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Co-expression of membrane-type 1 (MT1)-MMP with hepatocyte
growth factor activator inhibitor-1 (HAI-1) in HEK293T cells
resulted in cleavage of HAI-1 to produce three fragments. Recom-
binant MT1-MMP was shown to cleave HAI-1 protein in vitro.
Hepatocyte growth factor activator inhibitor-1 was initially identi-
fied as the cognate inhibitor of matriptase, a transmembrane ser-
ine protease that processes urokinase-type plasminogen activator
(uPA). Co-expression of HAI-1 with matriptase suppressed matrip-
tase protease activity, and co-expression of MT1-MMP with them
resulted in recovery of matriptase activity by stimulating shedding
of HAI-1 fragments. Matriptase protein was detected in squamous
carcinoma-derived HSC-4 cells, however, matriptase protease activ-
ity was undetectable. Transfection of siRNA for HAI-1 enhanced
serine protease activity, which was suppressed by cotransfection
of matriptase siRNA. Collagen-gel culture or treatment with con-
canavalin A (ConA) of HSC-4 cells enhanced MT1-MMP activity,
which induced shedding of HAI-1 fragments and conversely stimu-
lated uPA activation by these cells. Serine protease activity, includ-
ing uPA activation of cells treated with ConA, was abrogated by
downregulation of either matriptase or MT1-MMP through the
transfection of each siRNA. These results suggest that MT1-MMP
induced by collagen-gel culture or ConA treatment causes cleavage
and shedding of HAI-1 protein, which allows activation of matrip-
tase in HSC-4 cells. HSC-4 cells showed a characteristic invasive
growth by forming vacuole-like structures in collagen gel, which
was suppressed by transfection of siRNA for either MT1-MMP or
matriptase, suggesting that activation of matriptase through the
cleavage of HAI-1 is one of the MT1-MMP multifunctions essential
for invasive growth of HSC-4 cells. (Cancer Sci, doi:10.1111/j.1349-
7006.2011.02162.x, 2011)

epatocyte growth factor activator inhibitor-1 is a mem-
brane-associated Kunitz-type serine protease inhibitor.(1–5)

It was initially identified as the cognate inhibitor of HGFA,(6)

and purified from human milk as a complex with matriptase, a
multidomain, transmembrane serine protease of the S1 trypsin-
like family.(7–11) Matriptase was detected in a variety of human
tumors of epithelial origin or phenotype and has been implicated
in the initiation and progression of human carcinomas.(12–14)

Matriptase mediates the degradation of ECM components and
activates growth and angiogenic factors, which not only facili-
tates cellular invasiveness but may also activate oncogenic path-
ways. These functions are partially attributed to its role in the
activation of HGF and uPA.(15–17) Both HGF and uPA have
been implicated in cancer invasion and metastasis for their roles
in cellular motility, ECM degradation, and tumor vasculariza-
tion.(1,18) The HAI-1 fragments are often identified in culture
supernatant of cells in complex with proteases, suggesting that
proteolytic processing of HAI-1 may play roles in regulation of
inhibitory activity.(19,20) However, the molecular mechanism of
HAI-1 shedding and its pathophysiological significance still
remain unclear.
doi: 10.1111/j.1349-7006.2011.02162.x
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Matrix metalloproteinases make up a family of Zn2+-depen-
dent enzymes that are known to cleave ECM proteins in normal
and pathological conditions.(21–23) Twenty-six MMP genes have
been identified in humans, and they can be subgrouped into sol-
uble-type and MT-MMPs. Membrane-type-1-MMP (MMP-14)
was the first member of the MT-MMP family to be discovered,
and was identified as the first physiologic activator of latent
MMP-2 (pro-MMP-2).(24) In addition to pro-MMP-2, a variety
of substrates of MT1-MMP were identified, including ECM pro-
teins, cell adhesion molecules, cytokines, and others.(25–28) Pro-
cessing of these proteins by MT1-MMP alters their activities
and thereby regulates a variety of cellular functions, such as
motility, invasion, growth, differentiation and apoptosis. As
membrane proteases, MT1-MMP and matriptase share similar
functions for malignant progression of tumors, however, their
functional and physiological interactions have not been exam-
ined.

Previously, we identified type II transmembrane MSP as an
MT1-MMP-binding molecule by an expression cloning strat-
egy.(29) In the course of study, we examined the possible interac-
tion of HAI-1 as an inhibitor of MSP within the MT1-
MMP ⁄ MSP complex, and observed reduced HAI-1 expression
in the presence of MT1-MMP. This led us to examine the physi-
ological significance of HAI-1 shedding by MT1-MMP. While
we were studying the cleavage of HAI-1 by MT1-MMP, Niiya
et al.(30) identified HAI-1 as one of many MT1-MMP-associated
proteins by proteomics screening.

In the present study, we showed for the first time that MT1-
MMP activates matriptase through the cleavage of its cognate
inhibitor HAI-1, which contributes, in collaboration with MT1-
MMP, to the invasive growth of tumor cells.

Materials and Methods

Materials. The DMEM was from Sigma (St. Louis, MO,
USA), and Opti-MEM serum reduced medium was from Invitro-
gen (Carlsbad, CA, USA). Primers were synthesized by Greiner
Japan (Tokyo, Japan). Monoclonal antibodies against HA and
GST were purchased from Wako Pure Chemical Industries
(Osaka, Japan). Monoclonal antibodies against FLAG epitope
and tubulin were purchased from Sigma. The mAb against
MT1-MMP (222-3ER) was a gift from Daiichi Fine Chemical
(Takaoka, Japan). Polyclonal antibodies against HAI-1 ecto-
domain and matriptase catalytic domain were purchased from
R&D Systems (Mineapolis, MN, USA).

Plasmids. Expression plasmids for MT1-MMP, inactive
mutant-type MT1-MMP, and MT1-MMP tagged with FLAG
or HA epitope were constructed as described previously.(31)

The cDNAs encoding HAI-1, HAI-mut-I with amino acid
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substitution of Lue452 to Gly and HAI-mut-II with deletion of
Gly306–Val330 were amplified using sets of PCR primers listed
in Table 1. The expression plasmid for HAI-1 tagged with
FLAG epitope was constructed by inserting HAI-1 cDNA frag-
ment amplified using a set of primers into pEAK-FLAG plas-
mid.(31) The expression plasmids for matriptase, matriptase-
FLAG, and uPA-FLAG were also constructed using PCR prim-
ers listed in Table 1.

Recombinant proteins. Recombinant MT1-MMP catalytic
domain (Tyr112–Val335) was expressed in Escherichia coli BL21
strain in the form of a fusion protein with a SUMO using
pE-SUMO vector (LifeSensors, Malvern, PA, USA). The
SUMO-MT1-MMP fusion protein was purified using a Ni-che-
late column. Expression plasmids for HAI-1 fusion proteins with
GST, which contain Ile348–Glu465 and Leu241–Cys354 of HAI-1
(HAI-GST-I and HAI-GST-II, respectively) were constructed
using THE PCR primers listed in Table 1. HAI-1-GST fusion
proteins were purified using glutathione-conjugated beads
(Amersham Biosciences, Uppsala, Sweden).

Cell culture. HEK293T cells and oral squamous cell carci-
noma HSC-4 cells were cultured as described previously.(32)

Type I collagen Cellmatrix Type I(A) was purchased from Nitta
Gelatin (Osaka, Japan). ConA (30 lg ⁄ mL; Sigma) was added to
the culture of HSC-4 cells, and cells were incubated for 5 h
before use. Cell growth was examined using a Cell Counting
Kit-8 (Dojin Laboratory, Kumamoto, Japan). The kit reagent of
25 lL was added to the collagen gel culture in a 24-well micro-
plate, and absorbance at 450 nm was measured 2 h later.
Table 1. Polymerase chain reaction primers used in this study

Protein: (nucleotide no. of cDNA fragment; GenBank accession no.)

Vector

Primer sequence, restriction enzyme site (restriction enzyme)

HAI-1 (nt, 71–794; NM_181642) pEAK8

GATCAAGCTTCGCCACCATGAGAGCCCTGC (HindIII)

GATCTAGATCAGAGGGCCAGGCCATTCTCTTC (XbaI)

Matriptase (nt, 184–2761; NM_021978) pEAK8

GATCAAGCTT GAGGAAGGCGATGGCCCCTGC (HindIII)

GATCTAGACTATACCCCAGTGTTCTCTTTG (XbaI)

Matriptase-FLAG (nt, 184–2758; NM_021978) pEAK-FLAG

GATCAAGCTT GAGGAAGGCGATGGCCCCTGC (HindIII)

TCTCTAGATACCCCAGTGTTCTCTTTGA (XbaI)

uPA-FLAG (nt, 70–1369; M15476) pEAK-FLAG

GATCAAGCTTCGCCACCATGAGAGCCCTGC (HindIII)

GATCTAGAGAGGGCCAGGCCATTCTCTTC (XbaI)

SUMO-MT1 (nt, 568–1239; BC064803) pE-SUMO

TTGGTCTCAAGGTTACGCCATCCAGGGACTCAAATG (BsaI)

GATCTAGAGACAAACATCTCCCCTCGGAGC (XbaI)

HAI-GST-I (nt, 1246–1599; NM_181642) pGST-CTC

TCGAATTCCATCGACAGTTTCCTGGAGTG (EcoRI)

CTCGGTACCCTCCACAGAGCCTGTGCTGG (KpnI)

HAI-GST-II (nt, 925–1266; NM_181642) pGST-CTC

TCGAATTCCCTGTCCACCAAGCAGACAGA (EcoRI)

TCGGTACCACACTCCAGGAAACTGTCGAT (KpnI)

Mutation primers (mutation)

HAI-1-mut I (substitute Lue452 with Gly)

TGTTTGGCGGGAGGCGGGAAATC

CCCGCCTCCCGCCAAACACATCC

HAI-1-mut II (delete Gly306–Val330)

CCTGTCGGGGTGTGCAAGGTTGCTCTGGCACCTGTCAGCC

GGCTGACAGGTGCCAGAGCAACCTTGCACACCCCGACAGG

HAI-1, hepatocyte growth factor activator inhibitor-1; SUMO, small
ubiquitin-like modifier; uPA, urokinase-type plasminogen
activator.

2

Cell surface biotinylation. Control plasmid or matriptase-
FLAG expression plasmid (400 ng) was cotransfected with
HAI-1-FLAG (800 ng) and ⁄ or MT1-MMP-FLAG (800 ng)
plasmid into HEK293T cells cultured in a 35-mm-diameter dish
coated with poly-L-lysine. Cell surface labeling with biotin and
immunoprecipitation were carried out as described previ-
ously.(33)

Protease activity. Fluorescence-quenching substrate for ser-
ine protease (Boc-Gln-Ala-Arg-AMC) (Peptide Institute, Osaka,
Japan) diluted with Opti-MEM (1 lM) was incubated with cells
for 1 h, and the fluorescence was monitored. Pro-uPA-rich
supernatant prepared from HEK293T cells transfected with an
expression plasmid for uPA-FLAG was diluted twofold with
Opti-MEM, and incubated with cells for 8 h. After TCA precipi-
tation, uPA processing was examined by Western blotting with
anti-FLAG antibody.

RNA interference. RNA interference technology was used to
generate specific knockdown of MT1-MMP, HAI-1, and matrip-
tase mRNA transcription. Small interfering RNA was prepared
by Nippon EGT (Toyama, Japan). The siRNA target sequences
were as follows:

MT1-MMP(I), CAGGCAAAGCTGATGCAGA; MT1-
MMP(II), GCGAUGAAGUCUUCACUUA; HAI-1(I), CTGC-
AAGAGTTTCGTTTAT; HAI-1(II), GGGAAGAAGAGTG-
CATTCT; matriptase(I), CCGGCTTCTTAGCTGAATA; and
matriptase(II) CGTCGTCACTTGTACCAAA. Transfection was
carried out using Lipofectamin RNAiMAX (Invitrogen) by the
reverse transfection method.

Zymography. Pro-MMP-2 supernatant was prepared from
MMP-2-transfected HEK293T cells as previously described.(29)

Pro-MMP-2 supernatant was incubated with cells for 1 h, then
subjected to gelatin zymography using Alexa Fluor 680-labeled
gelatin as described previously.(31) Detection of matriptase by
gelatin zymography was carried out by modifying the protocol
for MMP.(34)

Results

Cleavage and shedding of HAI-1 by MT1-MMP. HEK293T
cells do not express either MT1-MMP or HAI-1 endogenously.
An expression plasmid for HAI-1 was cotransfected into
HEK293T cells with either control plasmid or MT1-MMP plas-
mid, and HAI-1 protein was detected by Western blotting using
anti-HAI-1 antibody (Fig. 1A). Cell-associated HAI-1 protein
was detected as a 66 kDa band in cells transfected with HAI-1
plasmid alone. Co-expression of MT1-MMP induced shedding
of 58, 42, and 16 kDa fragments of HAI-1, and the cell-associ-
ated HAI-1 protein level was considerably reduced. Treatment
of cells with the MMP inhibitor BB94 abrogated MT1-MMP-
induced HAI-1 shedding. Expression of a catalytically inactive
MT1-MMP mutant failed to induce HAI-1 shedding. Observa-
tion of a shed 58 kDa fragment suggested that one of the cleav-
age sites is close to the transmembrane domain. To identify the
MT1-MMP cleavage site in this region, a recombinant HAI-
GST fusion protein containing the juxtamembrane domain
(HAI-GST-I) was prepared, and incubated with recombinant
MT1-MMP (Fig. 1B,C). HAI-GST-I protein was cleaved to
produce a 25 kDa fragment. The NH2-terminal amino acid
sequence of the fragment revealed cleavage at the Gly451–
Leu452 peptide bond of HAI-1 by MT1-MMP. To identify
another cleavage site, HAI-GST-II protein, which contained
KD-1 and the LDLR-like domains, was digested with recombi-
nant MT1-MMP, and the cleavage product of 28 kDa was iso-
lated. The amino acid sequence analysis identified two possible
cleavage sites (Pro307–Leu308 and Pro329–Val330) in the flanking
region between the KD-1 and LDLR-like domains. In order to
confirm HAI-1 cleavage by MT1-MMP, HAI-1 mutant protein
with either amino acid substitution at Leu452 (HAI-mut-I) or
doi: 10.1111/j.1349-7006.2011.02162.x
ªª 2011 Japanese Cancer Association
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Fig. 1. Membrane-type-1 (MT1)-MMP cleaves hepatocyte growth factor activator inhibitor-1 (HAI-1). (A) Control plasmid or expression plasmid
for MT1-MMP-FLAG (MT1-F; 1 lg) or its inactive mutant form (E ⁄ A) was cotransfected with HAI-1 or control plasmid (1 lg) into HEK293T cells
cultured in a 35-mm dish. Twenty-four hours after transfection, culture medium was replaced with 1 mL Opti-MEM, and cells were incubated for
a further 12 h. After TCA precipitation of the supernatant, HAI-1 processing was examined by Western blotting with anti-HAI-1 antibody (upper
panel). Cell lystes were subjected to Western blotting with anti-HAI-1 or anti-FLAG antibody as indicated. BB94 (1 lM) was included in the
indicated culture. Note that the 66 kDa HAI-1 protein was cleaved to 58, 42, and 16 kDa fragments, and shed into culture medium, when co-
expressed with MT1-MMP. (B) Schematic representation of HAI-1 and HAI-1-GST fusion proteins. Arrowheads indicate possible MT1-MMP
cleavage sites. HAI-I-GST-I contains amino acid residues 348–465 of the HAI-1 protein, and HAI-GST-II contains amino acid residues 241–376. KD,
Kunitz domain; LDLR, low-density lipoprotein receptor-like domain; TM, transmembrane domain. (C) HAI-GST-I or HAI-GST-II was incubated with
or without ()) recombinant MT1-MMP protein for 3 h, separated on SDS-PAGE, and visualized by Coomassie Brilliant Blue R-250 (CBB) staining
as indicated. (D) Expression plasmid for HAI-1 or its mutant protein (HAI-mut-I, HAI-mut-II or HAI-mut-III) was cotransfected with MT1-MMP-
FLAG plasmid, and HAI-1 fragments in the supernatants and full-length HAI-1 or MT1-MMP-FLAG protein in cell lysates were examined as
described above.
deletion of the Gly306–Val330 region (HAI-mut-II) was co-
expressed with MT1-MMP, and shed HAI-1 fragments were
examined. In contrast to wild-type HAI-1 protein, which was
cleaved to generate 16, 42, and 58 kDa fragments, HAI-mut-I
and HAI-mut-II were cleaved to shed only a 42 kDa fragment
and a 58 kDa fragment, respectively. HAI-mut-III, which con-
tains both amino acid substitution at Leu452 and deletion of
Gly306–Val330 was no longer cleaved and shed by MT1-MMP
(Fig. 1D). These results indicate that MT1-MMP cleaves HAI-1
at the juxtamembrane site and flanking region between the KD-
1 and LDLR domains.

MT1-MMP abrogates inhibition of matriptase by HAI-1. Cell
surface protein biotinylation assay was carried out to examine
the cell-surface localization of HAI-1, MT1-MMP, and matrip-
tase (Fig. 2A). The cell surface HAI-1 level was reduced by co-
expression of MT1-MMP. Matriptase protein level at the cell
surface and in the cell extract was quite low in cells transfected
with matriptase plasmid alone. Matriptase accumulated in cells
cotransfected with matriptase and HAI-1 plasmids, with the pro-
cessed form of matriptase dominant at the cell surface and the
pro-form dominant in the cell extract. Co-expression of
MT1-MMP with HAI-1 and matriptase reduced the cell surface
level of not only HAI-1 but also matriptase. The intracellular
pro-matriptase level was less affected by MT1-MMP expression
Domoto et al.
than the level of cell surface processed form. The protein con-
centration of the active form of matriptase was so low that it
was not detected by Western blotting. Next, zymography was
carried out to examine the matriptase active form level. Active
form matriptase accumulated in cells co-expressing matriptase
and HAI-1, which was reduced by co-expression of MT1-MMP.
Concomitant with HAI-1 reduction by co-expression of
MT1-MMP, active form matriptase was shed into the culture
supernatant. Matriptase was not detected in cells transfected
with matriptase plasmid alone by either zymography or Western
blotting. These results indicate that matriptase undergoes rapid
autoprocessing, activation, and degradation, and these are par-
tially suppressed by HAI-1, resulting in an accumulation of not
only active form matriptase but also pro and processed forms.
This is abrogated by cleavage of HAI-1 by MT1-MMP, suggest-
ing that MT1-MMP would restore matriptase protease activity
inhibited by HAI-1.

In order to confirm this, cell-associated matriptase protease
activity was examined using an artificial peptide substrate for
serine proteases and the physiological substrate pro-uPA
(Fig. 2C). Matriptase activates pro-uPA through processing at
the consensus cleavage site Lys158–Ile159. Both substrates were
processed by the cells transfected with matriptase plasmid alone,
which produced only a trace level of active form of matriptase
Cancer Sci | 2011 | 3
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Fig. 2. Membrane-type-1 (MT1)-MMP abrogates inhibition of matriptase by hepatocyte growth factor activator inhibitor-1 (HAI-1). (A) Control
plasmid and ⁄ or expression plasmid for HAI-1, matriptase, and MT1-MMP tagged with FLAG epitope (HAI-F, Mat-F, and MT1-F, respectively) were
cotransfected into HEK293T cells as indicated. After biotin-labeling, cells were lysed in TritonX-100-containing buffer, immunoprecipitated with
anti-FLAG antibody beads, separated by 12% SDS-PAGE, then blotted with IRDye 800-conjugated streptavidin. Aliquots of TritonX-100 extracts
were analyzed by Western blotting using anti-FLAG antibody. Production of matriptase in culture supernatants (Sup.) and cell lysates (Cell) was
examined by zymography. IP, immunoprecipitation. (B) Schematic representation of the structures of pro, processed, and active forms of
matriptase. TM, transmembrane domain. (C) Expression plasmid for matriptase or control plasmid was cotransfected with control plasmid or
expression plasmids for HAI-1 and ⁄ or MT1-MMP tagged with HA (MT1-HA) into HEK293T cells. Twenty-four hours after transfection,
fluorescence-quenching substrate or pro-urokinase-type plasminogen activator (uPA) was incubated with the transfected cells for 1 or 12 h,
respectively, and their processing was monitored. The fluorescence intensity obtained from the cells transnfected with control plasmid alone was
arbitrarily set to 1, and the processing levels of other transfections adjusted accordingly. Matriptase and HAI-1 in the conditioned medium were
precipitated with TCA, and analyzed by Western blotting using anti-matriptase and anti-HAI-1 antibodies, respectively. Cell lysates were also
examined for expression of matriptase, HAI-1, and MT1-MMP by Western blotting. NS, non-specific band.
protein into the conditioned medium. Co-expression of HAI-1
with matriptase suppressed protease activity, and matriptase
pro-form and processed form accumulated in these cells as
observed above. Active and processed matriptase protein forms
also accumulated in the conditioned medium of these cells. Co-
expression of MT1-MMP with matriptase and HAI-1 stimulated
shedding of HAI-1, reduced the level of cell-associated HAI-1
protein, and restored the matriptase activity that was downregu-
lated by HAI-1 expression. Production of matriptase processed
form and active form by cells co-expressing matriptase and
HAI-1 was augmented by co-expression of MT1-MMP. The
cell-associated matriptase activity of each sample was propor-
tional to that in the conditioned medium (data not shown). These
results indicate that cleavage of HAI-1 by MT1-MMP abrogates
inhibition of matriptase by HAI-1.

HSC-4 cells. Squamous carcinoma-derived HSC-4 cells
express HAI-1 and matriptase, as detected by Western blotting
(Fig. 3A). Serine protease activity of HSC-4 cells was enhanced
by knockdown of HAI-1 expression through transfection of siR-
NA targeting HAI-1. Protease activity induced by HAI-1 knock-
down was aborted by transfection of matriptase siRNA. These
results indicate that HSC-4 cells express matriptase, the protease
activity of which is masked by HAI-1. Endogenous MT1-MMP
4

activity of HSC-4 cells as indicated by pro-MMP-2 activation
was faint (Fig. 3B). Type I collagen and ConA are both well-
known regulators of MT1-MMP, and were applied to HSC-4
cells. Collagen gel culture and ConA treatment of HSC-4 cells
induced pro-MMP-2 activation, which was accompanied by
enhanced pro-uPA activation and secretion of HAI-1 fragments.
These results suggest that MT1-MMP induced by ConA treat-
ment or collagen gel culture of HSC-4 cells caused cleavage
and shedding of the HAI-1 ectodomain, which consequently
activated matriptase.

In order to examine the involvement of MT1-MMP in matrip-
tase activation, HSC-4 cells were transfected with siRNAs tar-
geting either MT1-MMP or the matriptase gene, and tested for
processing of peptide substrate and pro-uPA (Fig. 3C). Suppres-
sion of matriptase expression by transfection of matriptase siR-
NA significantly reduced processing of the peptide substrate and
pro-uPA by ConA treated cells, indicating that matriptase is the
major serine protease induced by ConA treatment of HSC-4
cells. Knockdown of the MT1-MMP expression in ConA treated
cells reduced HAI-1 shedding and increased cell-associated
HAI-1 level. Consistent with HAI-1 accumulation by knock-
down of MT1-MMP expression, processing of peptide substrate
and pro-uPA was downregulated. These results suggest that
doi: 10.1111/j.1349-7006.2011.02162.x
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Fig. 4. Activation of matriptase by membrane-
type-1 (MT1)-MMP induces invasive growth. (A)
HSC-4 cells transfected with the indicated siRNA
were cultured in collagen gel for 4 days (left
panel). (B) HSC-4 cells transfected as above were
either cultured on plastic or in collagen gel for
4 days, then cell numbers were examined using cell-
counting reagent. The absorbance obtained from
cells transfected with control RNA was arbitrarily
set to 1. Cont, control; HAI, hepatocyte growth
factor activator inhibitor-1; Mat, matriptase.
MT1-MMP induced by ConA treatment activated matriptase
through the cleavage of HAI-1, which in turn caused pro-uPA
activation.

HSC-4 cells transfected with control, HAI-I, MT1-MMP, or
matriptase siRNA were cultured in collagen gel (Fig. 4A). HSC-
4 cells treated with control or HAI-1 siRNA caused intensive
digestion of collagen gel, and showed an invasive growth by
forming vacuole-like structures. Knockdown of MT1-MMP or
matriptase expression did not affect cell growth on plastic, but
suppressed it in collagen gel (Fig. 4B). Knockdown of
MT1-MMP expression suppressed more severely than that of
matriptase. These results suggest that matriptase activated by
MT1-MMP may collaborate with MT1-MMP for collagen deg-
radation and subsequent invasive growth in collagen gel.
Domoto et al.
Discussion

Both MT1-MMP and matriptase are overexpressed in a variety
of tumors and thought to be closely associated with their malig-
nant progression, however, their functional interaction and
combined pathophysiological relevance has never been exam-
ined.(13,14,24,25,27)

In this study, we showed for the first time that MT1-MMP
activates matriptase through the cleavage of HAI-1. Proteases
are normally produced in an inactive zymogen form, and their
activation is one of the important regulatory steps, another being
specific inhibitors that regulate the active proteases. Unlike solu-
ble-type MMPs, MT-MMPs are activated by an intracellular
processing enzyme (e.g. furin) and transferred to the cell
Cancer Sci | 2011 | 5
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Fig. 5. Schematic illustration of interaction
between matriptase, hepatocyte growth factor
activator inhibitor-1 (HAI-1), and membrane-type-1
(MT1)-MMP. Matriptase causes rapid autoprocessing
and degradation in cells expressing matriptase
alone (left panel). Processed forms of matriptase
accumulate on the cell surface in complex with HAI-
1 (middle panel). MT1-MMP sheds HAI-1 and
reduces cell surface concentration of HAI-1 in cells
expressing matriptase, HAI-1, and MT1-MMP, which
in turn produces active matriptase. A residual
matriptase ⁄ HAI-1 complex is shed by MT1-MMP
(right panel).
membrane in an active form.(35) Among numerous serine prote-
ases, matriptase is also unique in that its activation cleavage site
is autocatalytic, which suggests that matriptase can act upstream
of a serine protease activation cascade, just as MT1-MMP acti-
vates pro-MMP-2 and pro-MMP-13.(24,36)

The activation of the matriptase zymogen is extraordinarily
complex, and results in cleavage after Gly149 and Arg614 to pro-
duce a catalytically active protease domain (reviewed by List
et al.).(13) HAI-1 is the cognate inhibitor of matriptase, however,
paradoxically it has been thought to be required for activation of
matriptase(36) and involved in its expression and trafficking.(37)

Again, this has a parallel in the role of TIMP-2 in the MT1-
MMP-mediated activation of MMP-2.(38) However, transfection
experiments by us and others showed that HAI-1 is not always
necessary for production of catalytically active matriptase,(39,40)

and several lines of evidence from HAI-1-deficient animal mod-
els clearly show the importance of HAI-1 as an inhibitor, rather
than an activator, of matriptase activity.(41) Indeed, HAI-1 regu-
lates matriptase autoprocessing, activation, and ⁄ or degradation
(Fig. 2A), but the matriptase produced by HAI-1-expressing
cells was catalytically inactive (Fig. 2C). Co-expression of HAI-
1 suppressed autoprocessing and degradation of matriptase,
resulting in an accumulation of matriptase pro-form in cyto-
plasm, and processed and active forms on the cell surface.
Matriptase in these cells was catalytically inactive and might be
complexed with HAI-1. In contrast, matriptase activity was
quite high in cells expressing matriptase alone, although only a
trace level of active form protein was detected in these cells.
This may be due to a rapid turnover rate of active matriptase in
the absence of HAI-1. Co-expression of MT1-MMP with HAI-1
and matriptase effectively cleaved and shed HAI-1, and reduced
the cell-surface HAI-1 concentration (Fig. 2). Thus, matriptase
produced by these cells was active. MT1-MMP also shed HAI-1
which was in a complex with matriptase, and the shed matrip-
tase-HAI-1 complex was stable and accounted for the accumu-
lated matriptase protein seen in the conditioned medium, as
shown in Figure 5.

Reduced expression of HAI-1 by siRNA induced spontane-
ous activation of matriptase in mammary epithelial cells(37)

and squamous-carcinoma derived HSC-4 cells (Fig. 3), and
matriptase-mediated epithelial to mesenchymal transition in
pancreatic cancer cells.(42) It has been emphasized that the bal-
ance of matriptase and HAI-1 levels is a critical factor for
malignant phenotype of tumors.(1,18,37) Kataoka et al.(20,43)

reported that shedding of an HGFA-HAI-1 complex was
induced by phorbol ester, and was inhibited by metalloprotease
inhibitor in HLC-1 lung carcinoma cells, suggesting a possible
regulatory mechanism of HAI-1 function through shedding by
metalloprotease.

In this study, MT1-MMP was shown to disrupt the balance by
cleaving HAI-1 and increasing matriptase activity. Collagen gel
6

culture of HSC-4 cells stimulated MT1-MMP activity, and
recovered matriptase inactivated by HAI-1. HSC-4 cells caused
intensive collagen gel digestion to allow invasive growth by
forming vacuole-like structures. Knockdown of either MT1-
MMP or matriptase significantly suppressed their invasive
growth. HSC-4 cells might use the combined action of MT1-
MMP and matriptase for intensive degradation of collagen gel.
Knockdown of MT1-MMP not only suppressed its expression
but also abrogated matriptase activation, resulting in more
severe growth suppression in collagen gel than matriptase
knockdown. Both MT1-MMP and matriptase show broad sub-
strate specificities, and the combination of MT1-MMP and
matriptase may have synergistic effects on malignant progres-
sion of tumors in vivo. As pro-MMP-2 activation by MT1-MMP
stimulates tumor invasive growth, matriptase acts upstream of a
serine protease activation cascade, and the downstream uPA sys-
tem plays a potent role in the malignant phenotype of tumors.
Serine protease cascade also activates a variety of MMPs, which
further accelerates ECM degradation. In conclusion, MT1-MMP
triggers not only MMP activation but also a serine protease cas-
cade through the cleavage of HAI-1, and may cause a protease
storm.
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