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Processing of the measles virus haemagglutinin (H) 
protein was analysed by the pulse-chase method, 
immunoprecipitation with an anti-H monoclonal anti- 
body and SDS-polyacrylamide gel electrophoresis, 
combined with the addition of carbonyl cyanide 
m-chlorophenylhydrazone (CCCP) or monensin 
(inhibitors of intracellular processing of secretory 
proteins) to cultures and digestion of the protein with 
endoglycosidase H or neuraminidase. The apparent Mr 
of the H protein was increased from 74K to 78K during 
the chase period. Addition of either CCCP or monensin 
to the chase medium inhibited the appearance of the 
78K H protein, but not the immunoreactivity of the H 
protein or dimer formation, suggesting that these two 
events occur in the rough endoplasmic reticulum. The 

74K H protein processed in the presence of CCCP was 
fully sensitive to endoglycosidase H digestion, whereas 
the 74K H protein processed in the presence of 
monensin was partially resistant to endoglycosidase H. 
In experiments using 3H-labelled sugars, [3H]galactose 
was incorporated into the 74K H protein in the 
presence of monensin. Neuraminidase treatment 
increased the electrophoretic mobility of the 78K H 
protein to 74K. Only the 78K H protein was detected 
on the surface of untreated cells, and it was resistant to 
endoglycosidase H digestion. These data suggest that 
after galactose addition sialic acid is added to the H 
protein in the trans-Golgi complex and then the mature 
78K H protein is transported to the cell surface. 

Introduction 

Measles virus (MV) is a member of the morbillivirus 
subgroup of paramyxoviruses. It has two envelope 
glycoproteins, the haemagglutinin (H) and the fusion (F) 
proteins. The H protein possesses haemagglutinating 
activity and is analogous to the haemagglutinin- 
neuraminidase (HN) glycoprotein of other paramyxo- 
viruses such as Sendai virus and mumps virus. It is 
generally accepted that the H protein has an essential 
role in the first step of infection, i.e. viral attachment to 
the sialic acid-containing cellular receptors. In addition, 
the H protein also induces host immune responses such 
as the production of neutralizing antibody which plays 
an important role in the host's defence against MV 
infection. It is still unclear whether the H protein elicits 
major histocompatibility complex-restricted cytotoxic T 
lymphocytes. 

The H protein undergoes a series of N-linked 
glycosylation events within cells before the mature 
protein is ready to be incorporated into virions. In 
general, N-linked oligosaccharide chains are transferred 
cotranslationally to the growing polypeptide in the rough 
endoplasmic reticulum (RER). Processing of the high 
mannose oligosaccharide to the complex form begins 
after transport to the Golgi complex. In a stepwise, 
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concerted set of reactions, six of the nine mannose 
residues are removed and N-acetylglucosamine, galac- 
tose, sialic acid and fucose are added one at a time to 
each oligosaccharide chain. Oligosaccharide processing 
is completed before the protein reaches the cell surface 
(Kornfeld & Kornfeld, 1985). 

During the maturation process of the MV H protein, 
the electrophoretic mobility of the protein decreases, 
maybe reflecting the processing pathway from the high 
mannose to the complex type oligosaccharides (Graves, 
1981 ; Bellini et al., 1983; Young et al., 1985; Kohama et 
al., 1985). However, it is still unclear which step in 
oligosaccharide processing is responsible for the altered 
mobility. In this communication, we attempt to dissect 
the maturation process of MV H protein by pulse-chase 
methods combined with inhibitors of the intracellular 
processing of glycoproteins and digestion with endo- 
glycosidase H or neuraminidase. 

Methods 

Cells, virus and infections. HeLa cells used in this work were cultured 
at 35 °C in Dulbecco's modified Eagle's medium supplemented with 
5% foetal calf serum. The cells were infected with MV (Edmonston 
strain) at an m.o.i, of 2. 
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Radioisotopic labelling of infected cells. Infected cells were incubated 
at 35 °C for 24 h and pulse-labelled with 100/.tCi/ml of [35S]methionine 
(1070 Ci/mmol, American Radiolabeled Chemicals) for 10 or 20 min at 
35 °C, then the cells were chased in the presence of 2 mM unlabelled 
methionine for the appropriate periods of time at 35 °C. For the 
labelling of infected cells with 3H-labelled sugars, 100 ~Ci/ml of 
D-[6-3H]glucosamine hydrochloride (25 Ci/mmol, American Radio- 
labeled Chemicals) or D-[6-3H]galactose (20 Ci/mmol, American 
Radiolabeled Chemicals) was added to the medium for the appropriate 
period of time. 

Immunoprecipitation and SDS-PAGE. Virus proteins were analysed 
by immunoprecipitation. For total cell immunoprecipitation, the 
chased cells were solubilized in radioimmune precipitation assay 
(RIPA) detergent buffer (Ogura et al., 1987) and immunoprecipitated 
with anti-H monoclonal antibody (kindly provided by Professor V. ter 
Meulen, Wfirzburg, Germany) and the immunoprecipitates were 
subjected to SDS PAGE. For cell surface immunoprecipitation, the 
chased cells were washed with cold PBS, monoclonal antibody was 
added and the cells were incubated at 4 °C for 15 min. The cells were 
washed with ice-cold PBS five times to remove excess antibody and 
solubilized in RIPA detergent buffer. The tysates were precipitated by 
Protein A Sepharose CL-4B, and analysed by SDS-PAGE. The Mrs of 
the two types of H protein and its dimer were estimated by using 
14C-labelled marker proteins (Amersham) in preliminary experiments. 

Carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment or 
monensin treatment of the cells. Infected cells pulse-labelled with 
[35S]methionine were chased in the presence of 50 ~tg/ml of CCCP or 
1 ~tM-monensin for the appropriate periods of time. The cells were then 
subjected to RIPA. 

Endoglycosidase H digestion or neuraminidase digestion of H protein. 
Immunoprecipitated H protein bound to Protein A-Sepharose CL-4B 
was resuspended in 100 mM-sodium citrate pH 5.0, and identical 
samples were either digested overnight at 37 °C with 50 milliunits 
(mU)/ml of endoglycosidase H or were mock-treated. The samples 
were washed with PBS and then analysed by SDS-PAGE. For 
neuraminidase digestion, samples of H protein were resuspended in 
100 mM-citrate-phosphate buffer pH 6.5 containing 10 mM-CaC12, and 
identical samples were either digested for 5 h at 37 °C with 50, 125 and 
375 mU/ml of neuraminidase or were mock-treated. The samples were 
washed with PBS and then subjected to SDS-PAGE. 

Chemicals. CCCP and monensin were purchased from Sigma. 
Endoglycosidase H and streptococcus neuraminidase were obtained 
from Genzyme and Seikagaku Kogyo, respectively. 

Results 

Synthesis o f  M V  H protein in infected cells 

In order to study post-translational glycosylation, 
MV-infected HeLa cells were pulse-labelled for 20 min 
with [3~S]methionine 24 h post-infection (p.i.) in the 
presence or absence of CCCP or monensin and an anti-H 
monoclonal antibody was used in immunoprecipitation. 
Immediately after labelling (Fig. 1, lanes 2 to 5) a single 
H protein band with an apparent Ms of 74K was 
detected. After 60 min of chase, an additional H protein 
band with an apparent M~ of 78K appeared and the 74K 
H protein disappeared after 120 min of chase. After 
60 min of chase, the intensity of the H protein bands no 
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Fig. 1. Time course analysis of processing of the H protein in the 
absence or presence of CCCP or monensin. HeLa cells in 3.5 cm 
diameter Petri dishes were infected with MV at an m.o.i, of 2 and 
incubated at 35°C. At 24 h p.i., the cells were labelled with 
[35S]methionine for 20 min and chased with unlabelled methionine in 
the absence (lanes 2 to 5) or presence of CCCP (lanes 6 to 8) or 
monensin (lanes 9 to 11) for 0 (lane 2), 30 (lanes 3, 6 and 9), 60 (lanes 4, 7 
and 10) or 120 (lanes 5, 8 and 11) min and then subjected to total cell 
immunoprecipitation using anti-H monoclonal antibody followed by 
SDS-PAGE. Lane 1, mock infection. 

longer increased. A similar shift in the electrophoretic 
mobility of the H protein has been observed by several 
investigators (Graves, 1981 ; Bellini et al., 1983; Young et 
al., 1985; Kohama et al., 1985). We examined the effect 
of CCCP, an inhibitor of oxidative phosphorylation 
which blocks the transport of secretory or membrane 
proteins from the RER to the Golgi apparatus (Fries & 
Rothman, 1980) and monensin, a sodium ionophore 
which is known to disrupt the functioning of the trans- 
Golgi (Tartakoff, 1983), on the glycosylation of the H 
protein. In the presence of CCCP the intensity of the 
74K H protein band increased with chase time (Fig. 1, 
lanes 6 to 8), suggesting that the immunoreactivity of the 
H protein was acquired cotranslationally in the RER. On 
the other hand, the 78K H protein did not appear even 
after 120 min of chase in the presence of monensin (Fig. 
1, lanes 9 to 11). This indicates that the increased Mr of 
the H protein occurs in the Golgi complex. 

The 74K H protein in the untreated cells shifted 
slightly towards a faster electrophoretic mobility after 30 
and 60 rnin of chase (Fig. 1, lanes 2 to 5 and Fig. 2a, lanes 
2 to 5). The same tendency was also observed in the 
CCCP- or the monensin-treated cells (Fig. 1, lanes 6 to 11 
and Fig. 2a, lanes 6 to 11). 

In MV-infected cells the H proteins are present as 
dimers (Bussell et al., 1974; Hardwick & Bussell, 1978; 
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Fig. 2. SDS-PAGE of immunoprecipitated H protein under reducing 
or non-reducing conditions. Infected HeLa cells pulse-labelled with 
[3sS]methionine for 10 min were chased with unlabelled methionine in 
the absence (lanes 2 to 5) or presence of CCCP (lanes 6 to 8) or 
monensin (lanes 9 to 11) for 0 (lane 2), 15 (lanes 3, 6 and 9), 30 (lanes 4, 7 
and 10) or 60 (lanes 5, 8 and 11) min and then subjected to total cell 
immunoprecipitation using anti-H monoclonal antibody. SDS-PAGE 
was carried out in the presence (a) or absence (b) of 2-mercaptoethanol. 
Lane 1, mock infection; Ha, H protein dimer; H,~, H protein monomer. 
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Casa l i  et al., 1981; F u j i n a m i  et al., 1981). U n d e r  non-  
reduc ing  condi t ions  we also de tec ted  d imers  of  the  H 
p ro te in  i m m e d i a t e l y  af ter  10 rain o f  pulse- label l ing,  and  
C C C P  and  m o n e n s i n  d id  not  inh ib i t  the i r  fo rma t ion  
(Fig.  2b). I t  is therefore  a p p a r e n t  tha t  the  o l igomer-  
izat ion of  the H p ro te in  t akes  p lace  in the  R E R .  

Endoglycosidase H sensitivity o f  the H protein in infected 
cells 

W e  e x a m i n e d  the sens i t iv i ty  o f  the H p ro te in  in 
endoglycos idase  H,  which  is k n o w n  to c leave the  
N- l inked  high mannose  o l igosacchar ides  a t t ached  to the  
p ro te in  as long as they  have  not  been  processed  into  
complex  o l igosacchar ides  (Tai  et al., 1979). As  shown in 
Fig.  3, lanes  2 to 5, the  74K H pro te in  was resolved into 
three  new molecules  by  endoglycos idase  H d iges t ion  
while  the  78K H pro te in  was res is tant .  This  ind ica tes  
tha t  the  74K and  78K H pro te ins  have  h igh  m a n n o s e  
o l igosacchar ides  and  complex  o l igosacchar ides ,  respect-  
ively. The  74K H pro te in  chased  in the presence  of  
C C C P  was comple te ly  sensi t ive  (Fig.  3, lanes  6 to 9), 
whereas  the 74K H prote in ,  chased  for 120 min  in the  
presence  o f  monens in ,  con ta ined  a pa r t i a l ly  endo-  
g lycosidase  H- res i s t an t  molecule  (Fig.  3, lanes  9 to 11). 

Incorporation of  3 H-labelled sugars into H protein 

In  o rder  to de t e rmine  whe the r  the  74K H pro te in  has  
N-ace ty lg lucosamine  or  galactose ,  MV- in fec t ed  cells 
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Fig. 3 Fig. 4 

Fig. 3. Sensitivity of the H protein to endoglycosidase H. Infected HeLa cells pulse-labelled with [35S]methionine for 20 min were 
chased with unlabelled methionine in the absence (lanes 2 to 5) or presence of CCCP (lanes 6 to 8) or monensin (lanes 9 to 11) for 0 (lane 
2), 30 (lanes 3, 6 and 9), 60 (lanes 4, 7 and 10) or 120 (lanes 5, 8, and 11) min. Immunoprecipitated H protein was digested overnight at 
37 °C with endoglycosidase H (+) or was mock-treated ( - )  and then subjected to SDS-PAGE. Lane 1, mock infection. 
Fig. 4. Incorporation of [3H]galactose into the H protein. Infected HeLa cells were labelled with [3H]galactose for 6 h in the absence 
(lane 2) or presence of CCCP (lane 3) or monensin (lane 4) and then subjected to total cell immunoprecipitation using anti-H 
monoclonal antibody followed by SDS-PAGE. Lane 1, mock infection. 
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Fig. 5. Sensitivity of the H protein to neuraminidase. Infected HeLa 
cells were labelled with [35S]methionine for 30 min and chased with 
unlabelled methionine for 0 (lanes l to 4) or 5 (lanes 5 to 8) h. 
Immunoprecipitated H protein was digested at 37 °C for 5 h with 0 
(lanes 1 and 5), 50 (lanes 2 and 6), 125 (lanes 3 and 7) or 375 (lanes 4 and 
8) mU/ml of neuraminidase and was then subjected to SDS-PAGE. 

1 2 3 4  5 6 7  8 

Fig. 7. Endoglycosidase H sensitivity of H protein on the cell surface. 
Infected HeLa cells were labelled with [35S]methionine for 30 rain and 
chased with unlabelled methionine for 0 (lane 1) or 4 (lanes 2 to 7) h in 
the absence (lanes 1, 2 and 5) or presence of CCCP (lanes 3 and 6) or 
monensin (lanes 4 and 7) and then subjected to total cell immuno- 
precipitation (lanes 1 to 4) or cell surface immunoprecipitation (lanes 5 
to 7) using anti-H monoclonal antibody. Immunoprecipitated H 
protein was digested overnight at 37 °C with endoglycosidase H (+) or 
was mock-treated ( - )  and then subjected to SDS-PAGE. Fluoro- 
graphy exposure times for total cell immunoprecipitation and cell 
surface immunoprecipitation were 3 and 7 days, respectively. 

78K 
- - ' 7 4 K  

In  addi t ion ,  C C C P  comple te ly  i nh ib i t ed  incorpor-  
a t ion  of  [3H]galactose into the  H p ro te in  (Fig.  4, lane 3), 
whereas  in the presence  of  monens in ,  [3H]galactose was 
inco rpora t ed  into the 74K H pro te in  (Fig.  4, lane 4). This  
indica tes  tha t  monens in  does not  b lock  g lycosyla t ion  
unti l  af ter  the add i t i on  o f  galactose.  

Fig. 6. Effect of CCCP or monensin on cell surface expression of H 
protein. Infected HeLa cells labelled with [35S]methionine for 1 h were 
chased with unlabeUed methionine for 0 (lane 1) or 6 (lanes 2 to 8) h in 
the absence (lanes 1, 2, 5 and 8) or presence of CCCP (lanes 3 and 6) or 
monensin (lanes 4 and 7) and then subjected to total cell immuno- 
precipitation (lanes 1 to 4) and cell surface immunoprecipitation (lanes 
4 to 8) using anti-H monoclonal antibody followed by SDS-PAGE. 

were label led  wi th  [3H]glucosamine or  [3H]galactose.  
Both  [3H]glucosamine and  [aH]galactose  were  incorpor -  
a ted  into bo th  the 74K and  78K H pro te ins  (da ta  not  
shown),  suggest ing tha t  the  shif t  f rom 74K to 78K of  the 
p ro te in  occurs  af ter  the  add i t i on  o f  g lucosamine  and  
galactose.  

Neuraminidase sensitivity of  the H protein in infected cells 

W e  a t t e m p t e d  neu ramin ida se  d iges t ion  o f  the 74K and  
78K H pro te ins  in o rder  to examine  the a d d i t i o n  o f  sial ic 
ac id  to these prote ins .  As  shown in Fig .  5, the  74K H 
pro te in  pulse- label led  wi th  [35S]methionine for 30 min  
was re la t ive ly  insens i t ive  to var ious  concen t ra t ions  of  
neu ramin idase .  On the o ther  hand ,  the  78K H pro te in  
pulse- label led  and  chased  for 4 h was sensi t ive to 
neu ramin idase ,  and  its e lec t rophore t i c  mob i l i t y  was 
a l tered to tha t  o f  the  74K H prote in .  These  results  
ind ica te  tha t  the  mob i l i t y  shif t  o f  the H p ro te in  f rom 74K 
to 78K is a result  of  the add i t i on  of  sial ic ac id  to the 74K 

H prote in .  

Cell surface expression of  H protein in infected cells 

H pro te in  express ion  on the cell surface was e x a m i n e d  by 
cell surface immunoprec ip i t a t i on .  In  H e L a  cells in fec ted  
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with MV, the 74K H protein was pulse-labelled with 
[35S]methionine for 20 min. After 60 min of chase, only 
the 78K H protein appeared on the cell surface of the 
untreated cells and its intensity had not increased by 
120 min of chase (Ogura et al., 1990). The 78K H protein 
on the cell surface of the untreated cells was resistant to 
endoglycosidase H (Fig. 7, lane 5). Cell surface ex- 
pression of the H protein was completely inhibited by 
CCCP (Fig. 6, lane 6), whereas the 74K H protein was 
detected on the cell surface in the presence of monensin 
(Fig. 6, lane 7). This monensin-treated 74K H protein on 
the cell surface generated three sensitive molecules and a 
resistant one by endoglycosidase H digestion (Fig. 7, lane 
7) which is similar to the results from total cell 
immunoprecipitation in the presence of monensin (Fig. 
7, lane 4). 

Discussion 

The pulse-labelling experiments presented here show 
that the 74K H protein rapidly acquired immuno- 
reactivity with a monoclonal antibody, which is in 
contrast to the gradual maturation of the F protein 
(Ogura et al., 1990). However, slow maturation of the 
HN protein was observed in paramyxoviruses such as 
Sendai virus (Mottet et al., 1986), Newcastle disease 
virus (Nishikawa et al., 1986) and mumps virus (Yamada 
et al., 1988). The slightly increased mobility of the 74K H 
protein after the chase period was reproducibly observed 
in both the untreated and treated cells. It may be due to 
the removal of glucose from the N-linked oligo- 
saccharides, which is transferred from dolichol to the 
growing H polypeptides in the RER. As the formation of 
H dimers was hardly affected by CCCP addition to the 
chase medium, it is conceivable that oligomerization of 
the H protein occurs before the protein leaves the RER. 

The pulse-labelled 74K H protein had decreased in 
mobility after 60 min of chase when the 78K H protein 
appeared. The appearance of heterogeneity in H protein 
mobility during chase periods, which was thought to be 
due to the processing of oligosaccharide residues from 
the high mannose to the complex type (Graves, 1981; 
Bellini et al., 1983; Young et al., 1985; Kohama et al., 
1985), has also been observed in mumps virus (Yamada 
et al., 1988). Monensin inhibited the heterogeneous 
mobility of the MV H protein and a similar observation 
was made in the case of mumps virus (Yamada et al., 
1988). 

Both the 74K and 78K H proteins were found to 
contain glucosamine and galactose by [3H]glucosamine 
and [3H]galactose labelling experiments. The 78K H 
protein was reduced to 74K by neuraminidase treatment. 

These data indicate that the mobility shift occurs by the 
addition of sialic acid after the addition of galactose. 
Since monensin, which disturbs the trans-Golgi function 
(Tartakoff, 1983), inhibited the mobility shift, and 
galactosyl transferase is known to be restricted to the 
trans face of the Golgi complex (Griffiths et al., 1982; 
Roth & Berger, 1982), this shift seems to take place in the 
trans-Golgi. 

The incorporation of galactose into the MV 74K H 
protein was not inhibited by monensin, whereas the 
Newcastle disease virus HN and Fo proteins were 
reported to be labelled with [3H]glucosamine but not 
with [3H]galactose in the presence of monensin in BHK 
cells (Yoshida et al., 1986). This implies that monensin 
blocks different steps in the functions of the trans-Golgi 
in HeLa and BHK cells. This difference can be explained 
if the effect of monensin on Newcastle disease virus 
assembly is host-cell dependent (Yoshida et al., 1986). 

The 78K H protein, but not the 74K H protein, was 
detected on the cell surface of untreated cells by both cell 
surface immunoprecipitation and 125I-labelling of the 
cell surface (data not shown). No cell surface expression 
of the H protein was observed in the presence of CCCP 
due to the blocking of its transport from the RER to the 
Golgi complex. On the other hand, under conditions 
where the transition of the 74K H protein to the 78K H 
protein was inhibited by monensin, the 74K H protein 
appeared on the cell surface. This 74K H protein was 
partially sensitive to endoglycosidase H, as was the 
intracellular 74K H protein when it was labelled in the 
presence of monensin. These data seem to suggest that 
although monensin blocks the addition of sialic acid, 
transport of the H protein to the cell surface is not 
disturbed in HeLa cells. In this respect, it is important to 
note that monensin had different effects on Newcastle 
disease virus assembly in BHK cells and MDBK cells 
(Yoshida et al., 1986). In addition, Newcastle disease 
virus HN and F 0 proteins without galactose were not 
associated with the plasma membrane (Yoshida et al., 
1986). From these data, it is possible to conclude that 
galactose addition may play a necessary part in transport 
of the viral glycoproteins to the cell membrane, 
independent of the action of monensin. The 78K H 
protein without sialic acid seemed to be biologically 
inactive as judged by a haemadsorption assay (data not 
shown), suggesting the importance of sialic acid in the 
biological functions of the MV H glycoprotein. 

The nucleotide sequences of cloned cDNAs corre- 
sponding to the full-length MV H mRNA indicate that 
five potential N-linked glycosylation sites are present on 
the MV H protein (Alkhatib & Briedis, 1986). Individual 
N-linked oligosaccharide chains of the simian virus 5 
HN protein have recently been reported to have different 
roles in its folding, assembly and transport (Ng et al., 
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1990). In order to understand the role of N-linked 
glycosylation of the MV H protein for its biological 
functions, it will be necessary to study the functional role 
of the individual oligosaccharide chains. 

We are indebted to Professor V. ter Meulen, Wiirzburg, Germany for 
providing MV monoclonal antibodies. This work was supported in part 
by a grant-in-aid from the Ministry of Education, Science and Culture 
of Japan. 
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