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a b s t r a c t

This study was designed to investigate the induction of CYP2E1 in obese Zucker rats and its

effect on the disposition kinetics of chlorzoxazone (CZX). CZX 20 mg/kg was administered to

three groups of rats: normal Zucker rats fed a normal diet (ND), normal Zucker rats fed a

high-fat diet (HF), and genetically obese Zucker rats fed a normal diet (OB). The values of the

area under the plasma concentration–time curve from 0 to 1 (AUC1) of CZX were in the

order of ND > HF > OB rats. The AUC1 values of total 6-hydroxychlorzoxazone (6OHCZX-T),

which is considered to be a CYP2E1 metabolic marker, were in the opposite order. The values

of the AUC1 ratio (6OHCZX–T/CZX) in ND, HF and OB rats were approximately 0.2, 0.3 and

0.4, respectively. The CZX concentration in fat was much higher than the concentrations in

plasma, liver and kidney in all groups. Induction of CYP2E1 protein was greater in both liver

and fat of OB rats than in those of HF rats. Microsomal activity of CYP2E1 in liver and fat was

also in the order of OB > HF > NM rats. These results suggest that CYP2E1 may be induced in

liver and fat of obese patients, thereby potentially altering the disposition kinetics of not

only CZX, but also other lipophilic drugs metabolized by CYP2E1.

# 2006 Published by Elsevier Inc.
OUGT, UDP-glucuronosyltransferase
PNP, p-nitrophenol
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N1. Introduction

An increasingly sedentary lifestyle, together with a preference

for refined foods containing high levels of meat and saturated

fat, has resulted in a drastic increase in the incidence of

metabolic abnormalities, obesity, and hypercholesterolemia,
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which are associated with premature mortality [1,2]. There-

fore, animal models, such as genetically obese Zucker ( fa/fa)

rats, have been developed to study the mechanisms of

physiological changes related to obesity. The Zucker ( fa/fa)

rat does not develop leptin receptors, resulting in impaired

regulation of food intake and impaired energy homeostasis
of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa

amoto).
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[3,4]. The overfed normal rat can also mimic physiological

aspects of severe obesity in humans, such as hypercholester-

olemia, hyperinsulinemia, etc. [5,6].

Changes in physiological status, such as obesity and

hypercholesterolemia, can modulate the metabolic activity of

CYP2E1 [7–9]. Interestingly, CYP2E1 is a ubiquitous enzyme that

is distributed in various organs of animals, but obesity-related

increase of CYP2E1 activity is well documented only in liver.

There are several reports that the hydroxylation of chlorzox-

azone (CZX) can be used as an indicator of CYP2E1 activity both

in vivo and in vitro [10,11]. CZX is a muscle relaxant that

primarily undergoes hydroxylation, catalyzed mainly by

CYP2E1, to 6-hydroxychlorzoxazone (6OHCZX), which is rapidly

glucuronidated and excreted in urine [12,13]. CZX is lipophilic

[14], and so may be a suitable probe to examine the activity of

CYP2E1 in various tissues of obese animals.

This study was therefore designed to examine the induc-

tion of CYP2E1 in genetically obese Zucker rats fed a normal

diet (OB) and its effect on the disposition kinetics of CZX and

its metabolite 6OHCZX in liver, kidney and fat, compared with

those in normal Zucker rats fed a high-fat diet (HF) and normal

Zucker rats fed a normal diet (ND).
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2. Materials and methods

2.1. Materials

CZX and 6OHCZX were purchased from Sigma–Aldrich Inc. (St.

Louis, MO). High-fat diet (LABO H Standard1) and normal diet

(LABO MR Stock1) were purchased from Nosan Corp.

(Yokohama, Japan). The high-fat diet contained 8.6% (w/w)

fat (total energy 346.7 kcal/100 g), while the normal diet

contained 4.1% (w/w) fat (total energy 259.2 kcal/100 g).

2.2. Animal treatment

Male 8-week-old Zucker (+/+) rats and genetically obese

Zucker ( fa/fa) rats were purchased from Japan SLC Inc.

(Toyama, Japan). The rats were divided into three groups:

normal Zucker (+/+) rats fed with normal diet (ND rats), normal

Zucker (+/+) rats fed with high-fat diet (HF rats) and genetically

obese Zucker ( fa/fa) rats fed with normal diet (OB rats). The

animals were housed for 3 months in a climate- and light-

controlled environment with free access to water and the

designated food. All animal procedures were in accordance

with the standards set forth in the guidelines for the care and

use of laboratory animals at the Takara-machi Campus of

Kanazawa University.

2.3. Disposition kinetic of CZX

CZX (20 mg) was dissolved in 400 ml of 0.5N NaOH and diluted

with 600 ml of normal saline solution (20 mg/ml). This solution

was administered to rats at a dose of 20 mg/kg by i.v.

administration over 2 min via a lateral tail vein. Then,

approximately 0.2–0.5 ml of blood was collected from the tail

vein on the other side at 0.033, 0.083, 0.25, 0.5, 1, 2, 4, and 8 h

after completion of the administration of CZX. The blood was

centrifuged at 3000 � g for 10 min, and the plasma was
Please cite this article as: Phisit Khemawoot et al., Obesity-induced in
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collected. Some rats were killed by decapitation at 4 h after

CZX administration, and the liver, kidney and abdominal fat

were quickly excised, rinsed well with ice-cold saline, blotted

dry, and weighed. Each tissue sample was homogenized with

normal saline and stored at �80 8C until analysis.

2.4. Sample preparation

The concentrations of CZX and 6OHCZX in biological samples

were analyzed as unchanged and glucuronidated fractions.

The assay of glucuronidated CZX and 6OHCZX was performed

according to Frye and Stiff [15] with slight modifications.

Briefly, a 100 ml sample of plasma or tissue homogenate was

added to 300 ml of 0.2 M phosphate buffer (pH 6.5) containing

500 units of b-glucuronidase. The mixture was incubated at

37 8C with shaking for 2 h, and then the reaction was stopped

by adding 100 ml of acetonitrile containing phenacetin (1 mg) as

an internal standard for HPLC analysis.

2.5. HPLC assay of CZX and 6OHCZX

To a 100 ml of sample solution was added 5 ml of diethyl ether,

then the mixture was shaken vigorously for 10 min, and

centrifuged at 3000 � g for 10 min. The ether layer was

transferred to another tube for evaporation in a vacuum

centrifugal concentrator. In the case of adipose tissue, reverse

phase extraction from the oil phase of homogenated samples

was done by adding 0.5N NaOH to the samples and mixing.

The aqueous phase was collected and titrated with an equal

amount of 0.5N HCl. Next, diethyl ether (5 ml) was added to

extract CZX and 6OHCZX from aqueous phase, and the organic

solution was further processed as described above.

The residue from evaporation was dissolved in 200 ml of the

mobile phase, and a 50 ml aliquot was injected into an HPLC

system (LC-9A, Shimadzu Co. Ltd., Kyoto, Japan) equipped

with a CAPCELL PAK C18 column, 1.5 mm i.d. � 150 mm

(Shiseido Co. Ltd., Tokyo, Japan). The mobile phase consisted

of 25% (v/v) acetonitrile in 50 mM KH2PO4 (pH 4.0), pumped at a

rate of 0.1 ml/min. The absorbance was detected at wave-

lengths of 295 and 287 nm for 6OHCZX and CZX, respectively

[14,16]. The retention times of 6OHCZX, phenacetin and CZX

were approximately 5, 12 and 20 min, respectively. Linear

calibration curves (r > 0.999) were obtained for both com-

pounds in plasma over the concentration range from 1 to

150 mg/ml. The limits of detection were estimated to be

0.25 mg/ml for both CZX and 6OHCZX.

2.6. Reverse transcriptase polymerase chain reaction (RT-
PCR) assay

Total RNA was isolated from liver, kidney and fat with Isogen

(Nippon Gene Co. Ltd., Toyama, Japan). Each RNA sample (1 mg)

was reversed-transcribed at 37 8C for 2 h, and the cDNA was

amplified with a Peltier Thermal Cycler PTC-100 (Bio-Rad

Laboratories Inc., Hercules, CA). The numbers of amplification

cycles were 30 for fat cDNA and 25 for cDNAs from other

tissues. PCR products were evaluated by electrophoresis on 2%

(w/v) agarose gel stained with ethidium bromide, and

photographed under UV trans-illumination. The product size

was estimated by comparison with a 100 bp DNA ladder
crease of CYP2E1 activity and its effect on disposition kinetics of
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(Takara Bio Inc., Shiga, Japan). Control reactions to verify the

absence of contaminants and genomic DNA were routinely

performed. Primers used for rat CYP2E1 were 50-CTG ATT GGC

TGC GCA CCC TGC-30 and 30-GAA CAG GTC GGC CAA AGT CAC-

50 (363 bp), and those for rat b-actin were 50-TTC TAC AAT GAG

GTG CGT GTG GC-30 and 30-CTC CTA GCT CTT CTC CAG GGA

GGA-50 (456 bp). PCR was run under the following conditions:

initial denaturation at 94 8C for 3 min, repeated denaturation

at 94 8C for 45 s, followed with annealing at 66 8C for 45 s for

CYP2E1 and 67 8C for 45 s for b-actin, primer extension at 72 8C

for 45 s, and final extension at 72 8C for 3 min. The other

conditions for RT-PCR were as described previously [17].

2.7. Preparation of microsomes

Tissue microsomes were prepared according to Yokogawa

et al. [17] with slight modifications. Liver, kidney or abdominal

fat was homogenized with phosphate buffer (50 mM K2HPO4

containing 0.1 mM EDTA, pH 7.4). The homogenate was

centrifuged at 10,000 � g for 30 min, and then the supernatant

was recentrifuged at 100,000 � g for 60 min. The microsomal

pellet was collected, and resuspended in an appropriate

volume of 50 mM Tris–acetate buffer (pH 7.4) containing 1 mM

EDTA and 20% glycerol. The protein concentration of the

microsomal solution was determined with a protein assay kit

from Bio-Rad Laboratories Inc. (Hercules, CA).

2.8. Immunoblotting

Immunoblotting of the microsomes for CYP2E1 and b-actin

was carried out essentially as described by Yokogawa et al.

[18]. The microsomal protein was resolved by 10% SDS-PAGE,

and transferred to a polyvinylidene fluoride membrane or

Immobilon-P1 (Millipore Co., Bedford, MA). The membrane

was incubated with blocking buffer for 1 h (5%, w/v, non-fat

dried milk in PBS), followed with overnight incubation in a

2000-fold dilution of primary antibody (goat anti-rat CYP2E1

from Daiichi, Pure Chemicals Co., Ltd., Tokyo, Japan, and goat

anti-rat b-actin from Santa Cruz Biotechnology Inc., Santa
U
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Table 1 – Physical and biochemical data in rats with obesity

Parameters

ND

Physical data

Body weight (g) 385 � 5.0

Liver (g) 5.94 � 0.42

Kidney (g) 2.11 � 0.08

Epididymal fat (g) 3.49 � 0.64

Biochemical data

Albumin (g/dl) 4.26 � 0.23

T-bilirubin (mg/dl) 0.057 � 0.006

T-cholesterol (mg/dl) 75 � 1.5

Creatinine (mg/dl) 0.29 � 0.02

AST (IU/l) 81 � 7.0

Cholinesterase (IU/l) >4

Data were presented as mean � S.D. of four rats. *Significant differenc

P < 0.01.
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Cruz, CA). The membranes were then incubated with a 2000-

fold dilution of secondary antibody (rabbit anti-goat IgG from

Santa Cruz Biotechnology Inc., Santa Cruz, CA). The immu-

nopositive band was detected with an ECL chemilumines-

cence detection kit (Amersham Biosciences UK Ltd.,

Buckinghamshire, UK), and scanned with a Typhoon 9200

scanner (Amersham Biosciences Europe GmbH, Freiburg,

Germany).

2.9. Measurement of hydroxylation activity of microsomal
CYP2E1

The enzyme activity of microsomal CYP2E1 was determined

by the measurement of 6OHCZX formation according to

Chittur and Tracy [19], with minor modifications. A mixture of

the microsomal solution (equivalent to 0.4 mg protein) and

50 mM phosphate buffer (pH 7.4) containing 50 mM CZX and

1 mM NADPH (final, 200 ml) was incubated at 37 8C for

appropriate times. The reaction was stopped by adding

100 ml of acetonitrile containing phenacetin (1 mg) as an

internal standard for HPLC assay. The 6OHCZX formed was

extracted with diethyl ether and measured by HPLC as

described above.

2.10. Measurement of glucuronidation activity of
microsomal UGTs

The activity of UDP-glucuronosyltransferase (UGT) in

microsomes was measured colorimetrically in 0.15 M tris-

phosphate buffer pH 7.4 containing 0.8 mM p-nitrophenol

(PNP), 14 mM UDP glucuronic acid, 10 mM MgCl2, and 1 mg

microsomal protein [20]. The mixture (1.4 ml) was incubated

at 37 8C for 30 min, then the reaction was stopped by adding

5 ml of 0.2 M glycine buffer (pH 10.4). The disappearance of

PNP was quantified in terms of absorbance at 405 nm with a

UV–vis spectrophotometer. The microsomal activities for

glucuronidation of CZX and 6OHCZX were assayed similarly,

except that the disappearance of CZX and 6OHCZX was

determined by HPLC.
crease of CYP2E1 activity and its effect on disposition kinetics of
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Rats

HF OB

410 � 17.3 480 � 8.3**

6.22 � 0.64 11.85 � 0.88**

2.13 � 0.14 2.23 � 0.12

4.35 � 1.12 12.74 � 1.63**

4.30 � 0.10 4.07 � 0.06

0.057 � 0.012 0.28 � 0.030**

81 � 2.1* 88 � 1.5**

0.30 � 0.02 0.31 � 0.01

79 � 3.1 83 � 6.6

>4 >4

e from ND rats at P < 0.05. **Significant difference from ND rats at
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Fig. 1 – Plasma concentration–time courses of CZX (closed

symbols) and 6OHCZX-T (open symbols) after an i.v.

administration of CZX (20 mg/kg) over 2 min in ND (*), HF

(&) and OB (~) rats. The concentration of CZX is shown as

unchanged fraction, while 6OHCZX is shown as total

6OHCZX (unchanged fraction plus glucuronidated

fraction). Each point and bar represents the mean + S.D. of

four rats. *Significant difference from ND rats at P < 0.05.
**Significant difference from ND rats at P < 0.01.
2.11. Data analysis

The pharmacokinetic parameters were calculated according to

model-independent moment analysis as describedby Yamaoka

et al. [21]. Electrophoregrams after RT-PCR and immunopositive

bands were evaluated in arbitrary units by using NIH Image

software. Comparisons of numerical data among groups were

made by one-way ANOVA, with P < 0.05 as the criterion of a

significant difference. For each significant effect, a multiple

comparison test was performed with Scheffe’s test to verify the

difference between groups at P-values of 0.05 and 0.01, using

SPSS 101 from SPSS Inc. (Chicago, IL).
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Table 2 – Pharmacokinetic parameters of CZX and 6OHCZX af

Parameters

ND

CZX

AUC1 (mg/h/ml)a 204 � 14

T1/2 (h�1)b 1.67 � 0.18

MRT (h�1)c 2.40 � 0.19

CLtot (1/h kg)d 0.104 � 0.002

Vdss (1/h)e 0.239 � 0.014

6OHCZX-T

AUC1 (mg/h ml) 41.2 � 4.7

Data were presented as mean � S.D. of four rats. *Significant differenc

P < 0.01.
a AUC from 0 to 1.
b Half life.
c Mean residence time.
d Total clearance.
e Volume of distribution at steady state.
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3. Results

3.1. Physical and biochemical data

Table 1 summarizes the physical data for ND, HF and OB rats.

The body, liver and epididymal fat weights of OB rats were

significantly higher than those of ND rats. The fat tissue

weight of HF rats, although slightly higher, was not signifi-

cantly different from that of ND rats. The value of total

bilirubin of OB rats was significantly higher than that of ND

rats, but liver function (AST) and kidney function (creatinine)

were unaffected. Total cholesterol was significantly increased

in HF rats and OB rats compared with normal rats.

3.2. Disposition kinetics of CZX

Fig. 1 shows the plasma concentration–time courses of CZX

and 6OHCZX after an i.v. administration of CZX 20 mg/kg in

ND, HF and OB rats. The plasma concentrations of CZX linearly

decreased in all cases, but the concentration at 8 h after

administration was in the order of ND > HF > OB rats. In this

figure, the concentration of 6OHCZX is presented as a total

value of 6OHCZX (6OHCZX-T), i.e., the sum of free 6OHCZX and

glucuronidated 6OHCZX, after the administration of CZX. The

amount of the glucuronide conjugate of CZX (CZX-G) was

negligible (data not shown). It was found that the plasma

concentration of 6OHCZX-T increased gradually and reached a

peak at about 2 h after administration. The peak concentration

of 6OHCZX-T in OB rats was significantly higher than that in

ND rats. Table 2 shows the pharmacokinetic parameters of

CZX and 6OHCZX-T after administration of CZX 20 mg/kg. In

OB rats, the AUC1, T1/2 and MRT values of CZX were

significantly smaller, while the CLtot and Vdss values of CZX

were significantly larger than those of ND rats. The pharma-

cokinetic parameters in HF rats were intermediate between

those in OB rats and ND rats. Moreover, the AUC1 values of

6OHCZX-T in HF and OB rats were significantly higher than

that of ND rats.
crease of CYP2E1 activity and its effect on disposition kinetics of
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ter an i.v. administration of CZX 20 mg/kg over 2 min

Rats

HF OB

181 � 12 155 � 21**

1.38 � 0.19 1.19 � 0.23*

2.30 � 0.28 2.00 � 0.17*

0.122 � 0.010* 0.145 � 0.013**

0.277 � 0.014** 0.285 � 0.016**

60.3 � 4.2** 71.6 � 5.9**

e from ND rats at P < 0.05. **Significant difference from ND rats at
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Fig. 2 – Tissue and plasma concentrations of CZX and its

glucuronide (CZX-G) at 4 h after an i.v. administration of

CZX (20 mg/kg) over 2 min in ND ( ), HF ( ) and OB ( ) rats.

Each column and bar represents the mean + S.D. of four

rats. *Significant difference from ND rats at P < 0.05.
**Significant difference from ND rats at P < 0.01.

Fig. 4 – Effect of obesity on the expression of CYP2E1 mRNA

compared with b-actin in liver, kidney and fat of ND ( ), HF

( ) and OB ( ) rats. Each column and bar represents the

mean + S.D. of four rats. *Significant difference from ND

rats at P < 0.05. **Significant difference from ND rats at

P < 0.01.
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Fig. 2 shows the tissue concentration of CZX compared with

the plasma concentration at 4 h after the i.v. administration of

CZX. The CZX concentration in fat tissue was considerably

higher than those of plasma, kidney and liver. The concentra-

tion of CZX-G was higher in HF rats and OB rats than ND rats.

Fig. 3 shows the tissue concentrations of 6OHCZX and its

glucuronide in fat, liver and kidney at 4 h after the i.v.

administration of CZX. The concentrations of both 6OHCZX

and 6OHCZX-G in plasma and all tissues tended to be higher in

the HF rats and OB rats than those in the ND rats. Interestingly,

the kidney concentration was much higher than those of other

tissues, and the concentration of 6OHCZX-G in kidney of OB

rats was significantly higher than that of ND rats.

3.3. Expression of CYP isoform mRNAs and proteins

The mRNA expression of CYP2E1 in liver of HF rats and OB rats

was only slightly higher than that in ND rats, whereas, the

relative expression of CYP2E1/b-actin in fat tissue from HF rats

and OB rats was apparently higher than that in ND rats (Fig. 4).
U
N

C
O

R

Please cite this article as: Phisit Khemawoot et al., Obesity-induced in

chlorzoxazone in Zucker rats, Biochemical Pharmacology (2006), d

278

279

280

281

282

283

284

Fig. 3 – Tissue and plasma concentrations of 6OHCZX (6OH)

and its glucuronide (6OH-G) at 4 h after an i.v.

administration of CZX (20 mg/kg) over 2 min in ND ( ), HF

( ) and OB ( ) rats. Each column and bar represents the

mean + S.D. of four rats. *Significant difference from ND

rats at P < 0.05. **Significant difference from ND rats at

P < 0.01.
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 PThe expression levels of CYP2E1 protein in the liver, kidney

and fat tissue were examined by immunoblot analysis. The

protein levels of CYP2E1 in the liver and fat of HF rats and OB

rats were conspicuously increased compared with those of ND

rats. Furthermore, the relative expression of CYP2E1/b-actin in

liver microsomes and fat microsomes of HF and OB rats was

significant higher than that in ND rats (Fig. 5).

3.4. In vitro CYP2E1 and UGTs activity

Fig. 6 shows the hydroxylation activity of microsomal CYP2E1

in terms of 6OHCZX formation from CZX, in various tissues

from the three groups of rats. The highest hydroxylation rate

was found in the liver compared with kidney and fat tissue.

The activities in liver and fat from HF rats and OB rats were

significantly higher than those in ND rats, whereas, no

difference was seen in the kidney.

Fig. 7 shows the glucuronidation activity of microsomal

UGTs in liver and kidney towards PNP, CZX and 6OHCZX. The

glucuronidation rates in the kidney of HF rats and OB rats were

generally significantly higher than those in ND rats. The

glucuronidation activity in fat was negligible in all groups.

Interestingly, the glucuronidation of CZX was very much lower

than that of 6OHCZX, although the enzyme activity in the liver

was not affected by obesity.
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4. Discussion

Zucker ( fa/fa) rats at 20 weeks of age showed markedly

increased body weight, accompanied with an enlarged liver

and increased epididymal fat, compared with Zucker (+/+)

rats. In contrast, Zucker (+/+) rats fed with high-fat diet (twice

the level in normal diet) for 12 weeks did not show any

significant physical or biochemical changes (Table 1).

CZX is well known to be a specific probe for CYP2E1, being

hydroxylated to 6OHCZX [10,11], which in turn is rapidly

glucuronidated to 6OHCZX-G [13]. Therefore, the appropriate
crease of CYP2E1 activity and its effect on disposition kinetics of
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Fig. 5 – Effect of obesity on the content of CYP2E1 protein

compared with b-actin in liver, kidney and fat of ND ( ), HF

( ) and OB ( ) rats. Each column and bar represents the

mean + S.D. of three rats. *Significant difference from ND

rats at P < 0.05. **Significant difference from ND rats at

P < 0.01.

Fig. 7 – Effect of obesity on the glucuronidation activity of

microsomal UGTs in liver and kidney of ND ( ), HF ( ) and

OB ( ) rats. Each column and bar represents the

mean + S.D. of four rats. *Significant difference from ND

rats at P < 0.05. **Significant difference from ND rats at

P < 0.01.

R

indicator for determining CYP2E1 activity in vivo should be the

total amount of 6OHCZX generated after the administration of

CZX, as reported in Fig. 1 and Table 2. The limited sampling

time course of 8 h post-administration was contributed to the

detection limits of both CZX and 6OHCZX. Most of 6OHCZX in

biological samples were lower than the detection limit, and

some of CZX levels were under the linearity of calibration

curves at 12 h after administration of CZX. The administration

of CZX 20 mg/kg to OB rats afforded lower values of AUC1 and

T1/2 in serum as compared with those in ND rats, while the

values of CLtot and Vdss were significantly higher (Table 2).

Based on the Vdss and the tissue concentration of CZX (Fig. 2),

it appears that lipophilic substances, such as CZX, penetrate

well into the fat reservoirs of OB rats. The fat to plasma ratio of

CZX was two to four folds both at 1 and 4 h of tissue sampling

time, and the OB rats showed the higher trend of accumulation

(data not shown for 1 h). Therefore, if CYP2E1 were not

induced in the fat of OB rats, it is likely that the elimination

rate of CZX would be delayed. However, the T1/2 of CZX in OB

rats was shorter than in ND rats, and further, the value of
U
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Fig. 6 – Effect of obesity on the hydroxylation activity of

microsomal CYP2E1 in liver, kidney and fat of ND ( ), HF

( ) and OB ( ) rats. Each column and bar represents the

mean + S.D. of four rats. *Significant difference from ND

rats at P < 0.05. **Significant difference from ND rats at

P < 0.01.
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unlikely that 6OHCZX from blood would accumulate in fat,

because 6OHCZX is relatively hydrophilic and is rapidly

glucuronidated by UGTs located in smooth endoplasmic

reticulum, the same location as that of CYP2E1 [22]. Therefore,

the induction of CYP2E1 in fat, in addition to liver, may play a

pivotal role in determining the disposition kinetics of CZX in

obese rats. We also found that the AUC1 ratio of 6OHCZX–T/

CZX in HF rats and OB rats was 1.5–2 times higher than that in

ND rats, reflecting the increased total activity of CYP2E1 in rats

with obesity. Lucas et al. [7] reported that the 6OHCZX–T/CZX

ratio (0.4) in obese or hyperlipidemic patients was higher than

that (0.3) in normal subjects, in agreement with our finding.

These results suggest that obesity and feeding of a high-fat

diet can induce CYP2E1 activity in both humans and rats.

We found that both the protein content and activity of

CYP2E1 were increased in microsomes of the liver from HF rats

and OB rats, while there was no change in the kidney.

Kobayashi et al. [23] reported that CZX was extensively

metabolized in rat microsomes not only by CYP2E1, but also

by CYP1A2 and CYP3A. Therefore, we also examined the

mRNA expression and protein content of CYP1A2 and CYP3A,

but found that they were unaffected by obese status (data not

shown). Enriquez et al. and Irizar et al. [24,6] reported that

CYP2E is poorly expressed in obese Zucker rats, which is

consistent with our finding. However, Enriquez et al. [24]

reported that CZX hydroxylase activity and CYP2E1 protein

content were lower in Zucker ( fa/fa) rats than in lean (+/?)

littermates. There are various differences between their

experimental conditions and ours, but one of the most

important factors could be the influence of aging in obese

Zucker ( fa/fa) rats. Young obese Zucker ( fa/fa) rats do not

exhibit pathological conditions such as physical obesity,

insulin resistance, etc., and usually have a lower CYP2E1

activity than their lean littermates, whereas, after the

appearance of pathological symptoms at approximately 14–

16 weeks of age, expression of CYP2E1 is increased. Therefore,

we used Zucker ( fa/fa) rats at 20 weeks of age in our study,

when their pathological condition appeared to resemble that

of severe obesity in humans. The report by Enriquez et al. [24]
crease of CYP2E1 activity and its effect on disposition kinetics of
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did not mention the physical condition of either the lean or

obese Zucker rats, so that it is difficult to compare their

findings and ours. Interestingly, the CYP2E1 mRNA isoform

was expressed in fat tissue, and its expression level and

activity were significantly higher in HF rats and OB rats than in

ND rats (Figs. 4–6). Yoshinari et al. [25] and Wan et al. [26]

reported that the expression levels of both CYP2E1 mRNA and

protein were increased in adipose tissue of fasting rats.

However, the amount of adipose tissue in fasting rats was

small, and so CYP2E1 in fasting animals may contribute little

to the pharmacokinetics of its substrates compared with the

situation in obese animals.

The hydroxylated metabolite of CZX (6OHCZX) has been

reported to be excreted in bile to only a small extent; rather it

undergoes rapid glucuronidation with subsequent excretion

of the conjugate in urine [13]. We found that the glucuronida-

tion activity in kidney microsomes was significantly higher in

HF rats and OB rats than ND rats (Fig. 7), and the concentration

of 6OHCZX glucuronide in the kidney was higher than that in

the liver (Fig. 3). Since there is no evidence that a specific UGT

subfamily in involved in glucuronide conjugation of CZX and

6OHCZX, we used PNP, a general marker for glucuronidation,

to confirm our results. The glucuronidation activity towards

PNP in kidney microsomes of HF and OB rats showed the same

trend as did the activity towards CZX and 6OHCZX. However,

the glucuronidation activity in liver microsomes was not

influenced by the high-fat diet or obese status, and was quite

different towards different substrates. This suggests the

presence of different UGTs isoforms in liver and kidney.

Further research will be required to identify the UGTs

isoform(s) responsible for 6OHCZX glucuronidation in tissues,

and the species that are affected by obese status.

In conclusion, CYP2E1 activity was induced in the liver and

fat tissues of obese animals, and glucuronidation activity were

induced in the kidney. As a result, the disposition kinetics of

CZX was markedly changed in obesity, with an increase in

hydroxylation of CZX to form 6OHCZX, and an acceleration of

6OHCZX glucuronidation, resulting in rapid excretion in urine.

Other drugs that are metabolized by CYP2E1 and UGTs may

show similar changes of disposition kinetics in obese patients,

resulting in reduced potency and shorter duration of action.
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