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Malignant pleural mesothelioma (MPM) is characterized by dissemination and

aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established

diagnostic marker for MPM, but the function of PDPN in MPM is not fully under-

stood. The purpose of this study was to determine the pathogenetic function of

PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM

and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in

PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast,

overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motil-

ity. PDPN stimulated motility was mediated by activation of the RhoA/ROCK

pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-

high expressing MPM cells resulted in decreased development of a thoracic tumor

in mice with severe combined immune deficiency (SCID). In sharp contrast, trans-

fection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the

number of Ki-67-positive proliferating tumor cells and it promoted progression of

a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation

in vitro, and a low level of E-cadherin expression and YAP1 activation was

observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diag-

nostic marker as well as a pathogenetic regulator that promotes MPM progres-

sion by increasing cell motility and inducing focus formation. Therefore, PDPN

might be a pathogenetic determinant of MPM dissemination and aggressive

growth and may thus be an ideal therapeutic target.

M alignant pleural mesothelioma (MPM) is a tumor that orig-
inates in the visceral pleura surrounding the lungs. This

tumor then spreads to the lungs or into the thoracic cavity. The
incidence of MPM is closely associated with asbestos exposure,
and MPM can develop following a latent period of 20–
40 years.(1) Early detection of MPM is difficult, so curative
resection is also difficult. Moreover, MPM has limited sensitivity
to radiation therapy and cytotoxic chemotherapy and a very poor
prognosis, so effective MPM treatments need to be developed.
We previously identified a type-I transmembrane sialoglyco-

protein, podoplanin (PDPN, also known as Aggrus), as a plate-
let aggregating factor in highly metastatic tumor cells.(2)

PDPN binds to C-type lectin-like receptor 2 (CLEC2)
expressed on platelets and causes platelets to aggregate; this
aggregation depends upon Syk and Src family kinases and
phospholipaseCc2.(3) As a result of its binding to CLEC2 on
platelets, PDPN induces platelet aggregation and thereby pro-
motes hematogenous metastasis.(4) In addition, PDPN is known

to form a complex with members of the ezrin-radixin-moesin
(ERM) protein family, activate RhoA, and thus increase cell
motility.(5) PDPN is expressed by some non-cancer cells such
as lymphendothelial cells and cancer-associated fibroblasts
(CAF),(6) though PDPN is frequently upregulated in several
tumors, including squamous cell carcinoma, pleural mesothe-
lioma, Kaposi’s sarcoma, testicular germ cell tumors, and brain
tumors.(4,7–9) PDPN is often expressed in MPM in particular,
and the D2/40 antibody that recognizes PDPN is used as a
marker of epithelial MPM.(10)

In the present study, we examined whether PDPN, a
diagnostic marker for MPM, plays a critical role in disease
progression.

Materials and Methods

Cell lines. The human mesothelioma cell lines MSTO-211H,
H226, and H2452 were purchased from ATCC (Rockville,
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MD, USA). YMESO-14 cells were kindly donated by Dr. Y.
Sekido (Aichi Cancer Research Center Institute, Nagoya,
Japan) and EHMES-1 cells were kindly donated by Dr. H.
Hamada (Hiroshima University, Hiroshima, Japan). NCI-H290
was provided by Dr. Adi F. Gazdar (University of Texas
Southwestern Medical Center, Dallas, TX, USA). Cells were
cultured in RPMI-1640 medium supplemented with 10% FBS
(Life Technologies, Grand Island, NY, USA). All cell lines
were tested and authenticated by the Japanese Cell Research
Bank using short tandem repeat (STR) analysis and the Gene-
Print 10 System (Promega, Madison, WI, USA). Cells were
regularly screened for Mycoplasma using a MycoAlert Myco-
plasma Detection Kit (Lonza, Basel, Switzerland). ROCK inhi-
bitors, Y-27632 and fasudil hydrochloride, were obtained from
Wako Pure Chemical Industries (Osaka, Japan).

Western blotting. Lysates were prepared using Cell Lysis
Buffer (Cell Signaling). The procedure for Western blotting
was as previously described.(11) The primary antibodies (Ab)
used were anti- PDPN Ab (AngioBio Co.), anti-E-cadherin Ab
(Cell Signaling), anti-N-cadherin Ab (Cell Signaling), anti-
Vimentin Ab (Cell Signaling), anti-GAPDH Ab (Trevigen),
and anti-b-actin Ab (Cell Signaling).

Cell viability assay. Cell viability was measured by the MTT
dye reduction method. Tumor cells were plated onto 96-well
plates at a density of 2 9 103/100 lL per well in RPMI 1640
plus 10% FBS and cells were incubated for 24 h. Drugs were
then added to each well, and incubation was continued for
another 72 h. Cell growth was measured with MTT solution
(2 mg/mL; Sigma, St. Louis, MO, USA), as described
previously.(12)

Wound healing assay. Cells were plated onto 6-well plates at
500 000 cells per well in RPMI 1640 plus 10% FBS and
allowed to form a confluent monolayer. A wound was intro-
duced by running a P200 pipette tip evenly across the mono-
layer. After incubation for 36 and 48 h, cells were observed
using a microscope.

Transwell assay. Transwell assays were performed using the
modified Boyden chamber method,(13) with an 8-lm pore filter
separating the upper and lower transwell chambers (BD Bio-
sciences, NJ, USA). Tumor cells (104 cells/200 lL) were added
to the upper chamber and incubated for 48 h. Cells that had not
migrated were then removed from the upper surface of the filters
with cotton swabs. Cells that had migrated to the lower surface
of the filters were fixed, stained with H&E, and counted in six
fields under a microscope at 2009 magnification.

Transfection of the PDPN gene. Cells were seeded onto 6-well
plates at a density of 1–2 9 105 cells/well. Twenty-four hours
later, cells were transfected with a PDPN expression vector(2)

using Lipofectamine RNAiMAX (Invitrogen) according to the
manufacturer’s instructions. After treatment with neomycin
(Sigma-Aldrich), cells were cultured in the presence of neomy-
cin and clones expressing PDPN were isolated.

Small interfering RNA (siRNA) and short hairpin (sh) RNA for

PDPN knockdown. shRNA was used to knock down PDPN.
Lentiviruses were produced using 293T cells transfected with
PCAG-HIV, CMV-VSV-G-RSV-Rev (RIKEN BioResource
Center), and PDPN shRNA vectors (CS-H1-shRNA-EG;
RIKEN BioResource Center).(14) Transfection was performed
using Lipofectamine 2000 reagent (Invitrogen, CA, USA)
according to the manufacturer’s instructions. The vector-con-
taining medium was filtered through a 0.45-lm filter, and
8 lg/mL of Polybrene (SIGMA) was added for transduction of
target tumor cells. siRNA was also used to knock down PDPN.
Tumor cells were transfected with siRNAs against PDPN

(Stealth siRNAs: HSS116395, HSS116397, HSS173792) or
Stealth RNAi-negative control low GC Duplex #3 (Invitrogen)
introduced into cells using Lipofectamine RNAiMAX (Invitro-
gen) according to the manufacturer’s instructions.

RhoA-GTP binding assay. Direct activation of RhoA was mea-
sured using a G-LISA assay (Cytoskeleton Inc., CO, USA)
according to the manufacturer’s instructions. Briefly, the RhoA
G-LISA kit used 96-well plates coated with the Rho-binding
domain of the RhoA effector rhotekin. Rho-GDP was removed
during washing steps and Rho-GTP was detected using a
RhoA-specific antibody and chemiluminescence.

Orthotopic implantation. Tumor cells (1 9 106/100 lL) were
injected into the thoracic cavity of SCID mice as reported pre-
viously.(15) After the indicated periods, the mice were eutha-
nized and tumor development was evaluated.

Immunohistochemistry. Formalin-fixed paraffin-embedded
tumor sections were subjected to antigen retrieval and endoge-
nous peroxidase blocking, and sections were incubated with pri-
mary antibody (Ab), anti-Ki-67 Ab (Dako), or anti-
Yes-associated protein 1 (YAP1) Ab (Cell Signaling) at 4°C
overnight. After incubating overnight, slides were rinsed and
incubated with a peroxidase-labeled polymer. The tissue sections
were then rinsed and stained with 3,30-diaminobenzidine (DAB)
substrate-chromogen and then counterstained with Hematoxylin
Gill I (EMD Millipore) and bluing reagent (EMD Millipore).

Focus formation assay. Tumor cells were plated onto 6-well
plates at 500 000 cells per well in RPMI 1640 plus 10% FBS
and allowed to form a confluent monolayer. The confluent cell
cultures were incubated for 14 days. The cultured cells were
then stained with crystal violet and the foci were identified
under a microscope.

Statistical analysis. The statistical significance of difference
between the in vitro and in vivo data were analyzed by one-
way ANOVA using GraphPad Prism Ver. 4.01 (GraphPad Soft-
ware, Inc., San Diego, CA, USA). Survival was analyzed by
the Kaplan–Meier method. Differences between treatment and
control groups were compared with the log-rank test. Differ-
ences at P < 0.05 were deemed significant.

Results

PDPN is highly expressed in pleural mesothelioma and pro-

motes motility via RhoA/ROCK pathway activation. We first sub-
jected tumors from 52 Japanese patients with MPM to
immunostaining with the D2-40 antibody to determine if they
expressed PDPN. Ninety percent of the tumors from Japanese
patients with MPM tested positive for PDPN (Table S1,
Fig. S1), so tumors from Japanese patients with MPM were
found to express PDPN at high levels.
We then examined expression of PDPN in human MPM cell

lines. High levels of expression were noted in three (H226,
H2452, and EHMES-1) of six human MPM cell lines
(Fig. 2a). In order to determine the role of PDPN in MPM cell
lines, PDPN was knocked down with siRNA in 2 cell lines
expressing high levels of PDPN (H226 and H2452). In H226
(Fig. 1b–d) and H2452 (Fig. S2) cells, knocking down PDPN
did not alter cell viability but it did decrease cell motility.
When PDPN was stably knocked down with shRNA in H226,
motility was inhibited (Fig. 1e) but cell viability was not
affected (Fig. S3c). The effects of shRNA were restored by
transfection of shRNA-resistant PDPN mutants (Fig. S3a,b), so
motility was definitely inhibited by knocking down PDPN.
In contrast, transfection of PDPN into MSTO-211H cells

expressing low levels of PDPN (Fig. 2a) did not alter cell
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viability (data not shown) but it did enhance motility. Both a
wound healing assay and a migration assay using a transwell
system revealed enhanced motility as a result of overexpres-
sion of PDPN (Fig. 2b–d). These findings revealed that PDPN
regulates the motility of MPM cells.
Podoplanin is known to bind to the ERM protein family and

activate Rho.(5) Thus, we examined whether or not PDPN pro-
motes the motility of MPM cells via the Rho/ROCK/Rac path-
way. Transfection of PDPN into MSTO-211H cells resulted in
increased RhoA-GTP binding (Fig. 3a). Conversely, knocking
down PDPN with specific siRNA in H226 cells resulted in
decreased RhoA-GTP binding (Fig. 3b). We also explored the
effects of compounds that inhibit ROCK downstream of Rho.
Y-27632 is widely used as a ROCK inhibitor, and fasudil
hydrochloride has been clinically approved for treatment of
delayed cerebral vasospasms following a subarachnoid hemor-
rhage since it inhibits ROCK.(16) Neither Y-27632 nor fasudil
hydrochloride altered the viability of MSTO-211H/PDPN cells
(Fig 3c, Fig. S4a), but the two ROCK inhibitors did inhibit
motility in a dose-dependent manner (Fig. 3d, Fig. S4b). These
findings indicate that PDPN activates the RhoA/ROCK path-
way, thus promoting the motility of MPM cells.

PDPN promotes the progression of mesothelioma in the ortho-

topic implantation model. The effects of PDPN on tumor pro-
gression were examined in a model of orthotopic intrathoracic
implantation in SCID mice. In H226 cells, tumor progression
(the intrathoracic tumor burden) was inhibited by the knock-
down of PDPN with shRNA (Fig. 4a). In contrast, tumor
progression was promoted by transfection of PDPN into
MSTO-211H cells, and mice had a significantly reduced

survival time (Fig. 4b,c). Similarly, tumors produced by
MSTO-211H cells transfected with PDPN had an increased
number of Ki-67-positive proliferating cells. In contrast,
tumors produced by H226 cells when PDPN was knocked
down with shRNA had a reduced number of Ki-67-positive
proliferating cells (Fig. 4d, Fig. S5). In another cell line
expressing low levels of PDPN (H290), transfection of the
PDPN gene resulted in enhanced tumor progression in a model
of orthotopic implantation and an increased number of Ki-67-
positive proliferating cells (Fig. S6). However, PDPN expres-
sion did not affect the engraftment rate or the number of
tumors produced by MPM cells. These findings revealed that
PDPN sustains the growth of MPM cells in vivo and that it
promotes tumor progression in the thoracic cavity.

PDPN promotes focus formation in vitro and induces YAP1 acti-

vation associated with a low level of E-cadherin expression

in vivo. Promotion of MPM cell motility by PDPN may not be
the only factor responsible for tumor enlargement in vivo.
Therefore, we focused on contact inhibition as another mecha-
nism. Loss of contact inhibition is a strong indicator of cell
transformation(17) and facilitates tumor progression. We per-
formed a focus formation assay to examine the effect of PDPN
on contact inhibition in MPM cells. PDPN blocked contact
inhibition and promoted the formation of foci in MSTO-211H
(Fig. 5a) and H290 (Fig. S7) cells. In contrast, knockdown of
PDPN enhanced contact inhibition in H226 cells (Fig. 5b)
resulting in a remarkable decrease in the number of foci.
YAP1 is reported to block contact inhibition and promote

tumor progression.(18) In order to determine the mechanisms
by which PDPN blocks contact inhibition, YAP1 expression
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Fig. 1. Knocking down podoplanin (PDPN) inhibited the motility of human mesothelioma cells. (a) Expression of PDPN in human mesothelioma
cell lines was determined using Western blotting. (b) H226 cells that expressed high levels of PDPN were treated with scrambled siRNA or PDPN-
specific siRNA and expression of PDPN was determined using Western blotting. (c) The viability of the resulting cells was determined using an
MTT assay. (d) The motility of the resulting cells was assessed with a wound healing assay. (e) The motility of H226 cells treated with PDPN-
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pendent experiments with similar results.
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was examined in tumors obtained from an orthotopic implanta-
tion model. YAP1 is a transcription factor that facilitates the
transcription of various genes upon nuclear translocation.(18) In
tumors produced by H226 cells expressing high levels of
PDPN, YAP1 was detected in the nuclei of 50% or more
tumor cells, indicating that YAP1 was activated. In tumors
produced by H226 cells upon PDPN knockdown with shRNA,
YAP1 was not detected in the nuclei of most tumor cells, indi-
cating that YAP1 was inactive (Fig. 6a). In tumors produced
by MSTO-211H or H290 cells that express low levels of
PDPN, YAP1 was not detected in the nuclei of most tumor
cells. In tumors produced by MSTO-211H or H290 cells

transfected with PDPN, YAP1 was detected in the nuclei of
60% or more tumor cells (Fig. 6b, Fig. S8). Moreover, PDPN
knockdown in H226 cells resulted in increased E-cadherin
expression, whereas transfection of PDPN into MSTO-211H
cells resulted in decreased E-cadherin expression (Fig. 6c,d).
These findings suggest that PDPN blocks contact inhibition via
decreased expression of E-cadherin and YAP1 activation.

Discussion

The monoclonal antibody D2-40 recognizes PDPN, which is a
well-established diagnostic marker for MPM. In the present
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data shown are representative of at least three
independent experiments with similar results.
*P < 0.05.

(a) (b)

0

20

40

60

80

100

120

0 0.01 0.03 0.1 0.3 1 3 10

%
 C

el
l v

ia
bi

lit
y

Y-27632 (μM)

(c) (d)

48 h

0 h

Y-27632 (μM)
Control 0.1 0.3 1 3

0

20

40

60

80

100

120

140

160

180

Parent Vector PDPN

R
el

at
iv

e 
am

ou
nt

 o
f 

R
ho

A
-G

TP
 b

in
di

ng
 (%

)

＊

MSTO-211H

0

20

40

60

80

100

120

Parent ShLuc ShPDPN

＊

R
el

at
iv

e 
am

ou
nt

 o
f 

R
ho

A
- G

TP
 b

in
di

ng
 (%

)

H226
Fig. 3. Podoplanin (PDPN) enhanced the motility
via RhoA activation in mesothelioma cells. RhoA-
GTP binding of MSTO-211H cells transfected with
the control gene or PDPN (a) and of H226 cells
treated with control shLuc or PDPN-shRNA (b) was
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study, we demonstrated that PDPN stimulates motility of
MPM cells via activation of the RhoA/ROCK pathway. More-
over, PDPN blocks contact inhibition and it promotes progres-
sion of MPM in the thoracic cavity. These findings clearly

indicate that PDPN plays a major role in the progression of
MPM.
Podoplanin increased the motility of MPM cells in both cells

natively expressing high levels of PDPN and in cells that were
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forced to express PDPN by gene transfection. These findings
agree with the results of Yamaki et al.,(19) which were
obtained by forced expression of PDPN in MPM cells.
Increased motility due to PDPN was noted in various types of
cells, including breast cancer cells, pancreatic beta cell carci-
noma,(20) and cells derived from the kidney.(21) This view is
uncontested, but there is still debate as to whether motility
increased by PDPN occurs via induction of an epithelial–mes-
enchymal transition (EMT) or not.(20,21) In the present study,
PDPN expression in MPM cells did cause a decrease in E-cad-
herin expression but it did not necessarily trigger an increase
in vimentin (Fig. 6c,d). Moreover, PDPN expression did not
induce a typical morphological change to mesenchymal-like
spindle-shaped cells (data not shown). These findings suggest
that PDPN may activate the RhoA/ROCK pathway and
increase the motility of MPM cells, even if a classical EMT is
not induced. Whether or not increased motility due to PDPN
occurs via induction of a classical EMT (associated with a
decrease in E-cadherin and an increase in vimentin) may differ
depending on the type of cancer.
Loss of contact inhibition is a hallmark of cell transforma-

tion.(22) Recent studies have reported that loss of contact inhi-
bition involves activation of YAP1. YAP1 is a transcription
coactivator downstream of the Hippo pathway. Activation of
the Hippo pathway inhibits cell growth and induces cell death.
If the Hippo pathway is inactivated, however, YAP1 is translo-
cated to the nucleus, where it facilitates the transcription of
various factors and promotes cell growth.(23) In addition to the
role of YAP1 in the Hippo pathway, YAP1 activity is also reg-
ulated by E-cadherin.(24) E-cadherin is reported to regulate
contact inhibition in proliferating breast cancer cells by
directly controlling YAP localization.(25) The current study
found that expression of PDPN in MPM cells caused decreased
expression of E-cadherin, it promoted the nuclear translocation

of YAP1, and it caused a loss of contact inhibition. In the
future, analysis of the mechanisms by which PDPN inhibits
expression of E-cadherin should prove crucial to revealing the
full scope of the mechanisms by which PDPN blocks contact
inhibition.
Malignant pleural mesothelioma usually originates in the

visceral pleura and then spreads into the thoracic cavity,
where it rapidly grows. In the present study, we found that
PDPN blocks contact inhibition resulting in increased focus
formation and increased motility in MPM cells. These find-
ings suggest that PDPN may be a regulatory factor that
plays a key role in facilitating the enlargement of the pri-
mary tumor, its dissemination, or the growth of implants.
Moreover, PDPN is a potent platelet-aggregating factor.(2,4)

Recent studies have noted that platelets were present in
tumor tissue and that various growth factors released by the
aggregated platelets promoted the growth of cancer cells in
tissue.(26) Thus, PDPN expressed on MPM cells may pro-
mote the growth of MPM both by blocking contact inhibi-
tion in tumor cells and by causing the aggregation of
platelets that have leaked into the thoracic cavity and their
release of platelet-derived growth factor.
Podoplanin is a diagnostic marker for MPM and it promotes

the progression of MPM, so PDPN could potentially serve as a
therapeutic target. Over the past few years, anti-PDPN antibod-
ies that inhibit platelet aggregation and mediate antibody-
dependent cellular cytotoxicity (ADCC) have been created to
target PDPN.(27–33) Agents that target PDPN should prove
effective in treating MPM.
In conclusion, we demonstrated that PDPN, a well-estab-

lished diagnostic marker for MPM, plays a major role in MPM
progression by stimulating cell motility via RhoA/ROCK path-
way activation and by blocking contact inhibition associated
with decreased E-cadherin expression and YAP1 activation.
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Fig. 6. Podoplanin (PDPN) resulted in increased
nuclear localization of YAP1 and decreased
expression of E-cadherin in thoracic tumors
produced by mesothelioma cells. Thoracic tumors
produced by H226/ShLuc or H226/ShPDPN cells were
harvested 70 days after inoculation, and which
produced by H. MSTO-211H/Vector or MSTO-211H/
PDPN cells were harvested 21 days after
inoculation. YAP1-positive tumor cells in nucleus
were determined by immunohistochemistry (a) (b),
and expression of EMT-related proteins was
determined using western blotting (c) (d) in these
thoracic tumors. *P < 0.001.
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Collectively, our findings indicate that PDPN is an ideal target
for treatment of patients with MPM.
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Abbreviations

CAF cancer-associated fibroblasts
CLEC2 C-type lectin-like receptor 2
ERM ezrin-radixin-moesin
MPM malignant pleural mesothelioma
PDPN podoplanin
SCID severe combined immune deficiency
Sh short hairpin
YAP1 Yes-associated protein 1
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Fig. S1. PDPN staining of MPM clinical specimens with anti D2-40 antibody.
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Fig. S2. Knocking down PDPN inhibited the motility of H2452 cells.

Fig. S3. Transfection of shRNA-resistant PDPN genes restored the motility of mesothelioma cells treated with shRNA specific for PDPN.

Fig. S4. A ROCK inhibitor inhibited the motility, but not the viability, of MSTO-211H/PDPN cells.

Fig. S5. PDPN expression correlated with Ki-67-positive proliferating tumor cells in orthotopic tumors produced by mesothelioma cells.

Fig. S6. PDPN promoted the progression of H290 cells that were orthotopically implanted in SCID mice.

Fig. S7. PDPN promoted focus formation in H290 cells.

Fig. S8. PDPN resulted in increased nuclear localization of YAP1 in thoracic tumors produced by H290 cells.

Table S1. PDPN is highly expressed in MPM.
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