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Abstract 

Accumulating evidence has indicated that inflammatory responses are important for 

cancer development.  Epidemiological studies have shown that regular use of 

non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of colon cancer 

development.  Subsequently, mouse genetic studies have shown that COX-2, one of the 

target molecules of NSAIDs, and its downstream product, PGE2, play an important role in 

gastrointestinal tumorigenesis.  Bacterial infection stimulates the TLR/MyD88 pathway in 

tumor tissues, which leads to induction of COX-2 in stromal cells, including macrophages.  

Induction of COX-2/PGE2 pathway in tumor stroma is important for development and 

maintenance of an inflammatory microenvironment in the gastrointestinal tumors.  In such 

a microenvironment, tumor-associated macrophages express proinflammatory cytokines, 

including TNF- and IL-6, and these cytokines respectively activate the NF-B and Stat3 

transcription factors in epithelial cells, as well as in stromal cells.  Recent mouse studies 

have uncovered the role of such inflammatory network for the promotion of gastrointestinal 

tumor development.  Genetically engineered and chemically-induced mouse tumor models 

which mimic sporadic or inflammation-associated tumorigenesis were used in these studies.  

In this review article, we focus on mouse genetic studies using these tumor models, which 

contributed to elucidation of the molecular mechanisms associated with the inflammatory 

network in gastrointestinal tumors, and also discuss the role of each pathway in cancer 

development.  The involvement of immune cells such as macrophages, mast cells and 

regulatory T cells in tumor promotion is also discussed. 
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Introduction 

About 150 years ago, Rudolf Virchow described the presence of leukocytes in 

tumors, and hypothesized that the origin of cancer was at the site of chronic inflammation.  

It has been reported that chronic infections are associated with 15-20% of malignant 

cancers [1, 2].  The principal infectious agents are Helicobacter pylori, hepatitis B and C 

viruses, and the human papilloma virus, which are closely associated with gastric cancer, 

hepatocellular carcinoma, and cervical cancer, respectively.  Moreover, about 30% of all 

cancers have been attributed to smoking and 20% to obesity [3], and it has been shown that 

both tobacco smoke and obesity can trigger inflammatory responses in the lungs and liver, 

respectively, which promotes tumorigenesis [4, 5].  These results, together with those of 

other recent studies [reviewed in 6-8], indicate that inflammation plays an important role in 

promoting cancer development, and “tumor-promoting inflammation” is now included in 

the next generation of the criteria considered to be “hallmarks of cancer” [9].   

Epidemiological studies have revealed that regular use of non-steroidal 

anti-inflammatory drugs (NSAIDs) lowers the mortality rate from cancers in the 

gastrointestinal tract [10, 11].  The target molecules of NSAIDs are cyclooxygenase 

(COX)-1 and COX-2, and accumulating evidence has indicated that COX-2 and its 

downstream product, prostaglandin E2 (PGE2), play an important role in cancer 

development [12, 13].  On the other hand, proinflammatory cytokines are expressed in the 

tumor microenvironment, and such cytokine signaling is also important for cancer 

development through the activation of downstream transcription factors [6].  Among them, 

TNF- and IL-6 activate NF-B and Stat3, respectively, and both the TNF-/NF-B and 
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IL-6/Stat3 pathways have shown to be important for the development of 

inflammation-associated intestinal tumorigenesis [7, 8].  Moreover, NF-B induces the 

expression of COX-2, IL-6 and TNF-.  Accordingly, these signaling pathways construct 

an inflammatory network in the tumor microenvironment, which plays an important role in 

tumor promotion (Fig. 1).  In this review, we discuss the roles of these inflammatory 

pathways in gastrointestinal tumorigenesis, which have been identified by a number of 

mouse model studies as listed in Table 1. 

 

Mouse models of gastrointestinal cancer 

The roles of inflammatory responses in gastrointestinal cancers have been studied 

using several tumor mouse models (Table 1).  Apc716 knockout mice and ApcMin mice 

carry heterozygous truncation mutations at codon 716 and 850 of the mouse Apc gene, 

respectively, and somatic deletion of the wild-type Apc gene results in activation of 

Wnt/-catenin signaling, which causes tumor development in the entire intestinal tract [14, 

15].  Approximately 80% of colorectal cancers harbor APC gene mutations and half of the 

remainder have -catenin mutation, both of which activate Wnt/-catenin signaling [16-18].  

Thus, Apc716 and ApcMin mice recapitulate the molecular mechanism of sporadic colon 

cancer development.  Several other types of Apc mutant mice also develop intestinal 

polyposis (as described in this review and Table 1).   

On the other hand, inflammatory bowel diseases (IBD), including ulcerative colitis 

(UC) and Crohn’s disease (CD), are also risk factors for colorectal cancer [19, 20].  

IBD-related colon cancers are associated with severe inflammatory response, which is 
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important microenvironment required for inflammation-associated tumor development.  

The treatment of mice with a genotoxic chemical carcinogen, azoxymethane (AOM), 

followed by a non-genotoxic agent, dextran sodium sulfate (DSS), induces development of 

colitis-associated colon cancer (CAC) [21].  Mutations in the -catenin gene induced by 

AOM result in the activation of the Wnt/-catenin pathway, which is thought to trigger 

tumor initiation [22].  On the other hand, DSS induces colonic inflammation in rodents, 

which is required for tumor promotion.  Accordingly, the AOM/DSS model is a 

well-established and widely used mouse model for CAC development, and mimicks 

IBD-related colon cancer (Table 1).   Rag2 gene deficient mice lack functional 

lymphocytes, and are susceptible to infection-induced inflammation in the colon.  When 

Rag2-/- mice are infected with the enteric bacterial pathogen, Helicobacter hepaticus, mice 

rapidly develop CAC [23, 24].  This model system is also used for IBD-related colon 

cancer (Table 1). 

Activation of Wnt/-catenin signaling is found in approximately 30-50% of gastric 

cancers, suggesting a causal role of Wnt signaling in a subpopulation of gastric cancers [25, 

26].  On the other hand, Helicobacter pylori infection is an important risk factor for 

gastric cancer [27].  In H. pylori-associated gastritis, COX-2 expression is induced 

significantly, whereas its level decreases by H. pylori eradication [28, 29].  Two transgenic 

mouse strains, K19-Wnt1 mice expressing Wnt1 in the stomach, and K19-C2mE mice 

expressing COX-2 and mPGES-1, mimic Wnt activation and H. pylori-induced 

inflammation, respectively, in the stomach [26, 29-31].  Gan mice are compound 

transgenic mice with K19-Wnt1 and K19-C2mE, which express Wnt1, COX-2, and 
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mPGES-1 simultaneously in the gastric mucosa, resulting in activation of both Wnt 

signaling and the COX-2/PGE2 pathways as found in human gastric cancer.  Gan mice are 

thus used as a model of inflammation-associated gastric tumors [26, 30, 31] (Table 1).   

 

The COX-2/PGE2/EP2 pathway in gastrointestinal tumorigenesis 

It has been demonstrated that treatment of familial adenomatous polyposis (FAP) 

patients with NSAIDs results in significant regression of colon polyps [32].  Moreover, a 

large number of animal experiments have shown that treatment with NSAIDs suppressed 

chemical carcinogen-induced colon tumorigenesis [33].  As a target molecule of NSAIDs, 

inducible enzyme COX-2 plays an important role in inflammation and cancer, while 

COX-1 is expressed constitutively and functions as a house-keeping gene.  Importantly, 

disruption of the COX-2 gene in Apc716 mice and ApcMin mice resulted in a significant 

suppression of intestinal tumorigenesis, thus indicating an essential role of COX-2 in 

intestinal polyp development [34, 35].  Interestingly, disruption of the COX-1 gene also 

suppressed intestinal tumorigenesis [35].  It is possible that COX-1-derived prostaglandins 

are required for tumor cell proliferation during the initial stage when COX-2 expression is 

not yet induced [33].  Other lines of genetic evidence also support the role of the COX-2 

pathway in intestinal tumorigenesis.  Prostaglandins are catalyzed and inactivated by 

15-hydroxyprostaglandin dehydrogenase (15-PGDH).  The number of colon polyps in 

ApcMin mice was markedly increased when the 15-PGDH gene was disrupted, suggesting 

that PGE2 has a role in colon tumorigenesis [36].  Moreover, the transgenic expression of 

COX-2 in the mouse intestine accelerated chemical carcinogen-induced tumorigenesis [37].   
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COX-2 catalyzes synthesis of prostaglandin (PG)H2, which is then converted to 

PGE2.  There are four G protein-coupled receptors for PGE2; EP1, EP2, EP3, and EP4.  

Notably, disruption of the P2 gene caused significant suppression of intestinal polyposis in 

Apc716 mice, whereas suppression of EP1 or EP3 signaling did not affect tumorigenesis 

[38].  EP2 signaling increases the expression of VEGF and bFGF, which enhances 

angiogenesis in intestinal tumors [39].  Moreover, treatment of ApcMin mice with PGE2 

increased the development of intestinal tumors through activation of PPAR, which 

promotes survival of tumor cells [40].  Furthermore, PGE2 signaling through EP2 receptor 

has been shown to activate Wnt/-catenin signaling directly in colon cancer cells by 

suppression of -catenin phosphorylation [41].  Accordingly, it is possible that the 

COX-2/PGE2 pathway contributes to intestinal tumorigenesis through a variety of PGE2 

functions [12, 13] (Fig. 2).   

Microsomal PGE synthase-1 (mPGES-1) is an enzyme that converts PGH2 to PGE2, 

and expression of mPGES-1 is induced in gastric and colon cancers similar to COX-2 [42, 

43].  Notably, disruption of the mPGES-1 genes in Apc14 mice or AOM-treated mice 

resulted in a marked decrease in the PGE2 level in the intestinal mucosa, which led to a 

further significant suppression of intestinal tumorigenesis [44, 45].  Taken together, these 

results indicate that the simultaneous expression of COX-2 and mPGES-1 is required for 

intestinal tumorigenesis through the induction of PGE2 signaling. 

In gastric cancer tissues, induction of COX-2 is found in approximately 70% of 

cases [46, 47], and mPGES-1 expression is also induced [42], suggesting that the 

COX-2/PGE2 pathway is also important for gastric tumorigenesis.  In the K19-C2mE 
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transgenic mice, an increased PGE2 level causes inflammatory infiltration and metaplastic 

hyperplasia in the gastric mucosa [29].  Although Wnt activation alone is not sufficient for 

tumor development in K19-Wnt1 mice, Gan mice (compound mutants of K19-Wnt1 and 

K19-C2mE mice) develop inflammation-associated gastric tumors with 100% incidence 

[26], indicating that cooperation of the Wnt and PGE2 pathways can lead to gastric 

tumorigenesis.  Moreover, gastric inflammation and tumorigenesis were significantly 

suppressed in Gan mice when the mice were treated with a COX-2 inhibitor, celecoxib, or 

an EP4 receptor inhibitor [48, 49].  These results indicate that induction of 

COX-2/PGE2/EP4-induced inflammation is involved in the development of gastric cancer.  

Signaling through EP2 and EP4 both stimulate intracellular cyclic AMP signaling pathway. 

It is therefore possible that either EP2 or EP4 receptor signaling plays an important role in 

gastrointestinal tumorigenesis (Fig. 1). 

 

The TLR/MyD88 pathway for COX-2 induction in gastrointestinal tumors 

Expression of COX-2 and mPGES-1 is detected predominantly in stromal cells, 

including macrophages and fibroblasts, but not in the epithelial cells of mouse intestinal 

polyps, and the same is true for human colon polyps [36, 50-52].  Heterozygous mutations 

in the Lkb1, Smad4, or Cdx2 gene lead to the development of gastrointestinal hamartomas, 

which show distinct histological characteristics from dysplastic adenomas developed in Apc 

mutant mice [52-55].  Notably, expression of COX-2 and mPGES-1 is detected in the 

stromal cells, but not in tumor epithelial cells, in these models [56], thus indicating that the 

COX-2/PGE2 pathway is induced in the tumor stroma by a common mechanism, regardless 
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of the type of tumor.   

Several studies have suggested the commensal flora to play a role in the 

homeostasis of the intestinal mucosa.  Toll-like receptors (TLRs) are a family of 

pattern-recognition receptors that detect the molecular products of microorganisms.  

MyD88 is an adaptor molecule for TLR-mediated induction of inflammatory cytokines.  It 

has been shown that a disruption of the TLR2/4 or MyD88 genes in mice results in 

impaired mucosal repair from DSS-induced ulcers [57], suggesting that infectious 

stimulation through the TLR/MyD88 pathway is important for the regeneration process of 

injured mucosa.  Moreover, stromal macrophages are also required for mucosal repair of 

DSS-induced ulcers in the colon [58].  Accordingly, it is possible that stromal 

macrophages are activated by the TLR/MyD88 pathway.  In the case of intestinal 

tumorigenesis, cancer cells may use such a TLR/MyD88-induced regeneration system to 

increase their proliferation. 

The treatment of mice with DSS induces COX-2 expression and PGE2 production, 

predominantly in macrophages of the inflamed colon mucosa.  However, such COX-2 

induction is not found in the mice lacking the TLR4/MyD88 pathway [59], thus indicating 

the role of bacterial infection in inducing COX-2 expression in colitis tissues.  Importantly, 

AOM/DSS treatment-induced colon tumor development was dramatically suppressed in 

TLR4-/- mice [60], while exogenous administration of PGE2 promoted CAC development 

in the AOM/DSS-treated TLR4-/- mice [61].  Moreover, bone marrow chimera 

experiments indicated that TLR4 expression in the intestinal epithelial cells, but not in 

myeloid cells, is required for CAC development [62].  Taken together, these results 
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suggest that bacterial infection stimulates the TLR/MyD88 pathway in epithelial cells, 

which leads to activation of stromal macrophages, thus resulting in the induction of the 

COX-2/PGE2 pathway in the tumor stroma (Fig. 2).   

In contrast to the AOM/DSS model, ulcerative colitis is not associated with 

intestinal polyposis in the Apc mutant mice.  It is therefore possible that COX-2 

expression is induced by a different mechanism in sporadic colon cancer compared to 

IBD-related tumors.  However, ApcMin MyD88-/- mice showed significant suppression of 

intestinal polyposis with dramatically decreased mortality compared with control ApcMin 

MyD88+/+ mice [63, 64].  Moreover, induction of COX-2 expression was also suppressed 

in ApcMin MyD88-/- mouse intestinal tumors [63].  Bone marrow chimera experiments 

also indicated that MyD88 expression in the epithelial cells was important for intestinal 

tumorigenesis [64].  These results demonstrated that activation of the TLR/MyD88 

pathway in epithelial cells is also important for COX-2 expression in non-IBD colon cancer 

(Fig. 2).   

If bacterial infection is also required for COX-2 induction in the stomach, a low 

bacterial count due to the acidic environment in the stomach may protect against COX-2 

expression in tumorous lesions.  Therefore, it is possible that COX-2 induction through 

the TLR/MyD88 pathway is one of the mechanisms by which Helicobacter pylori infection 

promotes gastric cancer.   

It has also been shown that TLRs can be stimulated with endogenous ligands, 

including heat shock proteins and various products of the extracellular matrix [65].  

Accordingly, it is possible that tumor cell proliferation causes tissue damage, releasing 
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endogenous ligands for TLRs, thus resulting in their activation, which induces COX-2 

expression in stromal macrophages.  Such “cancer-induced inflammation” may be one of 

the mechanisms responsible for the generation of an inflammatory microenvironment, 

especially in cancers that are not associated with infection [65].   

 

The paradox of the COX-2 pathway in colitis-associated cancer 

Although COX-2 inhibition causes suppression of gastrointestinal tumorigenesis, 

treatment with NSAIDs or a COX-2 inhibitor exacerbates DSS-induced colon injury in 

rodent models [66].  Consistently, COX-2 gene knockout mice exposed to DSS showed 

exacerbated phenotypes, such as more severe inflammation, compared with wild-type mice 

[67].  One of the functions of PGE2 is to protect the gastrointestinal mucosa.  Therefore, 

COX-2 is important for mucosal protection and regeneration in the DSS-treated mouse 

colon.  Notably, treatment of COX-2 gene knockout mice with AOM/DSS resulted in a 

significant increase in tumors, with severe inflammatory responses [68, 69], which appears 

to be contradictory to the results showing that COX-2 gene disruption causes significant 

suppression of intestinal polyposis in Apc mutant mice [34, 35].  It is possible that in the 

case of severe ulcerative colitis, cytokine signaling is highly activated and may be sufficient 

for tumor promotion if the COX-2/PGE2 pathway is blocked (Fig. 2).   

 

The TNF-/NF-B pathway in gastrointestinal tumorigenesis 

TNF- is one of key regulators of inflammatory responses.  Although TNF was 

originally recognized as a tumor-necrotizing factor, accumulating evidence has indicated 
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that TNF- has tumor-promoting functions [70].  TNF- signaling activates NF-B, 

which further induces expression of inflammatory factors including COX-2, IL-6, IL-8 and 

TNF- itself (Fig. 1).  Several genetic studies have demonstrated a link between the 

TNF-/NF-B pathway and cancer development [71].   

Conditional disruption of the IKK gene in myeloid cells, which results in specific 

inhibition of NF-B, caused significant suppression of the tumor incidence in 

AOM/DSS-treated mice, and was associated with decreased expression of cytokines and 

COX-2 [72].  Conditional deletion of IKK in epithelial cells also suppressed 

AOM/DSS-induced tumorigenesis [72].  Similar results were found in TNF- receptor 

gene knockout mice. [73].  AOM/DSS treatment in mice lacking the TNF receptor p55 

(TNF-Rp55) gene resulted in attenuated tumor formation, with reduced inflammatory cell 

infiltration compared with wild-type mice.  Moreover, wild-type mice transplanted with 

TNF-Rp55-deficient bone marrow developed significantly fewer tumors after AOM/DSS 

treatment [73], indicating that TNF- stimulation of myeloid cells is important for 

tumorigenesis.  Accordingly, it is possible that the TNF--induced NF-B activation in 

myeloid cells is important for CAC development, and NF-B activation in epithelial cells 

also contributes to tumor formation (Fig. 2).   

It has also been shown that a disruption of a CCL2-specific receptor, CCR2, led to 

significantly decreased macrophage infiltration and lower tumor numbers when mice were 

treated with AOM/DSS [74].  CCL2 is a chemokine that is chemotactic for monocytes and 

macrophages [75].  Taken together, these findings indicate that the activation of NF-B in 

activated macrophages by TNF- in an autocrine or paracrine manner is important for 
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promotion of intestinal tumorigenesis (Fig. 2).  The inhibition of TNF- in Apc mutant 

mice by treatment with an anti-TNF- antibody also suppressed intestinal polyposis, with 

the suppression of angiogenesis [76].  Accordingly, it is possible that TNF-/NF-B 

activation is important in both IBD-related and sporadic colon carcinogenesis.   

An important role for the TNF-/NF-B pathway was also discovered in Mdr2 

knockout mice that develop inflammation-associated hepatocellular carcinoma (HCC) [77].  

In this mouse model, NF-B is activated in the liver by TNF- signaling, and inhibition of 

NF-B significantly suppressed development of HCC after 7 months of age [77].  On the 

other hand, preneoplastic dysplastic lesions in younger mice were not affected by NF-B 

inhibition.  It is possible that the TNF-/NF-B pathway is not required for the initiation 

step, but it does play a role in the promotion step of HCC development. 

The role of the TNF-/NF-B in gastric tumorigenesis in Gan mice has not yet been 

examined.  However, TNF- -/- K19-C2mE mice showed significant suppression of 

gastritis and hyperplasia compared with control K19-C2mE mice, although the 

COX-2/PGE2 pathway was still activated by transgenic expression of COX-2 and 

mPGES-1 [78].  It is thus conceivable that the TNF-/NF-B pathway is activated in 

PGE2-associated gastritis, and that this contributes to inflammation-associated gastric 

tumorigenesis. 

 

The IL-6/gp130/Stat3 pathway in gastrointestinal tumorigenesis 

One of the NF-B-inducible cytokines is IL-6, which is important for immune 

responses, cell survival, apoptosis, and proliferation [79].  The expression of IL-6 is often 
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upregulated in tumor tissues and the serum of human and mice with cancers, including 

colon cancer [80].  The IL-6 cytokine family signals through a common receptor, gp130, 

which activates Stat3 (Fig. 1).  Stat3 plays an important role in development of a variety 

of cancers, including CAC [81-84].  AOM/DSS-induced CAC development was 

significantly suppressed in IL-6-/- mice and also in conditional Stat3 knockout mice that 

lacked Stat3 in the intestinal epithelial cells through suppression of survival and 

proliferation [81, 82].  On the other hand, the number and size of AOM/DSS-induced 

colon tumors increased significantly in gp130757F/F mice, in which gp130-dependent Stat 

signaling is constitutively activated [81].  These results indicate that Stat3 activated in 

epithelial cells plays an important role in promotion of intestinal tumorigenesis (Fig. 2). 

It has been shown that gp130757F/F mice develop gastric tumors with abundant 

infiltration of inflammatory cells [85].  Moreover, heterozygous mutations of the Stat3 

gene in gp130757F/F mice reduced the incidence and multiplicity of gastric tumors, with 

suppression of inflammatory responses [86, 87].  These results indicate that Stat3 is also 

an important tumor-promoting factor in gastric tumorigenesis, and that it is activated by the 

inflammatory network of the tumor microenvironment.  TGF- signaling promotes 

epithelial differentiation, and thus, suppression of the TGF- signaling pathway has been 

thought to promote gastrointestinal tumorigenesis.  Notably, activation of Stat3 in 

gp130757F/F cells desensitizes to TGF- by inducing inhibitory Smad7.  This may be one of 

the mechanisms by which Stat3 promotes tumor formation [86].  IL-11 is another member 

of the IL-6 family cytokine and also signals through gp130.  Interestingly, disruption of 

the IL-11 co-receptor in 130757F/F mice significantly ablated gastric tumorigenesis [88].  
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Because IL-11 is upregulated in human and mouse gastric tumors, these results suggest that 

the IL-11/Stat3 pathway, together with IL-6/Stat3, promotes gastric tumorigenesis. 

 

Inflammatory cells that promote or suppress tumorigenesis 

The major source of inflammatory cytokines and prostaglandins in tumor tissues is 

the macrophages.  Tumor-associated macrophages (TAMs) have been shown to promote 

the progression and metastasis of cancer [89].  TAMs can be classified into several distinct 

groups by their functions, such as inducing inflammation, invasion, angiogenesis, or 

metastasis.  Macrophages are polarized to either the classical M1 type or the alternative 

M2 type, and it has been suggested that TAMs are polarized to M2 or M2-like types [90].  

It has been shown that CD4+ T cells regulate the polarization of macrophages to the M2 

type in mammary tumors [91].  It has recently been shown that COX-2 is important for the 

M2-polarization of TAMs in ApcMin mouse tumors [92].  Accordingly, it is possible that 

the COX-2/PGE2 pathway-induced inflammatory network is important for education of 

macrophages into the pro-tumorigenic M2 or M2-like types.  Importantly, depletion of 

functional macrophages in Apc716 mice by crossing them with op/op mutant mice resulted 

in significant suppression of intestinal polyposis [93].  Moreover, inhibition of 

macrophage recruitment in AOM/DSS-treated mice by CCL2 gene disruption resulted in 

suppression of colon tumor development [74].  Accordingly, macrophages play an 

important role for both sporadic and IBD-related intestinal tumorigenesis (Fig. 2).  In Gan 

mouse gastric tumors, macrophage depletion caused atrophic changes of the tumor cells 

and apoptosis of stromal cells, suggesting a role for macrophages in the maintenance of 
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tumor cells, as well as of tumor stromal cells [49].   

In the Apc468 mouse intestinal tumors, mast cells are preferentially enriched in the 

polyp tissues, and these mast cells express TNF- [76].  Notably, the depletion of mast 

cells in Apc468 mice by bone marrow transplantation from KitWsh/Wsh mice caused 

significant suppression of intestinal polyposis, with a decreased level of TNF- expression.  

It is therefore possible that both macrophages and mast cells are important components of 

the inflammatory network in the tumor microenvironment. 

Bone marrow transplantation from Rag2-/- mice did not affect the intestinal 

tumorigenesis in Apc468 mice [76].  Consistently, the gastritis phenotype was not altered 

in the K19-C2mE Rag2-/- mouse stomach [78].  These results indicate that lymphocytes 

are not required for construction of the inflammatory network and the promotion of 

tumorigenesis in the gastrointestinal tract.  Importantly, however, the adaptive transfer of 

CD4+ CD25+ regulatory T cells to ApcMin mice dramatically reduced the number of 

intestinal polyps, with induction of necrosis of tumor cells [94, 95].  Moreover, such 

regression of intestinal polyps was not found when CD4+ CD25+ cells were prepared from 

IL-10 -/- mice.   

The transfer of CD4+ CD25+ T cells to Helicobacter hepaticus-infected Rag2-/- 

mice, another IBD-related colon cancer model, resulted in suppression of colitis and tumor 

development, but IL-10-disrupted CD4+ CD25+ T cells could not suppress the development 

of CAC [23, 24].  IL-10 suppresses inflammatory responses, thus indicating that 

regulatory T cells expressing IL-10 suppress intestinal tumorigenesis by inhibiting the 

formation of the inflammatory network.  Although CD25+ Foxp3+ T cells are found in 
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ApcMin mouse polyp stroma, they no longer express IL-10, and instead switch to the 

production of IL-17 [95].  It is therefore possible that anti-inflammatory regulatory T cells 

(Foxp3+ IL-10+ IL-17-) shift to pro-inflammatory T cells (Foxp3+ IL-10- IL-17+) in polyp 

tissues [96].  Moreover, ablation of IL-17A in ApcMin mice significantly suppressed the 

development of intestinal polyps and inflammatory cytokine expression, indicating that 

T-cell-derived IL-17 plays an important role in intestinal tumorigenesis [97].   

 

Concluding remarks 

The development of the inflammatory network in tumor tissues and its possible 

roles are summarized in Figure 2.  Chronic infection or endogenous ligands derived from 

tumor cells stimulate the TLRs of epithelial cells, leading to the activation of MyD88.  

The activation of the epithelial TLR/MyD88 pathway further induces COX-2 expression 

and PGE2 production in stromal macrophages through the TNF-/NF-B pathway.  

Epidemiological studies and genetic experiments have demonstrated that COX-2 and its 

downstream product, PGE2, play an important role in gastrointestinal tumorigenesis.  

NF-B is activated by TNF- in tumor-associated macrophages, which further induces the 

expression of TNF-, IL-6 and COX-2.  TNF- in turn stimulates both tumor epithelial 

cells and stromal cells, activating NF-B in these cells, which promotes tumorigenesis.  

On the other hand, IL-6 activates Stat3 through gp130 in epithelial cells, thus leading to an 

increase in cell cycling and a decrease of apoptosis.  The induction of the COX-2/PGE2 

pathway is important for the development of such an inflammatory tumor 

microenvironment.  When the TNF-/NF-B and/or IL-6/Stat3 pathways are activated 
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beyond a threshold, they can promote tumorigenesis without the support of the 

COX-2/PGE2 pathway.  In the inflammatory microenvironment, not only TAMs, but also 

mast cells and IL-17-expressing T cells, infiltrate and contribute to tumor development.  

Therefore, targeting the inflammatory network in tumor tissues by inhibition of PGE2, 

NF-B, Stat3 or downstream pathways may provide an effective preventive or therapeutic 

strategy against gastrointestinal cancer. 
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Figure Legends 

Figure 1.  The interaction of the COX-2/PGE2, TNF-/NF-B, and IL-6/gp130/Stat3 

pathways in the inflammatory environment. 

 

Figure 2.  A schematic diagram of the inflammatory microenvironment in gastrointestinal 

tumor tissues.  Bacterial infection or endogenous ligand activates the TLR/MyD88 

pathway in epithelial cells, which further activate stromal macrophages inducing CCL2.  

In the activated macrophages, NF-B induces expression of COX-2, IL-6 and TNF- itself.  

COX-2/PGE2 pathway is important for construction and maintenance of the inflammatory 

network, and PGE2 accelerates angiogenesis, cell survival and Wnt activation.  TNF- 

activates NF-B in both epithelial cells and stromal macrophages, whereas IL-6 activates 

Stat3 in epithelial cells through gp130.  NF-B and Stat3 play important role in promotion 

of tumorigenesis through suppression of apoptosis and acceleration of cell cycle.  







Table 1. Mouse model studies to examine inflammatory network in gastrointestinal tumorigenesis 

tumor model mouse line crossed / treatment tumor phenotype changes references

sporadic intestinal tumor model (Apc mutant mice) 

Apc716 

ApcMin 

ApcMin 

AOM 

Apc716 

 

ApcMin 

Apc14 

AOM 

ApcMin 

 

Apc716 

Apc468 

Apc468 

Apc468 

ApcMin 

 

ApcMin 

Ptgs2a knockout mice 

Ptgs1b, Ptgs2 knockout mice 

Hpgdc knockout mice 

Ptgs2 transgenic mice 

Ptger2d knockout mice 

 

PGE2 treatment 

Ptgese knockout mice 

Ptges knockout mice 

Myd88f knockout mice 

 

op/op (macrophage deficient) 

KitW/W (mast cell deficient) 

Rag2 -/- (lymphocytes deficient) 

anti-TNF- antibody 

CD4+ CD25+ T cell transfer 

 

Il17ag knockout mice 

suppression of intestinal polyposis 

suppression of intestinal polyposis 

increase of colon polyps 

increase of intestinal tumor  

suppression of intestinal polyposis 

  -inhibition of angiogenesis 

promotion of intestinal polyposis 

suppression of intestinal polyposis 

suppression of intestinal polyposis 

suppression of intestinal polyposis 

  -Epithelial expression of MyD88 is important. 

suppression of intestinal polyposis 

suppression of intestinal polyposis 

Not affected 

suppression of intestinal polyposis 

suppression of intestinal polyposis 

  -IL-10 expression in T cells is required. 

suppression of intestinal polyposis 

34 

35 

36 

37 

38 

39 

40 

44 

45 

63, 64 

 

93 

76 

76 

76 

94, 95 

 

97 

inflammation-associated colon tumor model (AOM/DSS-CAC model mice) 

AOM/DSS 

 

AOM/DSS 

AOM/DSS 

 

AOM/DSS 

 

AOM/DSS 

 

AOM/DSS 

AOM/DSS 

AOM/DSS 

 

H. hepaticus 

-infected Rag2-/-  

Tlr4h knockout mice 

 

Ptgs2 knockout mice 

Ikbkbi conditional KO 

 

Tnfrsf1aj knockout mice 

 

Ccr2k knockout mice 

 

Il6l knockout mice 

gp130757F/F 

Stat3 conditional KO 

 

CD4+ CD25+ T cell transfer 

 

suppression of CAC development 

  -Epithelial expression of TLR4 is important. 

exacerbation of CAC development 

suppression of CAC development 

  -Epithelial and myeloid expression is important. 

suppression of CAC development 

  -Myeloid expression of TNF-Rp55 is important. 

suppression of CAC development 

  -Less macrophage infiltration 

suppression of CAC development 

suppression of CAC development 

suppression of CAC development 

  -Epithelial expression of Stat3 is important. 

suppression of CAC development 

  -IL-10 expression in T cells is required. 

60, 62 

 

68, 69 

72 

 

73 

 

74 

 

82 

81 

81, 82 

 

23, 24 

 

gastritis and gastric tumor model  

K19-Wnt1 

Gan 

Gan 

 

K19-C2mE 

K19-C2mE 

gp130757F/F 

K19-C2mE 

celecoxib, EP4 inhibitor 

clodronate liposome (macrophage 

deficient) 

Tnfm knockout mice 

Rag2 knockout mice 

Il11ra1n knockout mice 

gastric tumor development (Gan mice) 

suppression of gastric tumorigenesis 

atrophic changes of tumor cells 

 

suppression of gastritis/hyperplasia 

Not affected 

suppression of gastric tumorigenesis 

26, 30, 31 

48, 49 

49 

 

78 

78 

88 

gene symbols uses are: aCOX-2, bCOX-1, c15-PGDH, dPGE2 receptor EP2, emPGES-1, fMyD88, gIL-17A, hTLR-4, iIKK, 
jTNF-Rp55, kCCR2, lIL-6, mTNF-, and nIL-11 receptor-. 
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