Glycogen synthase kinase-3 is a pivotal mediator of cancer invasion and resistance to therapy

著者	Domoto Takahiro, Pyko Ilya V., Furuta Takuya, Miyashita Katsuyoshi, Uehara Masahiro, Shimasaki Takeo, Nakada Mitsutoshi, Minamoto Toshinari
journal or	Cancer Science
publication title	
volume	107
number	10
page range	1363-1372
year	2016-10-01
URL	http://hdl.handle.net/2297/46504

doi: 10.1111/cas.13028

Supplementary References (SR)

- SR1. Hiscox S, Morgan L, Barrow D, Dutkowski C, Wakeling A, Nicholson RI. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (`Iressa', ZD1839). Clin Exp Metastasis 2004;**21**:201-12.
- SR2. Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of β -catenin phosphorylation. Int J Cancer 2006;**118**:290-301.
- SR3. Li QQ, Xu JD, Wang WJ, et al. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res 2009;**15**:2657-65.
- SR4. Acharyya S, Oskarsson T, Vanharanta S, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012;**150**:165-78.
- SR5. Yang AD, Fan F, Camp ER, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 2006;**12**:4147-53.
- SR6. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007; 14:3629-37.
- SR7. Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009;69:2400-7.
- SR8. Arumugam T, Ramachandran V, Fournier KF, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 2009;**69**:5820-8.
- SR9. Zhang Y, Wei J, Wang H, et al. Epithelial mesenchymal transition correlates with CD24⁺CD44⁺ and CD133⁺ cells in pancreatic cancer. Oncol Rep 2012;**27**:1599-605.
- SR10. Wang X, Ling MT, Guan XY, et al. Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 2004;23:474-82.
- SR11. Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 2007;**31**:277-83.
- SR12. Rosanò L, Cianfrocca R, Spinella F, et al. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res 2011;17:2350-60.
- SR13. Marín-Aguilera M, Codony-Servat J, Reig Ò, et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther 2014;**13**:1270-84.
- SR14. Sun L, Yao Y, Liu B, et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 2012;**31**:432-45.

- SR15. Munson JM, Fried L, Rowson SA, et al. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci Transl Med 2012;4:127ra36.
- SR16. Qian LW, Mizumoto K, Urashima T, et al. Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 2002;8:1223-7.
- SR17. Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F. Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecol Oncol 2007;**107**:500-4.
- SR18. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W. Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 2001;**61**:2744-50.
- SR19. Goetze K, Scholz M, Taucher-Scholz G, Mueller-Klieser W. The impact of conventional and heavy ion irradiation on tumor cell migration *in vitro*. Int J Radiation Biol 2007;**83**:889-96.
- SR20. Ogata T, Teshima T, Kagawa K, et al. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 2005;65:113-20.
- SR21. Buck E, Eyzaguirre A, Barr S, et al. Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther 2007;6:532-41.
- SR22. Lucio-Eterovic AK, Piao Y, de Groot JF. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 2009; **15**:4589-99.
- SR23. Keunen O, Johansson M, Oudin A, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 2011; **108**: 3749-54.
- SR24. Piao Y, Liang J, Holmes L, Henry V, Sulman E, de Groot JF. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res 2013;**19**:4392-403.
- SR25. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004;**25**:471-80.
- SR26. Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN. GSK3β: role in therapeutic landscape and development of modulators. Br J Pharmacol 2010;**160:**1-19.
- SR27. Eldar-Finkelman H, Martinez A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci 2011;**4:**32.
- SR28. Osolodkin DI, Paltulin VA, Zefirov NS. Glycogen synthase kinase 3 as an anticancer drug target: novel experimental findings and trends in the design of inhibitors. Curr Pharmacol Design 2013;**19**:665-79.
- SR29. Bhat R, Xue Y, Berg S, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 2003;**278:**45937-45.
- SR30. Li J, Mizukami Y, Zhang X, Jo WS, Chung DC. Oncogenic K-ras stimulates Wnt signaling in colon cancer through inhibition of GSK-3β. Gastroenterology 2005;**128**: 1907-18.

- SR31. Thiel A, Heinonen M, Rintahaka J, et al. Expression of cyclooxygenase-2 is regulated by glycogen synthase kinase-3β in gastric cancer cells. J Biol Chem 2006;**281**:4564-9.
- SR32. Watson RL, Spalding AC, Zielske SP, et al. GSK3β and β-catenin modulate radiation cytotoxicity in pancreatic cancer. Neoplasia 2010;**12**:357-65.
- SR33. Ben-Josef E, George A, Regine WF, et al. Glycogen synthase kinase 3 beta predicts survival in resected adenocarcinoma of the pancreas. Clin Cancer Res 2015;**21**:5612-8.
- SR34. Beurel E, Kornprobst M, Blivet-Van Eggelpoël MJ, et al. GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res 2004;**300**:354-64.
- SR35. Beurel E, Kornprobst M, Blivet-Van Eggelpoël MJ, Cadoret A, Capeau J, Desbois-Mouthon C. GSK-3β reactivation with LY294002 sensitizes hepatoma cells to chemotherapy-induced apoptosis. Int J Oncol 2005;**27**:215-22.
- SR36. Huang KT, Huang YH, Li P, et al. Correlation between tuberous sclerosis complex 2 and glycogen synthase kinase 3 beta levels, and outcomes of patients with hepatocellular carcinoma treated by hepatectomy. Hepatol Res 2014;**44**:1142-50.
- SR37. Qiao G, Le Y, Li J, Wang L, Shen F. Glycogen synthase kinase-3β is associated with the prognosis of hepatocellular carcinoma and may mediate the influence of type 2 diabetes mellitus on hepatocellular carcinoma. PLoS One 2014;9:e105624.
- SR38. Song CL, Tang H, Ran LK, et al. Sirtuin 3 inhibits hepatocellular carcinoma growth through the glycogen synthase kinase-3β/BCL2-associated X protein-dependent apoptotic pathway. Oncogene 2016;**35**:631-41.
- SR39. Wang L, Lin HK, Hu YC, Xie S, Yang L, Chang C. Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3β in prostate cells. J Biol Chem 2004;**279**:32444-52.
- SR40. Jiang Y, Dai J, Zhang H, et al. Activation of the Wnt pathway through AR79, a GSK3β inhibitor, promotes prostate cancer growth in soft tissue and bone. Mol Cancer Res 2013;11:1597-610.
- SR41. Cai G, Wang J, Xin X, Ke Z, Luo J. Phosphorylation of glycogen synthase kinase-3β at serine 9 confers cisplatin resistance in ovarian cancer cells. In J Oncol 2007;**31**:657-62.
- SR42. Zhai Y, Iura A, Yeasmin S, et al. MSX2 is an oncogenic downstream target of activated WNT signaling in ovarian endometrioid adenocarcinoma. Oncogene 2011;**30**:4152-62.
- SR43. Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3B disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 2005;65: 10545-54.
- SR44. Dong J, Peng J, Zhang H, et al. Role of glycogen synthase kinase 3β in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res 2005;**65**:1961-72.
- SR45. Farago M, Dominguez I, Landesman-Bollag E, et al. Kinase-inactive glycogen synthase kinase 3β promotes Wnt signaling and mammary tumorigenesis. Cancer Res 2005;65:5792-801.

- SR46. Wang Y, Lam JB, Lam KS, et al. Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res 2006;**66**:11462-70.
- SR47. Soto-Cerrato V, Viñals F, Lambert JR, Kelly JA, Pérez-Tomás R. Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3β activity in human breast cancer cells. Mol Cancer Ther 2007;**6**:362-9.
- SR48. Ding Q, He X, Hsu JM, et al. Degradation of Mcl-1 by β -TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 2007;27:4006-17.
- SR49. Ding Q, He X, Xia W, et al. Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3β activity and associates with poor prognosis in human breast cancer. Cancer Res 2007;67:4564-71.
- SR50. Mora-Santos M, Limon-Mortes MC, Limón-Mortés MC, et al. Glycogen synthase kinase-3β (GSK3β) negatively regulates PTTG1/human securin protein stability, and GSK3β inactivation correlates with securin accumulation in breast tumors. J Biol Chem 2011;**286**:30047-56.
- SR51. Dembowy J, Adissu HA, Liu JC, Zacksenhaus E, Woodgett JR. Effect of glycogen synthase kinase-3 inactivation on mouse mammary gland development and oncogenesis. Oncogene 2015;34:3514-26.
- SR52. Li J, Xing M, Zhu M, et al. Glycogen synthase kinase 3β induces apoptosis in cancer cells through increase of survivin nuclear localization. Cancer Lett 2008;**272**:91-101.
- SR53. Kao SH, Wang WL, Chen CY, et al. GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 2014;**33**:3172-82.
- SR54. Koo J, Yue P, Gal AA, Khuri FR, Sun SY. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth. Cancer Res 2014;**74**:2555-68.
- SR55. Leis H, Segrelles C, Ruiz S, Santos M, Paramio JM. Expression, localization, and activity of glycogen synthase kinase 3β during mouse skin tumorigenesis. Mol Carcinog 2002;**35**:180-5.
- SR56. Ma C, Wang J, Gao Y, et al. The role of glycogen synthase kinase 3β in the transformation of epidermal cells. Cancer Res 2007;**67**:7756-64.
- SR57. Liu Q, Mier JW, Panka DJ. Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma. Mol Cancer 2011;**10**:115.
- SR58. Li Z, Tan F, Thiele CJ. Inactivation of glycogen synthase kinase-3β contributes to brain-derived neutrophic factor/TrkB-induced resistance to chemotherapy in neuroblastoma cells. Mol Cancer Ther 2007;**6**:3113-21.
- SR59. Shine B, McKnight R, Leaver L, Geddes JR. Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. Lancet 2015;**386**:461-8.
- SR60. Tolosa E, Litvan I, Höglinger GU, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 2014;**29**:470-8.

- SR61. Höglinger GU, Huppertz HJ, Wagenpfeil S, et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord 2014;**29**:479-87.
- SR62. del Ser T, Steinwachs KC, Gertz HJ, et al. Treatment of Alzheimer's disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 2013;**33**:205-15.
- SR63. Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in Alzheimer's disease. J Alzheimers Dis 2015;**45**:75-88.
- SR64. Zamek-Gliszczynski MJ, Abraham TL, Alberts JJ, et al. Pharmacokinetics, metabolism, and excretion of the glycogen synthase kinase-3 inhibitor LY2090314 in rats, dogs, and humans: a case study in rapid clearance by extensive metabolism with low circulating metabolite exposure. Drug Metab Dispos 2013;**41**:714-26.
- SR65. Gray JE, Infante JR, Brail LH, et al. A first-in-human phase I dose-escalation, pharmacokinetic, and pharmacodynamic evaluation of intravenous LY2090314, a glycogen synthase kinase 3 inhibitor, administered in combination with pemetrexed and carboplatin. Invest New Drugs 2015;**33**:1187-96.

Supplementary Table S1. Previous studies reporting the putative tumor suppressor roles of GSK3 β .

Cancer type	Species	Summary of results	Effect of GSK3β inhibition on tumor cells*	Ref. No.
Colon	human	Stimulation of Wnt signaling by mutant K-ras ^{Val12} was associated with inhibition of GSK3β activity in Caco-2 cancer cells.	Not examined	SR30
Stomach	human	Inhibition of GSK3 β activity by pharmacological inhibitors induced expression of COX-2 mRNA and protein as well as the enzyme activity in TMK-1 and MKN-28 cancer cells.	Not examined	SR31
Pancreas	human	LiCl, GSK3 β -siRNA or a kinase-dead mutant GSK3 β transfection resulted in radioresistance of PANC-1 and BxPC-3 cancer cells, which was associated with stabilization of β -catenin and expression of its target gene.	GSK3β inhibition resulted in radio-resistance and its overexpression in radio-sensitization in cancer cells.	SR32
	human	Pancreatic cancer patients with higher expression of GSK3β in the tumors had a reduced risk of dying of pancreatic cancer.	Not examined	SR33
Liver	human	LiCl and SB-415286 repressed chemotherapeutic drugs induction of HepG2 cell apoptosis by inhibiting CD95 expression and caspase-8 activity and by disrupting nuclear GSK3β-p53 complexes.	GSK3β inhibitors render the cancer cells insusceptible to etoposide and camptothecin.	SR34
human PI31 etop of D human Dec was path patie human Ove sign	PI3K inhibitor LY294002 sensitized HepB3 cells to etoposide and camptothecin by enhancing the expression of DR4 and DR5 and by decreasing pGSK3β ^{S9} .	No direct effect was examined. SB-415286 repressed the chemosensitizing effect by LY294002 in the cancer cells.	SR35	
	human	Decreased TSC2 and GSK3β expression in HCC tumors was significantly correlated with advanced clinicopathological characteristics and poor prognosis of the patients.	Not examined.	SR36
	human	Overexpression of pGSK3 β ^{S9} in HCC tumors was significantly associated with the presence of type 2 DM and with poor prognosis of the patients.	Not examined.	SR37

	human	Ectopic expression of SIRT3 (a class III histone deacetylase) inhibited proliferation and inhibited	No direct effect was examined. GSK3β inhibitor reversed the SIRT3-induced	SR38
		apoptosis in HCC cells, which was associated with deacetylation of GSK3β and decreased pGSK3β ^{S9} .	proliferation inhibition and apoptosis in cancer cells.	
Prostate	human	Transfection of wild-type and constitutively active mutant GSK3β repressed AR-mediated transactivation in cancer cells.	No direct effect was examined. Transfection of kinase-dead mutant GSK3β showed little effect on the AR transactivation in the cancer cells. LiCl abolished AR transactivation by GSK3β.	SR39
	human	A pharmacological GSK3 β inhibitor, AR79, promotes cancer cell proliferation in soft tissue and bone in mice by dephosphorylation and stabilization of β -catenin.	GSK3β inhibitor promotes the cancer cell proliferation in mice.	SR40
Ovary	human	Level of pGSK3 β^{S9} but not total GSK3 β and pGSK3 β^{Y216} was higher in cisplatin-resistant derivative of cancer cells than the parental cells.	No direct effect was examined. LiCl counteracted cisplatin-induced apoptosis in both parental and resistant cancer cells.	SR41
	human	Inhibition of GSK3β by SB-216763 increased MSX2 oncogenic factor via activation of β-catenin signaling in endometrioid cancer cells.	Not examined.	SR42
Uterine cervix (HeLa cells)	human	Inhibition of Akt enhances doxorubicin- or paclitaxel-induced apoptosis in cancer cells, which was associated with decrease in the level of pGSK3β ^{S9} and the binding of hexokinase II to mitochondria.	No direct effect was examined. GSK3β siRNA reversed the effect of Akt inhibitor on chemosensitivity of the cancer cells.	SR43
Breast	human	GSK3β inhibitors (LiCl, SB-216763 and SB-415286) decreased rapamycin-induced down regulation of cyclin D1, but not inhibit cell cycle G1 arrest in cancer cells. Rapamycin enhances paclitaxel-induced cytotoxicity in GSK3β wild-type but GSK3β-null cancer cells.	No direct effect was examined. GSK3β inhibition reversed rapamycin- induced down regulation of cyclin D1 expression in cancer cells.	SR44
	mouse	Transgenic mice overexpressing kinase-inactive GSK3β under the control of the mouse mammary tumor viruslong terminal repeat developed mammary tumors with overexpression of β-catenin and cyclin D1.	Not examined.	SR45

	human	Adiponectin attenuated cancer cell proliferation by	No direct effect was examined.	SR46
		suppression of Akt phosphorylation and pGSK3 β^{S9} in	LiCl reversed the effect of adiponectin in	
		association with accumulation and activation of β -	cancer cells.	
		catenin.		
	human	Therapeutic effect of prodigiosin, a bacterial metabolite,	No direct effect was examined.	SR47
		against cancer cells was associated with increased	GSK3β inhibition with AR-A014418	
		expression of NAG-1 via Akt dephosphorylation	reversed the effect of prodigiosin against the	
		(inactivation).	cancer cells.	
	human	GSK3 β phosphorylates Mcl-1 (proto-oncoprotein) for β -	Not examined.	SR48
		TrCP-mediated ubiquitination and proteasomal		
		degradation in cancer cells.		
	human	Expression of Mcl-1 was correlated with pGSK3β ^{S9} in	Not examined.	SR49
		multiple cancer cell lines and primary cancer samples,		
		and was significantly linked with poor prognosis of		
		human breast cancer.		
	human	GSK3β phosphorylates securin to promote its	Not examined.	SR50
		degradation via β-TrCP. A significant correlation	Level of tumor pGSK3β ^{S9} was correlated	
		between securin accumulation and pGSK3β ^{S9} was	with Ki-67 proliferative index and tumor	
		observed in breast cancer tissues.	grades in breast cancer.	
	mouse	Genetic deletion of GSK3 in mammary epithelial cells	Not examined.	SR51
		resulted in β -catenin activation and induced		
		intraepithelial neoplasia that progressed to development		
		of adenosquamous carcinoma. Mammary-specific		
		knockout of GSK3 and β-catenin induced		
		adenocarcinoma.		
Lung	human	Constitutively active mutant GSK3\beta transfected in A549	Dominant-negative mutant GSK3β and LiCl	SR52
		cells binds to survivin, resulting in G1 cell-cycle arrest,	increased survivin expression, leading to cell-	
		apoptosis and sensitization to doxorubicin.	cycle progression and resistance to apoptosis.	
	human	The level of pGSK3 β^{S9} was associated with expression	Not examined.	SR53
		of Slug, a transcriptional repressor of E-cadherin, in		
		cancer cells and non-small cell lung cancer. GSK3β-		

		mediated phosphorylation of Slug facilitated Slug protein degradation.		
	human	Expression of a constitutively active GSK3β sensitized cancer cells to mTOR inhibitors. Higher basal levels of GSK3β activity in cancer cell lines correlated with more efficacious responses to the inhibitors.	No direct effect was examined. Pharmacologic inhibition and genetic depletion of GSK3β antagonized the effects of mTOR inhibitors against cancer cells.	SR54
Skin	mouse	The level of pGSK3β ^{S9} was higher and that of pGSK3β ^{Y216} was lower in the later stage of chemically-induced two-stage skin carcinogenesis mouse model.	Not examined.	SR55
	mouse	The level of pGSK3 β^{S9} in skin carcinoma was weaker than normal skin. However, its level in TPA-mediated transformation-sensitive epidermal cells was higher than the transformation-resistant cells.	No direct effect was examined. Overexpression of wild-type and constitutively active mutant GSK3β in the TPA-mediated transformation-resistant epidermal cells suppressed EGF- and TPA-mediated anchorage-independent growth in soft agar and tumorigenicity in nude mice.	
Melanoma	human	A multikinase inhibitor sorafenib activates GSK3β via inhibition of its upstream kinases and alters subcellular localization of p53 to induce apoptosis in B-raf mutant melanoma cells.	No direct effect was examined. GSK3β shRNA reversed and constitutively active mutant GSK3β facilitated the effect of sorafenib against tumor cells.	SR57
Neuroblastoma	human	BDNF activation of TrkB induced the Akt-dependent pGSK3β ^{S9} , resulting in its inactivation. Treatment of neuroblastoma cells with inhibitors of GSK3β, LiCl, GSK3β inhibitor VII, kenpaullone, or a GSK3β-siRNA resulted in a 15% to 40% increase in neuroblastoma cell survival after treatment with etoposide or cisplatin.	GSK3β inhibition enhanced the survival of neuroblastoma cells after cytotoxic treatment.	SR58

^{*}Direct effect of pharmacological GSK3 β inhibitors and/or genetic depletion of GSK3 β expression (e.g., RNA interference) or its activity (e.g., recombinant kinase-dead form) on tumor cell survival, proliferation, invasive ability and susceptibility to therapy.

Abbreviations: AR, androgen receptor; BDNF, brain-derived neurotropic factor; DM, diabetes mellitus; DR4, 5, death receptor 4, 5; EGF, epidermal growth factor; GSK3β, glycogen synthase kinase 3β; HCC, hepatocellular carcinoma; LiCl, lithium chloride (classical but not specific

GSK3 β inhibitor); Mcl-1, myeloid cell leukemia-1; mTOR, mammalian target of rapamycin; MSX2, msh homeobox 2; NAG-1, nonsteroidal anti-inflammatory drug activated gene 1; pGSK3 β ^{S9}, GSK3 β phosphorylated at seine 9 residue (inactive form); pGSK3 β ^{Y216}, GSK3 β phosphorylated at tyrosine 216 residue (active form); PI3K, phosphatidylinositol 3-kinase; shRNA, short hairpin RNA; siRNA, small interfering RNA; SIRT3, sirtuin 3; TPA, 12-*O*-tetradecanoylpholbor-13-acetate; β -TrCP, β -transducin repeats-containing protein; TrkB, tyrosine kinase receptor B; TSC2, tuberous sclerosis protein 2;

Supplementary Table S2. Clinical trials of GSK3β inhibitors for treatment of diseases

GSK3β inhibitor		Trial ID and	Combined		
(Company)	Disease	phase	regimen	URL (access date: July 5, 2016)	Reference
AZD-1080	Alzheimer's disease	Phase I	none	https://ja.scribd.com/doc/851553/AstraZeneca-	
(AstraZeneca)				<u>Therapy-R-D-Pipeline-Summary-December-7-2007</u>	
NP031112/tideglusive	Progressive	NCT01049399	none	https://clinicaltrials.gov/ct2/show/NCT01049399	SR60,61
(Noscira SA)	supranuclear palsy	Phase IIb			
	Alzheimer's disease	NCT01350362	none	https://clinicaltrials.gov/ct2/show/NCT01350362	SR62,63
		Phase II			
LY2090314	Acute leukemia	NCT01214603	none	https://clinicaltrials.gov/ct2/show/NCT01214603	
(Eli Lilly)		Phase II			
	Metastatic pancreatic	NCT01632306	Gemcitabine,	https://clinicaltrials.gov/ct2/show/NCT01632306	
	cancer	Phase I/II	FOLFOX, or		
			Gemcitabine +		
			nab-paclitaxel		
	Advanced or metastatic	NCT01287520	Pemetrexed +	https://clinicaltrials.gov/show/NCT01287520	SR64,65
	solid cancer	Phase I	carboplatin		
CLOVA cocktail*	Advanced pancreatic	UMIN00005095	Gemcitabine	https://upload.umin.ac.jp/cgi-open-	
	cancer	Phase I/II		bin/ctr/ctr.cgi?function=brows&action=brows&typ	
				e=summary&recptno=R000006032&language=E	
	Recurrent	UMIN000005111	Temozolomide	https://upload.umin.ac.jp/cgi-open-	*Furuta
	glioblastoma	Phase I/II		bin/ctr/ctr.cgi?function=brows&action=brows&typ	T, et al.
				e=summary&recptno=R000002506&language=E	

Abbreviations: CLOVA, combined cimetidine, lithium chloride, olanzapine and valproate regimen; FOLFOX, combined folate, 5-fluorouracil and oxaliplatin regimen; SR, supplementary reference No.

^{*}Furuta T, et al., unpublished data