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Abstract  

Background: The objective of this study was to develop a new and simple method for measuring 

low-density lipoprotein receptor (LDLR) activity using peripheral lymphocytes enabling us to 

clinically diagnose familial hypercholesterolemia (FH) and ascertain the involved mutations (such 

as K790X mutation), that might not be clearly detected in the conventional method. 

Methods: Our method comprised the following 2 features: First, we used anti-CD3/CD28 beads to 

stimulate T-lymphocytes to obtain a uniform fraction of lymphocytes and maximum up-regulation 

of LDLR. Second, we excluded the possibility of overestimation of lymphocyte signals bound only 

to its surface, by adding heparin to the cultured lymphocytes used for the LDLR assay. 

Results: Based on the genetic mutation, the FH subjects were divided into two groups, K790X, (n 

= 20) and P664L, (n = 5), and their LDLR activities was measured by this method, which was 

found to be 55.3 ± 8.9% and 63.9 ± 13.8%, respectively, of that of the control group (n = 15). In 

comparison, the LDLR activity was 86.1 ± 11.6% (K790X) and 73.3 ± 6.3% (P664L) of that of the 

control group when measured by the conventional method, indicating that impairment of LDLR 

function in FH K790X subjects was much more clearly differenciated with our method than with the 

conventional method (paired t-test, p < 0.0001). The levels of LDLR expression also showed 

similar tendencies, that is, 89.4 ± 13.2% (K790X) and 76.9 ± 17.4% (P664L) of that of the control 

group when measured by the conventional method, and 78.1 ± 9.7% (K790X) and 70.3 ± 26.5% 

(P664L) when measured by our new method. In addition, we confirmed that there was little 

influence of statin treatment on LDLR activity among the study subjects when our method was 

used. 

Conclusion: These results demonstrate that our new method is applicable for measuring LDLR 
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activity, even in subjects with an internally defective allele, and that T-lymphocytes of the FH 

K790X mutation possess characteristics of that allele.  

 

Supplementary key words: familial hypercholesterolemia, K790X, P664L, low-density lipoprotein 

cholesterol receptor activity, anti-CD3/CD28 antibody, T-lymphocyte, heparin 
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1. Introduction  

Familial hypercholesterolemia (FH), a genetic defect that causes marked elevation of 

plasma low-density lipoprotein cholesterol (LDL-C), tendinous xanthomas, and premature 

coronary artery disease, is a result of genetic abnormalities of the LDL receptor (LDLR), 

apolipoprotein B, and neural apoptosis-regulated convertase 1 (NARC-1) (1, 2). Although all of 

these abnormalities create disturbances in the metabolism of LDL, the LDLR defect is the most 

important and frequent cause of FH. The LDLR, which is located on the surfaces of hepatocytes 

and other organs, binds to LDL and facilitates both its uptake by receptor-mediated endocytosis 

and its delivery to lysosomes, where the LDL particle is degraded (3).  

The LDLR gene comprises 18 exons that span 45 kb, and encodes a single-chain 

glycoprotein containing 839 amino acids in its mature form (4, 5). Currently, more than 800 

different mutations have been identified worldwide (6). These mutations can be divided into 5 

classes, based on their phenotypic effects: 1) null alleles; 2) transport-defective alleles; 3) 

binding-defective alleles; 4) internalization-defective alleles; and 5) recycling-defective alleles.  

Confirmation of the diagnosis of FH requires either documentation of an LDLR gene 

mutation, or demonstration of a decrease in LDLR activity (1). However, clinically diagnosed FH is 

genetically more heterogeneous than conventionally expected (7), and approximately 40% of 

those diagnosed in the Japanese population do not exhibit these defects by genetic analysis (8). 

This proportion is similar in other countries (9). Therefore, a method that can estimate LDLR 

activity accurately and is complementary to genetic analysis is needed. Evaluation of LDLR 

activity using measurement of 3,3”-dioctadecylindocarbocyanin (DiI)-labeled LDL uptake in 

peripheral blood lymphocytes is conventionally used in the clinical setting (10). Although highly 
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sensitive, some studies have shown that FH can be distinguished from hypercholesterolemic 

non-FH by stimulation of T-lymphocytes (11, 12). Unfortunately, conventional methods currently 

available overestimate the LDLR activity of some types of defective LDLR, such as FH 

internalization-defective alleles, not because of the internalization but rather due to binding of 

DiI-LDL to the surface of lymphocytes (13). The K790X mutation, which belongs to the class of 

internalization-defective alleles (14), is one of the most common mutations among Japanese FH 

subjects with a frequency of occurrence is nearly 19.5% (8). Therefore, it is essential to develop a 

new and simple method to detect FH with this type of defective LDLR. If we can measure 

functional LDLR activity accurately, it would be easy to differenciate carriers of apolipoprotein B 

and NARC-1 mutations from carriers of LDLR mutations among clinically diagnosed FH subjects, 

as LDLR activity of the former would be in the normal range. 

On the other hand, P664L mutation, which is classified as a transport-defective allele (15), is 

also one of the common mutations among Japanese FH subjects, and its frequency of occurrence 

is 6% (8).  

Binding, internalization, and degradation were measured in the presence of sulfated 

glycosaminoglycans, such as heparin, to remove LDL from the surface of LDLR when skin 

fibroblasts were used (16). Suzuki et al used rIL-2 and anti-CD3 monoclonal antibodies to 

stimulate lymphocytes for proliferation (17). Recently, an anti-CD3/CD28 monoclonal antibody with 

functional properties that allow easy stimulation of T-lymphocytes with high specificity became 

available (18). In this study, we have developed a novel and simple method for detecting 

internalization-defective LDLR activity, especially in FH with an internalization-defective allele, by 

application of anti-CD3/CD28 beads stimulation and heparin-mediated assay of lymphocytes. 
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2. Materials and Methods  

 

Subjects 

The study subjects were 25 genetically determined heterozygous FH subjects and 15 normal 

controls. The FH subjects were divided into 2 groups, based on their LDLR gene mutation: K790X 

(n = 20) and P664L (n = 5) (Table 1). Informed consent was obtained from all the subjects.  

 

Lipid Measurements 

Fasting blood samples were drawn for assays. Concentrations of serum total cholesterol 

(TC), triglyceride, and high-density lipoprotein cholesterol (HDL-C) were determined enzymatically. 

Low-density lipoprotein cholesterol concentrations were calculated using the Friedewald formula 

(19).  

 

Molecular Analysis 

Genomic DNA was isolated from the buffy coat of a centrifuged 5-ml blood sample 

anticoagulated with disodium EDTA, in accordance with the standard method. PCR-denaturing 

gradient gel electrophoresis, DNA sequencing, and Southern blot analysis were performed as 

descrived in our previous paper (8).  

 

Isolation and culture of T-lymphocytes 

Peripheral blood lymphocytes were isolated at room temperature using a density gradient 
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method (Ficoll-Paque; GE Healthcare UK, Little Chalfont, UK) from EDTA-anticoagulated blood 

samples. Cells were then washed 3 times in PBS and cultured at 37°C in 5% CO2 at a 

concentration of 1 × 106 cells/mL in a lipoprotein-deficient serum (LPDS), 100 U/mL 

penicillin/streptomycin, 20 U/mL rIL-2 (COSMO BIO, Tokyo, Japan), and with or without the 

anti-CD3/CD28 beads (Dynal Biotech, Oslo, Norway), the number of which is equal to that of 

lymphocytes. A culture period of 72h was determined for 2 reasons. First, the increase of LDLR 

expression plateaued at 72h in our preliminary examination, and second, lymphocytes are usually 

cultured for 72h in conventionally available methods.  

T-lymphocyte subpopulations were identified by labeling specific differenciated surface 

antigens with fluorescein isothiocyanate (FITC) conjugated monoclonal antibodies (CD3-FITC; 

BECKMAN COULTER, Fullerton, CA).  

 

Flow Cytometry 

LDLR activity. 

Lymphocytes (2 × 105) cultured in either LPDS or anti-CD3/CD28 beads were resuspended 

in PBS-1% BSA-containing CaCl2. A wash step with PBS-1% BSA was repeated twice, and the 

cells were incubated at 37°C in 5% CO2 for 2 h with 10 μg/mL DiI-LDL (Molecular Probes, Eugene, 

OR). Subsequently, the samples were washed 3 times with PBS-1% BSA and incubated at 4°C for 

1 h in the dark, with or without 10 mg/mL heparin (Sigma-Aldrich, St. Louis, MO), to release the 

surface-binding DiI-LDL. Finally, the samples were incubated at 4°C for 30 min in the dark with 

CD3-FITC, re-washed 3 times with PBS-1% BSA, and resuspended in cold PBS. Measurements 

were performed on a FACS flow cytometer (BD Biosciences, San Jose, CA). For each sample, 
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fluorescence intensity of 10,000 events was recorded for data analysis. The results were 

expressed as the mean fluorescence (MF) of CD3-positive gated cells, and we subtracted the 

fluorescence of a sample incubated with 20 mM EGTA to exclude non-specific bindings.  

 

LDLR expression.  

Lymphocytes (2 × 105) cultured in either LPDS or anti-CD3/CD28 beads, were resuspended 

in PBS containing 10 g/L BSA (PBS-1% BSA). A wash step with PBS-1% BSA was repeated twice, 

and the cells were incubated at 4°C for 1 h with monoclonal antibody specific for the LDLR 

IgG-12D10 (BML, Saitama, Japan) diluted in PBS-1% BSA (14). The samples were subsequently 

washed 3 times with PBS-1% BSA and incubated at 4°C for 30 min in the dark with a secondary 

antibody (Dako, Glostrup, Denmark). Finally, the samples were incubated at 4°C for 30 min in the 

dark with CD3-FITC, re-washed 3 times with PBS-1% BSA, and resuspended in cold PBS. 

Measurements were performed as described above. The results were expressed as the MF of the 

CD3-positive gated cells, and we subtracted the fluorescence of a sample incubated only with a 

secondary antibody to exclude non-specific bindings. 

 

Statistical analyses 

Values are expressed as mean ± SD unless otherwise stated. Differences in changes were 

compared using a paired t-test. The level of statistical significance was set at p </0.05. Statistical 

analysis was performed using StatView 5.0 (SAS Institute Japan, Tokyo, Japan). To evaluate the 

precision of the assay, we estimated the coefficient of variation (CV), in terms of within-run and 

between-day precision, by making repeated measurements of blood samples from one study 
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subject using both the methods.  
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3. Results 

Lymphoblastogenesis patterns and LDLR up-regulation by LPDS and anti-CD3/CD28 beads 

Light microscopic observation revealed that, compared to the lymphocytes cultured with 

LPDS, lymphocytes cultured with anti-CD3/CD28 beads transformed more effectively into 

lymphoblasts. Stimulated lymphoblasts could be separated from the unstimulated ones according 

to areas in flow cytometric analysis (Fig.1). When the cells were cultured with LPDS, no significant 

increase in LDLR expression was observed during the culture period and the increase plateaued 

by 72 h (Fig. 2A). In contrast, LDLR expression significantly increased by 24 h, and peaked at 48 

to 72 h in beads with anti-CD3/CD28 (Fig. 2B). LDLR expression increased 2- and 6.5-fold from 

the baseline value after co-culture with LPDS and anti-CD3/CD28 beads, respectively. The rate of 

increase did not differ between a normolipidemic subject and heterozygous FH subjects, but 

differed between heterozygous FH subjects and a compound heterozygote subject. Most 

importantly, however, the levels of LDLR expression in all subject categories plateaued by 72h. 

The subjects’ clinical profiles are displayed in Table 2.  

 

LDLR activity and expression in cultured lymphocytes obtained from heterozygous FH 

subjects with K790X and P664L mutations 

MF was examined in each method; results were expressed as percentages of the mean 

control MF in each experiment. When lymphocytes were cultured with LPDS and washed with 

PBS alone according to the conventional method, LDLR activity of the K790X and P664L subjects 

were 86.1 ± 11.6% and 73.3 ± 6.3%, respectively (Fig. 3A). When lymphocytes were cultured with 

anti-CD3/CD28 beads and washed with PBS-containing heparin, the LDLR activity was 55.3 ± 
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8.9% and 63.9 ± 13.8%, respectively (Fig. 3B). Compared with the values obtained from the 

conventional method, our method allowed improved discrimination between FH and non-FH 

subjects with both mutations of different phenotypic classes. 

Our method showed an LDL-R activity of lower than 80% of the normal control values in all 

of the K790X subjects, whereas in the conventional method, most of those subjects (almost 75% 

of the subjects) surpassed this value. Furthermore, there was a significant difference in LDLR 

activity between these 2 methods (p < 0.0001). In contrast, P664L subjects showed almost similar 

LDLR activity with both the methods.  

The LDLR expression in the K790X and the P664L subjects was 89.4 ± 13.2% and 76.9 ± 

17.4%, respectively, of that of control group when measured by the conventional method (Fig. 4A), 

but it was 78.1 ± 9.7% and 70.3 ± 26.5%, respectively, when measured by our new method (Fig. 

4B). The differences in the LDLR expression of K790X subjects from that of the normal control 

group were more pronounced (p < 0.05) than those of the P664L group, when comparing the 

values obtained by our new method with those of the conventional method. 

 

Confirmation of the effect of statins on LDLR activity 

     We examined the effect of statins (atorvastatin, 10 mg or 20 mg) on the values obtained from 

the conventional method, and the new method among some study subjects. There was little 

influence of statin treatment on LDLR activity measured by either method (Table 3).  

 

Precision 

     Within-run precision (CV) for our assay and the conventional assay of LDLR activity was 
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9.1% and 8.6%, and that of LDLR expression was 3.4% and 8.6%, respectively. Between-day 

precision (CV) for both assays of LDLR activities was 5.5% and 8.5%, and that of LDLR 

expression was 3.4% and 8.5%, respectively.  

 

4. Discussion 

The three main findings of the study are as follows: 1) We developed a new and simple 

method to measure LDLR activity and expression in cultured peripheral lymphocytes, using 

anti-CD3/CD28 antibody for culturing and heparin for washing. 2) Heterozygous FH subjects with 

a K790X mutation showed much more pronounced reductions in LDLR activity and expression 

with our new method compared with the conventional method. 3) In FH subjects with a P664L 

mutation, the degree of reduction detected with our new method was almost equal to that detected 

with the conventional method. 

To our knowledge, only few studies have investigated the relationship between LDLR 

genotype and its activity (20). Although there have been a number of studies on LDLR activity 

measurements in FH using DiI-LDL uptake in blood peripheral lymphocytes, some causes of 

defective LDLR activity, such as the K790X mutation, often appear to have been overlooked. 

The 50-residue cytoplasmic domain of LDLR (amino acids 790 to 839) directs the receptors 

to coated pits, thereby facilitating rapid endocytosis of bound LDL (21). Therefore, any mutations 

encoded in this region are considered to be internalization-defective alleles. As for the K790X 

mutation, Iwasaki et al showed that Chinese hamster ovary (CHO) cells, which expressed the 

LDLR-K790X mutation, showed defective endocytosis of LDL and indicated that this mutation 

could be classified as an internalization-defective allele (14). In addition, LDL, which is bound to 
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the LDLR, cannot be released solely by washing with PBS; therefore, the conventional method, 

which only uses PBS, overestimates the values of defective LDLR. 

In this study, MF of DiI greatly decreased in the K790X subjects, unlike the P664L subjects, 

when receptor assays were performed by washing lymphocytes with heparin (Fig. 3). These 

results indicate that T-lymphocytes of the K790X mutation also possess a characteristic similar to 

the internalization-defective allele; therefore, a conventional assay using lymphocytes would fail to 

measure their values accurately. On the other hand, the P664L mutation is classified as a 

transport-defective allele, meaning that conventional assays can measure mostly accurate values 

(15).  

A series of trials have shown the efficacy of cholesterol-lowering therapy using HMG-CoA 

reductase inhibitors, statins, for primary and secondary prevention of coronary artery disease (22, 

23). It has also been observed that statins up-regulate hepatic LDLR expression and inhibition of 

HMG-CoA reductase results in a secondary increase in LDLR activity (3, 24, 25). Therefore, it is 

possible that statin therapy might affect the results even though peripheral lymphocytes, and not 

hepatocytes, were used in this study (26, 27). There have been some conflicting reports about the 

relationship between statin therapy and LDLR activity of lymphocytes (12).  

We confirmed whether or not statin therapy affected the results in this study. We compared 

the LDLR activity using 2 different samples, either under statin treatment or not, from the same 

study subject. However, we failed to find any effects of statin treatment on lymphocyte LDLR 

activity measured by our method (Table 3). One explanation for this could be that stimulation of 

lymphocytes by anti-CD3/CD28 beads have far greater influence on LDLR expression of 

peripheral lymphocytes than statin therapy; the second is that the effects of statin therapy on 
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peripheral lymphocytes are too small to affect the results during the culture period. Consequently, 

there is no need to discontinue statin therapy to examine LDLR activity. 

This study has several limitations. First, a relatively small number of subjects was included in 

this study. However, our subjects were comparatively uniform—there were no statistically 

significant differences in age, BMI, and lipid profiles between the K790X and the P664L group. 

Second, we confirmed the influence of statins on LDLR activity in only some subjects included in 

this study (Table 3), since FH is extremely high-risk to the patients. And third, only two kinds of 

mutations were examined because FH is too genetically heterogeneous to study a consistent 

number of patients with the same LDLR mutation (8). In addition to genetic heterozygosity, LDLR 

internalization-defective alleles are relatively rare among LDLR mutations. Therefore, we were 

unable to perform this assay for LDLR internalization-defective allele other than the K790X 

mutation. 

In conclusion, our new method enables us to estimate the function of LDLR more accurately 

and to diagnose FH with higher sensitivity, particularly in LDLR class 4 mutations 

(internalization-defective type), compared with the conventional method. We suggest that this 

method is applicable for the diagnosis of hyperlipidemic patients who cannot be accurately 

diagnosed by conventional methods. 
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Figure Legends 

Figure 1. Pattern of lymphoblastogenesis by LPDS and anti-CD3/CD28 beads 

A: Light microscopic findings of lymphoblastogenesis cultured with LPDS for 72 h. 

Magnification 400×. B: Light microscopic findings of lymphoblastogenesis cultured with 

anti-CD3/CD28 beads for 72 h. Beads are round (indicated by yellow arrows) while lymphocytes 

have a distorted shape. Magnification 400×. C: Forward-scatter (FSC) versus side-scatter (SSC) 

plots for lymphoblastgenesis cultured with LPDS for 72 h. D: FSC versus SSC plots for culture with 

anti-CD3/CD28 beads for 72 h. Stimulated lymphoblasts can be distinguished from unstimulated 

lymphoblasts according to their areas (surrounded by red circles). 

 

Figure 2. LDLR up-regulation by culture with LPDS and anti-CD3/CD28 beads for a period of 

5 days 

This experiment was performed with a subset of the study subjects, whose profiles and 

clinical data are provided in Table 2. 

 A: LDLR expression (MF) of 4 subjects was measured for 5 days. Lymphocytes (2 × 105 ) cultured 

with LPDS. 

B: LDLR expression (MF) measured in the same way except lymphocytes were cultured with 

anti-CD3/CD28 beads, the number of which is equal to that of lymphocytes.  

Measurements were performed for CD3-positive T-lymphocytes only. 

 

Figure 3. LDLR activity measured by two methods 

The MF was examined in each method, and the results were expressed as percentages of 
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the mean fluorescence of the control group in each experiment. A: Internalized DiI-LDL (%) 

measured by the conventional method. Normal: 100 ± 15.8%, K790X: 86.1 ± 11.6%, P664L: 73.3 ± 

6.3%, B: Internalized DiI-LDL (%) measured by our new method. Normal: 100 ± 23.5%, K790X: 

55.3 ± 8.9%, P664L: 63.9 ± 13.8%. Differences in value between the K790X group and the control 

group measured using the new method were significant compared with the difference in the values 

obtained using the conventional method. Values are expressed as mean ± SD. *p < 0.05, **p < 

0.0001. 

 

Figure 4. LDLR expression measured by two methods 

The MF was examined in each method, and the results were expressed as percentages of 

the MF of the control group in each experiment. A: LDLR expression (%) measured by the 

conventional method. Normal: 100 ± 20.4%, K790X: 89.4 ± 13.2%, P664L: 76.9 ± 17.4%, B: LDLR 

expression (%) measured by our new method. Normal: 100 ± 21.5%, K790X: 78.1 ± 9.7%, P664L: 

70.3 ± 2.6%. Differences in the value between the K790X group and the control group were 

significant. Values are expressed as mean ± SD. *p < 0.05.  
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TABLE 1. Plasma lipid concentrations in study subjects

subjects gender (m/f) age (yr.) BMI (kg 2)/m TC (mg/dl) HDL-C (mg/dl)LDL-C (mg/dl) TG (mg/dl)
normolipidemia

(n=15) 6/9 67 ± 16 23.5 ± 3.0 184 ± 29 53 ± 17 114 ± 28 89 ± 30
FH heterozygous

K790X 10/10 52 ± 16 23.6 ± 2.8 342 ± 59 * 47 ± 14 274 ± 54 * 95 ± 50
FH heterozygous

P664L 4/1 51 ± 23 21.3 ± 3 366 ± 50 * 42 ± 7 283 ± 67 * 114 ± 47

Values are shown as mean±SD. Lipid concentrations were measured before any medication was prescribed.  
FH, familial hypercholesterolemia;  BMI, body mass index;  TC, total cholesterol;  HDL-C, high-density lipoprotein cholesterol;  LDL-C, low-density
lipoprotein cholesterol; TG, triglyceride;
* p<0.0001, data compared with normolipidemia



TABLE 2. Plasma lipid concentrations  in LDLR up-regulation study subjects

subjects gender (m/f) age (yr.) BMI (kg 2)/m TC (mg/dl)HDL-C (mg/dl)LDL-C (mg/dl) TG (mg/dl)
normolipidemia m 26 18 177 77 86 70

FH heterozygous K790X f 28 21 307 47 249 55

FH heterozygous P664L f 23 22 428 42 358 139

FH compound heterozygote K790X/P664L m 37 21 589 26 544 96

FH, familial hypercholesterolemia;  BMI, body mass index;  TC, total cholesterol;  HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; TG, triglyceride;





TABLE 3.  Examination for the influences of statin therapy on
LDLR activity   measured by T-Lymphocytes

Method statin on statin off p

new method (%) 53 ± 9 56 ± 8 0.7219

conventional method (%) 87 ± 8 94 ± 23 0.5799

Values were collected from 5 subjects whose lipid-lowering agents had been
discontinued at least for 2 weeks
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