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Abstract 

ASC is an adaptor molecule that mediates apoptotic and inflammatory signals, and implicated in 

tumor suppression. However, the mechanism of ASC-mediated apoptosis has not been well 

elucidated. Here, we investigated the molecular mechanisms of ASC-mediated apoptosis in 

several cell lines using a CARD12-Nod2 chimeric protein that transduces the signal from 

muramyl dipeptide into ASC-mediated apoptosis. Experiments using dominant-negative 

mutants, small-interfering RNAs, and peptide inhibitors for caspases indicated that caspase-8 

was generally required for ASC-mediated apoptosis, while a requirement for caspase-9 

depended on the cell type. In addition, CLARP/FLIP, a natural caspase-8 inhibitor, suppressed 

ASC-mediated apoptosis, and Clarp-/- mouse embryonic fibroblasts were highly sensitive to 

ASC-mediated apoptosis. Bax-deficient HCT116 cells were resistant to ASC-mediated 

apoptosis as reported previously, although we failed to observe colocalization of ASC and Bax 

in cells. Like Fas-ligand-induced apoptosis, the ASC-mediated apoptosis was inhibited by Bcl-2 

and/or Bcl-XL in type-II but not type-I cell lines. Bid was cleaved upon ASC activation, and 

suppression of endogenous Bid expression using small-interfering RNAs in type-II cells reduced 

the ASC-mediated apoptosis. These results indicate that ASC, like death receptors, mediates two 

types of apoptosis depending on the cell type, in a manner involving caspase-8. 
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Introduction 

ASC (also called TMS1) is a cytoplasmic adaptor protein consisting of a pyrin domain (PYD) 

and a caspase recruitment domain (CARD). This adaptor protein links CARD12 (also called 

Ipaf or CLAN), a member of the Apaf-1-like proteins, to signal transduction pathways leading 

to apoptosis and NF-κB activation (Masumoto et al., 2003). ASC also links several 

PYD-containing members of the Apaf-1-like proteins (called NALPs or PYPAFs) with 

caspase-1, and induces the caspase-1-mediated maturation of inflammatory cytokines, such as 

IL-1β (Martinon et al., 2002; Wang et al., 2002). Accordingly, ASC-deficient macrophages fail 

to secrete IL-1β and resist cell death upon intracellular infection with Salmonella (Mariathasan 

et al., 2004).  

Another line of studies has shown that the expression of ASC is down-regulated in various 

malignant tumors (McConnell and Vertino, 2004). In addition, the genes for ASC and CARD12 

are targets of p53, and are required for the apoptosis induced by p53 and chemotherapeutic 

drugs in some human cells (Ohtsuka et al., 2004; Sadasivam et al., 2005). Thus, the 

CARD12-ASC axis seems to play an important role in tumor suppression and chemosensitivity 

of cancer cells. 

Several research groups have studied the molecular mechanism of ASC-mediated apoptosis, 

but the results have been controversial. It was first reported that a dominant-negative mutant for 

caspase-9 but not caspase-8 inhibits the apoptosis induced by over-expressing ASC in HEK293 

cells (McConnell and Vertino, 2000). However, a dominant-negative mutant of caspase-8 but 

not caspase-9 inhibits the apoptosis induced by the co-expression of ASC and CARD12 or by 

the forced oligomerization of ASC in 293T cells (Masumoto et al., 2003). It was also reported 

that ASC interacts with Bax and recruits it to mitochondria, implying the caspase-9-dependent 
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pathway (Ohtsuka et al., 2004).   

The lack of information regarding the upstream molecules that activate CARD12 or other 

ASC-activating Apaf-1-like proteins has prevented us from investigating the functions of ASC 

under physiological conditions.
5
 To overcome this problem, we recently established an 

experimental system in which muramyl dipeptide (MDP) activates ASC-mediated signal 

transduction pathways through a chimeric protein (C12N2) consisting of the CARD 

(ASC-interacting domain) from CARD12 and the nucleotide-binding oligomerization domain 

and leucine-rich repeats (MDP-binding region) from Nod2, another Apaf-1-like protein 

(Hasegawa et al., 2005). Here, using this system, we investigated the molecular mechanisms of 

ASC-mediated apoptosis in several cell lines. 

 

 

Results 

MDP induces apoptosis through C12N2 and ASC. 

We previously generated HEK293 cell-derived stable cell lines (MAIL8) that express ASC and 

C12N2. MDP stimulation induced the interaction of C12N2 and ASC, oligomerization of ASC, 

and caspase-8-dependent NF-κB activation, leading to IL-8 production in these cell lines 

(Hasegawa et al., 2005). Furthermore, upon MDP stimulation, some MAIL8 cell lines showed 

clear apoptotic changes, such as plasma membrane blebbing, cell shrinkage (Figure 1a), 

phosphatidyl-serine externalization (Figure 1b), nuclear condensation and fragmentation, and 

the degradation of chromosomal DNA to nucleosome-sized units (supplementary Figure S1). 

MDP induced increased apoptosis only when 293T cells were transiently transfected with the 

combination of ASC and C12N2 cDNAs, although ASC alone induced weak apoptosis 
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irrespective of MDP stimulation (Figure 1c). (Hereafter, apoptosis induced by transient 

transfection with C12N2 and ASC followed by MDP stimulation is termed 

C12N2+ASC+MDP-induced apoptosis.) Similarly, C12N2+ASC+MDP induced apoptosis in 

the HCT116 and SW480 colon cancer cell lines, and MKN45 stomach cancer cell line (Figure 

1d). Thus, C12N2 was capable of transducing MDP stimulation into ASC-mediated apoptosis.  

 

Caspase-8 is essential for ASC-induced apoptosis, while the requirement for caspase-9 depends 

on the cell type 

We then investigated the role of caspases in our experimental system. Consistent with a 

previous report (Masumoto et al., 2003), a dominant-negative mutant of caspase-8 but not 

caspase-9 or caspase-1 inhibited the C12N2+ASC+MDP-induced apoptosis in 293T cells and 

HCT116 cells (Figure 2, a and b). The dominant-negative mutant of caspase-9 but not caspase-8 

inhibited the Bax-induced apoptosis in HCT116 cells (supplementary Figure S2a), confirming 

that the caspase-9 mutant could inhibit caspase-9-dependent apoptosis. Furthermore, 

down-modulation of the endogenous caspase-8 expression using three different 

caspase-8-targeting siRNAs inhibited the MDP-induced apoptosis in MAIL8 cells, whereas a 

caspase-9-targeting siRNA did not do so (Figure 2c and supplementary Figure S3a). The 

pan-caspase inhibitor z-VAD-FMK, caspase-8 inhibitor z-IETD-FMK, and caspase-3 inhibitor 

z-DEVD-FMK inhibited the MDP-induced apoptosis in MAIL8 cells, whereas little or no 

inhibition was observed with the caspase-9 inhibitor z-LEHD-FMK or granzyme B inhibitor 

z-AAD-FMK (Figure 2d). Similarly, the inhibitor for caspase-8 but not caspase-9 inhibited the 

C12N2+ASC+MDP-induced apoptosis in HCT116 cells (Figure 2e, left panel). However, both 

caspase-8 and caspase-9 inhibitors strongly inhibited the C12N2+ASC+MDP-induced apoptosis 
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in SW480 cells (Figure 2e, right panel). In addition, experiments using siRNAs indicated that 

MKN45 cells require caspase-8 but not caspase-9, while the A549 lung carcinoma cell line 

requires both caspase-8 and caspase-9 for this response (supplementary Figure S3b and c). The 

dominant negative mutant of caspse-9 also inhibited the C12N2+ASC+MDP-induced apoptosis 

in A549 and SW480 but not MKN45 cells (supplementary Figure S2b). These results indicate 

that caspase-8 plays an essential role in ASC-mediated apoptosis, but the requirement of 

caspase-9 in this response depends on the cell type.  

 

CLARP (FLIP) inhibits ASC-mediated apoptosis 

Because CLARP regulates death factor-induced apoptosis by inhibiting caspase-8 activation, we 

investigated the modulatory role of CLARP in ASC-mediated apoptosis. CLARP is mainly 

expressed in two isoforms, a short form (CLARP-S) and a long form (CLARP-L) (Thome and 

Tschopp, 2001). As expected, CLARP-L and CLARP-S inhibited the Fas- but not Bid-induced 

apoptosis of 293T cells (Figure 3a). Under these conditions, CLARP-L and CLARP-S inhibited 

the apoptosis induced by the coexpression of a constitutively active mutant of CARD12 

(CARD12∆) and ASC. Consistently, CLARP-S potently inhibited the MDP- but not 

staurosporine-induced apoptosis of MAIL8 cells (Figure 3b). CLARP-S also inhibited the 

C12N2+ASC+MDP-induced apoptosis in HCT116, SW480, and A549 cells (Figure 3c and 

supplementary Figure S2c). Furthermore, cell death induced by the coexpression of CARD12∆ 

and ASC or the overexpression of ASC alone was enhanced in Clarp-/- MEF compared with 

wild-type MEF, while the Nod1-induced apoptosis was comparable between the two lines 

(Figure 3d). These results indicate that CLARP inhibits ASC-mediated apoptosis. 
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ASC induces Bax-dependent apoptosis, but does not colocalize with Bax 

Recently, Ohtsuka et al. (Ohtsuka et al., 2004) reported that ASC induces apoptosis by 

recruiting Bax to mitochondria. Consistent with this report, BAX-/- HCT116 cells, compared 

with BAX+/+ cells, were resistant against C12N2+ASC+MDP-induced apoptosis (Figure 4a). 

Furthermore, Bcl-2 inhibited the C12N2+ASC+MDP-induced apoptosis in BAX+/+ HCT116 

cells (Figure 4b). However, when we coexpressed ASC and Bax in COS7 cells and examined 

their colocalization with mitochondria using Mitotracker, ASC formed aggregates called 

‘specks’ as described previously (Hasegawa et al., 2005) and did not colocalize with 

mitochondria, while Bax showed clear localization at mitochondria (Fig 4C, upper panels). In 

contrast, ASC and caspase-8 coexpressed in COS7 cells colocalized at the specks (Fig 4C, lower 

panels). These results strongly suggest that the mitochondrial pathway was involved in the 

ASC-mediated apoptosis in HCT116 cells; however, ASC interacted with caspase-8 rather than 

Bax. Furthermore, this response did not require caspase-9 (Figure 2, b and e). A possible 

explanation for the latter result is given in the Discussion. 

 

ASC induces two types of apoptosis depending on the cell type 

Two types of signal transduction pathways for the death receptor-initiated, caspase-8-mediated 

apoptosis are operational and which one is used depends on the cell type (Scaffidi et al., 1998). 

In type I cells, activated caspase-8 induces apoptosis by directly activating caspase-3. In type II 

cells, caspase-8 cleaves the proapoptotic BH3-only protein, Bid, which in turn activates the 

Bcl-2- or Bcl-XL-inhibitable mitochondrial apoptotic pathway (Li et al., 1998; Luo et al., 1998). 

Based on this distinction, HCT116, A549, and SW480 cells were determined to be type II, 

whereas MKN45 and 293T cells were type I (Figure 5a).  
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The results described so far led us to hypothesize that the reason why ASC activation induced 

the mitochondrial apoptosis pathway in HCT116 cells was because they are a type II cell line. 

To confirm this hypothesis, we investigated the effect of Bcl-XL on the ASC-mediated 

apoptosis in other cell lines (Figure 5b). Bcl-XL inhibited C12N2+ASC+MDP-induced 

apoptosis in the type II (A549 and SW40) cells but not in the type I (MKN45 and 293T) cells. 

Thus, as with FasL-induced apoptosis, cells can be divided into two types based on their 

mechanism of ASC-mediated apoptosis. 

 

ASC mediates Bid-dependent apoptosis in type II cells 

We then investigated the role of Bid in ASC-mediated apoptosis. Two different Bid-targeting 

siRNAs inhibited the C12N2+ASC+MDP- but not staurosporine-induced apoptosis in HCT116 

cells (Figure 6a). In contrast, FADD-targeting siRNA, which inhibits FADD expression 

(Imamura et al., 2004), did not affect these responses (data not shown). Similarly, a Bid- but not 

a FADD-targeting siRNA inhibited the C12N2+ASC+MDP-induced apoptosis in another type II 

cell line, A549 (Figure 6b). In contrast, neither Bid-targeting siRNA nor RICK-targeting siRNA 

(as a negative control) inhibited the MDP-induced apoptosis in the MAIL8 cell line, which was 

derived from HEK293, a type I cell line, while caspase-8-targeting siRNA (as a positive control) 

inhibited this apoptosis (Figure 6c). The Bid-targeting siRNA also inhibited the 

C12N2+ASC+MDP-induced apoptosis in SW480, but not MKN45 cells (supplementary Figure 

S4). To confirm the cleavage of Bid by caspase-8 during ASC-mediated apoptosis, we generated 

C12N2+ASC-expressing HCT116-derived stable transfectants (HCT-MAIL). MDP induced 

massive apoptosis in the HCT-MAIL cell lines (supplementary Figure S5). Western blot 

analyses revealed that full-length Bid was decreased 9 h after the MDP addition (Figure 6d). 



   

9 

Furthermore, pan-caspase or caspase-8 inhibitors but not granzyme B inhibitor suppressed the 

Bid degradation. The caspase-9 inhibitor caused a weak inhibition of Bid degradation, possibly 

because of the cross-inhibition of caspase-8. Taken together, these results suggest that the 

ligand-dependent, Apaf-1-like protein-mediated oligomerization of ASC induces the activation 

of caspase-8, which in turn induces the proteolytic maturation of Bid, and activates the 

mitochondrial apoptotic pathway in type II cell lines. In addition, FADD was not required for 

the ASC-mediated apoptosis, excluding the possibility that ASC worked by inducing the 

production of a death factor that requires FADD to induce apoptosis. 

 

C12N2 induces apoptosis mediated by endogenous ASC upon MDP stimulation. 

The cancer cell lines used in this study so far expressed undetectable or very low levels of ASC 

(Figure 7a). Thus they required transfection of both C12N2 and ASC to be sensitive to 

MDP-induced apoptosis. Therefore, we searched for cell lines expressing endogenous ASC, and 

found the NUGC4 stomach cancer and COLO205 colon adenocarcinoma cell lines expressing a 

substantial amount of ASC (Figure 7a). Then we established a C12N2-expressing stable cell line 

(NUC12N2) from the NUGC4 cells. MDP induced strong apoptosis in NUC12N2 cells (Figure 

7b), and this apoptosis was inhibited by ASC- and caspase-8-targeting siRNAs (Figure 7, c and 

d). Thus, C12N2 is capable of activating endogenous ASC to induce caspase-8 dependent 

apoptosis upon MDP stimulation. 

 

 

Discussion 

Using MAIL8 cells, we previously demonstrated that C12N2 interacts with ASC upon MDP 
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stimulation, and induces caspase-8-dependent NF-κB activation and IL-8 production (Hasegawa 

et al., 2005). In this study, we demonstrated that this interaction also induced 

caspase-8-dependent apoptosis in various cancer cell lines. This system is remarkably similar to 

the FasL-Fas system, because caspase-8 is involved in both apoptosis and NF-κB activation 

induced by FasL (Imamura et al., 2004). However, caspase-8 but not FADD colocalized with 

ASC in mammalian cells (Hasegawa et al., 2005). Experiments using FADD-targeting siRNA 

revealed that the ASC-mediated NF-κB activation (Hasegawa et al., 2005) and apoptosis (this 

study) do not require FADD. Interestingly, ASC and FADD are structurally related to each other. 

Both proteins consist of two homophilic protein interaction domains with characteristic structure 

called death domain fold. Actually, the CARD of ASC interacts with the CARD of CARD12 

(Geddes et al., 2001) and the PYD of ASC interacts with caspase-8 (Masumoto et al., 2003). 

Therefore, it is likely that ASC itself is a FADD-like adaptor that recruits caspase-8 to CARD12. 

Alternatively, some other proteins may connect ASC with caspase-8. 

Recently, Ohtsuka et al. (Ohtsuka et al., 2004) demonstrated that Bax is involved in 

ASC-mediated apoptosis, and proposed that ASC recruits Bax to the mitochondria. However, if 

ASC directly induces Bax-mediated apoptosis, the apoptosis would depend on caspase-9 rather 

than caspase-8. Therefore, these results were considered inconsistent with the previous report 

(Masumoto et al., 2003) showing that ASC mediated caspase-8-dependent apoptosis in 293T 

cells. Furthermore, in our hands, the colocalization of ASC and Bax was not observed when 

these proteins were coexpressed in cells. Instead, we showed here that ASC induces the 

cleavage of Bid by caspase-8, and induces Bax-dependent apoptosis in type II cell lines. Many 

of the data described by Ohtsuka et al. including those indicating that the expression of ASC 

induces the translocation of Bax to the mitochondria, Bax-dependent cytochrome c release from 
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mitochondria, and caspase-9 activation, are consistent with our conclusion. In addition, MDP 

induced the cleavage of Bid in MAIL8 cells (data not shown), although Bid is not essential for 

ASC-mediated apoptosis in this cell line. Therefore, we propose that ASC activates the 

mitochondrial apoptotic pathway using caspase-8 and Bid in general, although we cannot 

exclude an alternative and redundant mechanism in which ASC transiently interacts with Bax to 

activate the mitochondrial apoptotic pathway in certain cell lines.  

We showed here that caspase-9 was not essential for ASC-mediated apoptosis in HCT116 

cells. Nonetheless, Bax and Bid were required for and Bcl-2 inhibited the ASC-mediated 

apoptosis in these cells, indicating that activation of the mitochondrial apoptotic pathway is 

required. These results can be explained by the fact that Bcl-2 controls the mitochondrial release 

of not only cytochrome c, the activator of caspase-9, but also other pro-apoptotic proteins, such 

as Smac/DIABLO, Omi/HtrA2, and AIF (Du et al., 2000; van Loo et al., 2002). In this context, 

it is noteworthy that Sun et al (Sun et al., 2002) previously suggested that Smac promotes 

caspase-9-independent apoptosis when sufficient caspase-8 activation occurs but XIAP 

interferes with apoptosis at the level of caspase-3 activation. In contrast, in a different cell type 

in which the caspase-8 activity is not high enough to fully activate caspase-3 even in the 

presence of Smac, cytochrome c-dependent caspase-9 activation would be also required to 

achieve full-blown apoptosis. It is likely that the HCT116 cell line represents the former case 

and the SW480 and A549 cell lines represent the latter. 

The CARD12-ASC axis seems to play an important role in tumor suppression and 

chemosensitivity as described in the Introduction. On the other hand, CLARP is expressed at 

high levels in tumor cells, including classic Hodgkin’s lymphoma, melanomas, and pancreatic 

cancers (Bullani et al., 2001; Elnemr et al., 2001; Mathas et al., 2004), and postulated that the 
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overexpression of CLARP is advantageous to tumor cells, because it confers a resistance to 

death factors. Here, we demonstrated that CLARP renders cells resistant to ASC-mediated 

apoptosis. Thus, another reason for tumor cells to overexpress CLARP may be to resist the 

effects of ASC. ASC has also been connected to autoinflammatory syndromes (Gumucio et al., 

2002). Therefore, the role of CLARP in ASC-mediated apoptosis may have important 

implications for this type of diseases. 

ASC- or CARD12-deficient macrophages are resistant to the cell death induced by Salmonella 

infection (Mariathasan et al., 2004), and rapid apoptosis of Salmonella-infected macrophages 

depends on caspase-1, indicating that caspase-1 plays an important role in CARD12 and/or 

ASC-mediated apoptosis in a macrophage (Jesenberger et al., 2000). This is not surprising 

because each of CARD12 and ASC is capable of inducing caspase-1 activation (Poyet et al., 

2001; Wang et al., 2002), and macrophages express a large amount of pro-caspase-1. However, 

caspase-1-deficient macrophages succumbed to Salmonella-induced apoptosis after a 4-h 

infection (Jesenberger et al., 2000). Consistently, a monocytic cell line THP-1 stably transfected 

with CARD12 was reported to be highly sensitive to the caspase-dependent but 

caspase-1-independent cell death induced by Salmonella (Damiano et al., 2004). Similarly, 

infection of Francisella tularensis induces apoptosis in caspase-1- but not ASC-deficient 

macrophages after a 24-h infection (Mariathasan et al., 2005). It is noteworthy that caspase-8 is 

activated in Salmonella-infected macrophages after a 3-h infection (Jesenberger et al., 2000). 

Taken together, it is possible that the ASC-caspase-8 axis is operational as a backup mechanism 

for apoptosis of bacteria-invaded macrophages. 

Based on the discussions above, an implication of our conclusion that caspase-8 plays an 

important role in the CARD12- and ASC-mediated apoptosis is that the inhibition of caspase-8 
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may reduce the sensitivity of cancer cells to chemotherapy and affect the resistance of animals 

to certain types of microbes. These may be important considerations, especially given that 

caspase-8 has been considered as a drugable target for hepatitis therapy (Zender et al., 2003). 

Conversely, the strategy of using an artificial protein like C12N2 to activate ASC may be useful 

in tumor therapy in the future. 

 

 

Materials and methods 

Plasmids 

The expression plasmid for a dominant-negative mutant of caspase-1 (pEF-Casp1C285S) was 

generated by PCR-based site-directed mutagenesis. The expression plasmid for BAX was kindly 

provided by Dr. Tsujimoto (Osaka University Medical School, Osaka, Japan). Other plasmids 

were described previously (Hasegawa et al., 2005; Imamura et al., 2004; Inohara et al., 1999; 

Ogura et al., 2001; Wang et al., 2004). 

 

Cell lines 

The MAIL8 cell lines (Hasegawa et al., 2005) and the apoptosis-sensitive 293T cell line (Wang 

et al., 2004) were described previously. The HCT116 cell line and its Bax-deficient mutant (Dr. 

Bert Vogelstein, Johns Hopkins University School of Medicine), and the A549 cell line (Dr. 

Tsukasa Matsunaga, Kanazawa University Graduate School of Natural Science and 

Technology) were kindly provided by the researchers named. The SW480, MKN45, NUGC4 

and COLO205 cell lines were obtained from the Cell Resource Center for Biomedical Research, 

Tohoku University. Clarp (-/-) mouse embryonic fibroblasts (MEF) were described previously 
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(Yeh et al., 2000).  

 

Small interfering RNAs (siRNAs) 

The caspase-8-targeting siRNAs #2 and #3, and ASC-targeting siRNA #1 and #2 were 

purchased from Dharmacon (Chicago, IL). A caspase-9-targeting siRNA (sense, 

5’-GAGUUUGAGGGGAAAUGCAGAUUUGAG-3’; antisense, 

5’-CAAAUCUGCAUUUCCCCUCAAACUCAU-3’, iGENE, Tsukuba, Japan), and 

Bid-targeting siRNA #1 (sense, 5’-GGCAGAUUCUGAAAGUCAAGAAGACAG-3’; antisense, 

5’- GUCUUCUUGACUUUCAGAAUCUGCCAU -3’, iGENE) and Bid-targeting siRNA #2 

(sense, 5’-GAAGACAUCAUCCGGAAUATT; antisense, 

5’-UAUUCCGGAUGAUGUCUUCTT-3’, Dharmacon) were custom-synthesized. Other 

siRNAs were described previously (Imamura et al., 2004). 

 

Apoptosis assays 

The proportion of apoptotic cells was determined by flow cytometry after staining the cells with 

propidium iodide and Cy5-annexin V as described previously (Wang et al., 2004), unless 

otherwise described. In experiments involving transient transfection of plasmids, cells were 

transfected with plasmid DNA including pEGFP-C1, and apoptosis of GFP
+
 cells were analyzed. 

The survival of MEF was assessed as described previously (Inohara et al., 1997). 

 

Immunofluorescence confocal microscopy 

Immunofluorescence confocal microscopy was performed as described previously (Hasegawa et 

al., 2005), except that anti-human Bax mouse IgG2b monoclonal antibody (MBL, Nagoya, 
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Japan) was used in this study. 

 

Supplementary information is available at the Oncogene’s website. 
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Titles and legends to Figures 

Figure 1. MDP induces apoptosis in cells expressing C12N2 and ASC. (a) MAIL8-3 cells were 

cultured with (lower panel) or without MDP (upper panel). (b) MAIL8-19 cells were cultured as 

in (a), stained with propidium iodide and Cy5-annexin V, and analyzed using flow cytometry. 

The percentages of cells in the quadrants are shown. (c, d) 293T, HCT116, SW480, and MKN45 

cells were transfected with empty vector or expression plasmids for C12N2 and/or ASC as 

indicated. Cells were cultured with or without MDP for 16 h. 

 

Figure 2. General requirement of caspase-8 but not caspase-9 for the ASC-mediated apoptosis (a, 

b) 293T or HCT116 cells were transfected with empty vector or the expression plasmid for a 

dominant-negative mutant of caspase-8, caspase-9, or caspase-1, as indicated, together with 

expression plasmids for C12N2 and ASC. Cells were cultured with or without MDP for 16 h. (c) 

MAIL8 cells were transfected with the indicated concentrations of the caspase-8-targeting 

siRNA #1 or a caspase-9-targeting siRNA and stimulated with MDP for 16 h. The expression 

levels of endogenous caspase-8 and caspase-9 were examined by Western blotting. (d) MAIL8 
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cells were pretreated with the indicated inhibitors for 1 h and then cultured with or without MDP 

for 16 h. (e) HCT116 and SW480 cells were transfected with expression plasmids for C12N2 

and ASC. Cells were then treated as in (d). 

 

Figure 3. CLARP inhibits ASC-mediated apoptosis. (a) HEK293T cells were transfected with 

empty vector or expression plasmids for Fas, tBid, or CARD12∆ plus ASC with or without an 

expression plasmid for CLARP-L or CLARP-S and cultured for 24 h. (b) MAIL8 cells were 

transfected with the indicated amounts of CLARP-S expression plasmid. Cells were cultured 

with or without MDP for 16 h, or with staurosporine (STS) for 9 h. (c) HCT116 cells were 

transfected with expression plasmids for C12N2 and ASC, and the indicated amounts of 

CLARP-S expression plasmid. Cells were cultured with or without MDP for 16 h. (d) Wild-type 

or Clarp (-/-) MEF were transfected with empty vector or expression plasmids for Nod1∆LRR, 

CARD12∆LRR plus ASC, or ASC-Fpk3 in the presence of pEF1BOS-β-gal. Three hours 

post-transfection, cells were treated with AP1510. The percentage of surviving β-gal-positive 

cells was determined at 24 h post-transfection. 

 

Figure 4. Bax is involved in the ASC-mediated apoptosis, but it does not interact with ASC. (a) 

Wild-type or BAX-/- HCT116 cells were transfected with empty vector or expression plasmids 

for C12N2 and ASC. Cells were cultured with or without MDP for 16 h. (b) HCT116 cells were 

transfected with expression plasmids for C12N2 and ASC together with the indicated amounts 

of Bcl-2 expression plasmid. Cells were cultured with or without MDP for 16 h. (c) COS7 cells 

were transfected with expression plasmids for Bax and ASC (upper panels) or caspase-8 and 

ASC (lower panels). Cells were stained with MitoTracker Green FM (Molecular Probes, Eugene, 
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OR), and anti-Bax (blue) and anti-ASC (red) mAbs (upper panels), or with anti-caspase-8 (blue) 

and anti-ASC (red) mAbs (lower panels) at 24 h post-transfection. 

 

Figure 5. Bcl-2 family proteins regulate the ASC-mediated apoptosis in type II cell lines. (a, b) 

The indicated cell lines were transfected with an empty vector or Bcl-XL expression plasmid in 

the presence (b) or absence (a) of expression plasmids for C12N2 and ASC. Cells were 

stimulated with FasL (a) or MDP (b) for 16 h. 

 

Figure 6. Bid is involved in the ASC-mediated apoptosis in type II cell lines. (a) HCT116 cells 

were transfected with or without Bid-targeting siRNAs. The cells were transfected again with 

expression plasmids for C12N2 and ASC or left untreated. The cells transfected with the C12N2 

and ASC expression plasmids were cultured with or without MDP, while the cells transfected 

with siRNA alone were treated with staurosporine (STS) for 16 h. In the right panels, the 

expression levels of endogenous Bid and GAPDH were examined by Western blotting. (b) 

A549 cells were transfected with or without Bid-or FADD-targeting siRNA. The cells were 

transfected with expression plasmids for C12N2 and ASC. Cells were cultured with or without 

MDP for 16 h. (c) MAIL8 cells were transfected with or without Bid-, caspase-8-, or 

RICK-targeting siRNA. Cells were cultured with or without MDP for 16 h. (d) HCT116-derived 

stable transfectants expressing C12N2 and ASC were pretreated with the indicated inhibitors for 

1 h and then stimulated with MDP for 9 h. The expression levels of endogenous full-length Bid 

and β-actin were examined by Western blotting. 

 

Figure 7. C12N2 activates endogenous ASC to induce caspase-8 dependent apoptosis. (a) The 
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expression levels of ASC and β-actin in the indicated cell lines were examined by Western 

blotting. (b) NUC12N2 cells were cultured with or without MDP for 24 hrs. Cells were then 

stained with propidium iodide and Cy5-annexin V, and analyzed using flow cytometry. The 

percentages of annexin
+
 propidium iodide

-
 apoptotic cells were indicted. (c and d) NUC12N2 

cells were transfected with control siRNA or ASC- or caspase-8-targeting siRNA. Cells were 

cultured with or without MDP for 16 h. In the lower panels, the expression levels of endogenous 

ASC, caspase-8 and β-actin were examined by Western blotting. 
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Fig. 4 
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Fig. 6 
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