes were calculated according to an equation of a × b2/2, where a and b 

indicate the long and the short diameters of the tumor, respectively. 

 

In vivo truncated RANTES gene transduction 

Either truncated (t)RANTES/CCL5-pLIVE or control vector were i.v. injected by using 

TransIT-EE Hydrodynamic Delivery Solution (Mirus Corporation) as described previously 

[2]. Two weeks later, the animals were subjected to intra-bone injection of 4T1.3 clone 

 

Short-term migration assay 

4T1.0 or 4T1.3 clones were labeled with PKH67 (Sigma-Aldrich), according to the 

manufacture’s protocol. At 18 hours after irradiation with 9 Gy, the labeled tumor cells (3 x 
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106 cells) were injected i.v. into WT mice. Three hours later, mice were sacrificed to 

remove tibiae. The tibial bones were flushed with the complete medium to obtain total bone 

marrow (BM) cells. The ratio of PKH67-positive cells migrated to BM was measured to 

determine the relative homing efficiency on a FACSCanto System II (BD Biosciences). 

 

Treatment with shRNA 

Lentivirus expressing MISSION shRNAs targeting for mouse CCL4 (TRCN425182 and 

TRCN441627) and scrambled (scr) RNAs (Nontarget; SHC002) were prepared by using 

pLK01-puro (Sigma-Aldrich) according to the manufacturer’s instructions. The resultant 

shRNA preparations were transduced into 4T1.3 cell lines using JetPRIME DNA & siRNA 

transfection reagent (Polyplus transfection). Then, the cells were cultured in medium 

containing puromycin (2 µg/ml) for 2 weeks, to obtain stable clones. 

 

Clinical database analysis 

Relapse-free survival (GSE1379) was evaluated by analyzing the data deposited in the 

Prognoscan [3] (http://www.abren.net/PrognoScan/) and was shown using Kaplan-Meier 

curve. The cut-off point was set to divide the patients into 2 groups, high and low 

CCL4-expressing groups, as described previously [4]. 

 

qRT-PCR analysis 

Total RNAs were extracted from the cell lines or the tumors by using RNeasy Mini Kit 

(Qiagen) and subjected to qRT-PCR by using the primers listed in Table S1, as described 

previously [2]. Expression levels of the target genes were analyzed through the 

comparative threshold cycle method (ΔΔCT). The GAPDH gene or hypoxanthine guanine 

phosphoribosyltransferase (HPRT) were used as an internal control.  

  

http://www.abren.net/PrognoScan/


8 

 

Supplementary Figures 

Supplementary Figure S1 (A) Tibial bones were collected 28 days after 4T1.0 or 4T1.3 

clone was injected to MFP of mice. The tissues were fixed for paraffin embedding to 

conduct HE staining (upper panels) and IHC staining using anti-pan cytokeratin (pCyto) 

antibody to detect tumor focus formation (middle panels). Lower panels indicate 

enlargements of the areas indicated in the middle panels. A scale bar represents 200 μm. 

Representative results from 5 independent animals are shown. (B) Lungs were collected 28 

days after 4T1.0 or 4T1.3 cells were injected into MFP of mice, to determine the numbers 

of macroscopic tumors. The mean and SEM of the tumor numbers (n=5) are shown. n.s., 

not significant.  

 

Supplementary Figure S2 Five thousand 4T1.0 or 4T1.3 cells were injected directly into 

the bone cavity of tibiae. Ten days after the injection, tibial bone was collected for HE 

staining (left panels) and IHC staining using anti-pCyto antibody (right panels) to detect 

tumor focus formation. Representative results from 5 independent animals were shown in 

the panels with scale bars of 200 µm.  

 

Supplementary Figure S3 Total RNAs were extracted from 4T1.0 or 4T1.3 cells under in 

vitro culture conditions and were subjected to microarray analysis. Heat map was generated 

by using GSEA. This heat map depicts fold changes in 4T1.3 clone compared with 4T1.0 

clone. 

 

Supplementary Figure S4 Total RNAs were extracted from CCL4 shRNA- or scr 

shRNA-treated 4T1.3 clone and subjected to qRT-PCR to determine CCL3, CCL4, CCL5, 

CCR1, and CCR5 mRNA expression. n.d., not detected. 

 

Supplementary Figure S5 (A) Five thousand 4T1.3 cells were injected directly into the 
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tibial BM of WT or CCR5 KO mice. Seven days after the injection, tibial bones were 

collected for HE staining and IHC staining using anti-pCyto antibody to detect tumor 

formation. Representative results from 4 individual animals are shown in the panels with 

bars of 200 µm. (B) Five thousand 4T1.3 cells were injected into the BM of tibia two week 

after tRANTES/CCL5-expressing or control vector was administered by using 

hydrodynamic method. Tibial bone tissues were collected for HE and IHC staining using 

anti-pCyto antibody to detect tumor focus formation, 10 days after the tumor injection. 

Representative results from 5 individual animals are shown in the panels with bars of 200 

µm.  

 

Supplementary Figure S6 (A) Five thousand 4T1.3 cells were injected directly into the 

tibial BM of chimeric WT mice receiving WT or CCR5 KO mouse-derived bone marrow 

cells. Seven days after the injection, tibial bones were collected for IHC staining using 

anti-pan cytokeratin antibody to detect tumor focus formation. Representative results from 

5 individual animals are shown in the panels with bars of 200 m. (B) Total bone marrow 

cells were obtained 7 days after 5,000 4T1.3 cells were directly injected into the tibial BM 

of chimeric mice and were subjected to flow cytometric analysis with CD45 and CD326 to 

determine the number of cancer cells as defined as CD45-negative and CD326-positive and 

the cancer cell numbers are shown. Each bar indicates mean numbers. *, p<0.05. 

 

Supplementary Figure S7 Five thousand 4T1.0, 4T1.3, CCL4 shRNA- or scr 

shRNA-treated 4T1.3 cells were directly injected into the tibial bone marrow of WT mice. 

Ten days after the injection, tibial bones were collected for IHC staining using anti-CD51 

antibody to detect mature OCs. Representative results from 3 individual animals are shown 

in the panels with bars of 200 µm. 
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Supplementary Table S1 

 

Sequences of primers for real-time RT-PCR used in this study 

        Forward         Reverse 

HPRT      tcctcctcagaccgctttt   cctggttcatcatcgctaatc 

GAPDH    gcggcacgtcagatcca    catggccttccgtgtttccta 

CCL3    gctgacaagctcaccctctgt    ggcagtggtggagaccttca 

CCL4    cccacttcctgctgtttctc    gtctgcctcttttggtcagg 

CCR1    tttgtgggtgaacggttctg    tggtatagccacatgcctttga 

CCR5    catccgttccccctacaaga    ggaactgacccttgaaaatcca 

E-cadherin   caaggacagccttcttttcg    tggacttcagcgtcactttg 

N-cadherin   gggacaggaacactgcaaat  cggttgatggtccagtttct 

Snail    atgaggacagtggcaaaagc  tcggatgtgcatcttcagag 

Twist    agcaagaaatcgagcgaaga   cagcttgagcgtctggatct 

TGF    ttgcttcagctccacagaga    tggttgtagagggcaaggac 

Vimentin    cagatgcgtgagatggaaga  tccagcagcttcctgtaggt 

CTGF     ggtgagtccttccaaagcag    ggccaaatgtgtcttccagt 

EGF    tgcctcagaaggagtgggtta  gtgttccaagcgttcctgaga 

Epiregulin (EREG)   taccgccttagttcagatgg   acatcgcagaccagtgtagc 

bFGF    gacccacacgtcaaactacaactc   ctgtaacacacttagaagccagcag 

HB-EGF     gcaaatgcctccctggttac    ctacagccaccacagccaaga 

HGF     tcggataggagccacaagga  ccgaggccagctgcaat 

VEGF    ctactgccgtccgattgaga     catctgctgtgctgtaggaag 

PDGFb     gcaccaacgccaacttcct    atgggcttctttcgcacaat 

Type I Collagen   aggcttcagtggtttggatg    cttcacccttagcaccaactg 
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