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Abstract Two experiments were conducted to examine the effects of growing conditions,

duration of cold storage, and distinct phenological periods of root donor plants on the

propagation success of aspen rootlings. Root donor plants were produced either under

greenhouse or open grown conditions. Root cuttings were periodically collected from donor

plants that had been stored for various lengths of time in cold storage (up to 180 days), or that

were stored dormant in cold storage (up to 150 days) and then grown for another full growing

season. Longer storage of donor plants produced only slightly smaller rootlings and resulted

in slightly lower establishment success. Rootling establishment success was severely

depressed (down to 18% establishment success) when cuttings were collected during the

active growth period of donor plants. Carbohydrate reserves did not influence rootling

establishment success but did affect root and shoot growth performance. It appears that other

factors, such as hormone levels, may be more important in rootling establishment success.

Keywords Populus tremuloides � Clonal propagation � Cold storage �
Phenological period � Root cutting � Carbohydrate reserves � Vegetative regeneration

Introduction

Aspen (Populus tremuloides Michx.) is an early successional, fast growing clonal species

that has a broad distribution in North America, and as such is adapted to a wide range of

environmental and biotic stresses (DeByle and Winokur 1985). Forest managers have

become interested in the short-rotation plantation culture of aspen due to its high fiber quality

and productivity. In addition, native aspen is more likely to be accepted as a plantation

species by local environmental groups and regulators of forestry activities than exotic species
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such as hybrid aspens and poplars. Although aspen production from seed is generally more

economical, vegetative propagation of aspen growing stock, especially stock derived from

superior-performing clones, is desirable since growers can replicate clones with high quality

wood fiber, fast growth rate, drought tolerance and/or potential for vegetative propagation

(Noel et al. 2002; Zufa 1971). Over the last decade, there have been traditional selection,

breeding, and testing programs of aspen in North America (Richardson et al. 2007); however,

difficulties related to the propagation and establishment of these aspen clones are slowing the

deployment of this superior genetic material (Haapala et al. 2004).

Several vegetative propagation techniques have been developed and tested for poplar

species. However, many of these techniques have had poor success when applied to clonal

aspen propagation (Haapala et al. 2004; Hartmann et al. 2002; Yu et al. 2001). Aspen is in

the Populus section of the Populus genus, and does not root well from stem cuttings, unlike

species in the Tacamahaca and Aigeiros sections (Eckenwalder 1996). Micropropagation

has been considered to be a more reliable method for clonal propagation of aspen (Haapala

et al. 2004), but is expensive and requires a sterilized environment, thus is susceptible to

mortality from microbial contamination (Hartmann et al. 2002; Vinocur et al. 2000). The

propagation of aspen from root cuttings in soil media has mostly been used operationally to

produce stecklings (rooted stem cuttings) (Richardson et al. 2007), and little research has

been undertaken to evaluate the direct use of small root segments for aspen propagation

(rootling) (Stenvall et al. 2006; Brouard et al. 2005; Vinocur et al. 2000). There is limited

information on how the rearing condition of root donor plants affects carbohydrate reserves

in the roots, and how this in turn might affect the establishment success of rootlings. In

addition, it is uncertain how rootling establishment and growth is affected by the duration

in cold storage and the physiological condition at different phenological stages of root

donor plants at the time of root collection. Understanding how growing condition, duration

in storage and phenological stage affect rootling growth and establishment, may increase

rootling propagation success, and reduce costs of propagation, making vegetative propa-

gation more economical (Stenvall et al. 2004). Generally, aspen root donor plants are

placed into cold storage in late fall, and remain there until the following spring when root

cuttings are collected (Wang and Zwiazek 1999).

Non-structural carbohydrate (TNC) reserves appear to play a significant role in the

vegetative regeneration success of aspen (Frey et al. 2003; Landhäusser et al. 2006). Root

TNC reserves in aspen are known to fluctuate with growing conditions, storage time

(Farmer 1963; Martens et al. 2007), and phenological stage (Landhäusser and Lieffers

2003; Schier and Zasada 1973); however, it is not clear what role they play in the

establishment success of aspen rootlings.

The purpose of this study was to examine how the production and condition of the root

donor plants (determined by the root carbohydrate reserves) influences the success of

rootling propagation. In particular we investigated the impact of (A) the growing condition

of donor plants; (B) the length of cold storage of donor plants; and (C) the phenological

period of the root donor plant on rootling propagation success.

Materials and methods

Donor plant production

The aspen root donor plants were produced from root cuttings of four selected genotypes

(1006, 1042, 3118 and 3149) from the Western Boreal Aspen Corporation. These four
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genotypes had been identified as superiorly performing clones and were used in this study

to increase our inference space on aspen rootling regeneration, thus, were not considered a

fixed treatment effect. A total of 864 root donor plants were grown by a commercial

nursery (Woodmere Forest Nursery, Fairview Alberta, 56�040N, 118�240W, 664 m a.s.l.).

Donor plants were produced from root cuttings that were planted on March 6, 2006 into

Superblock 5–12a, 60 mL container (Beaver Plastics LTD., Edmonton, Alberta). Genotype

1042 showed poor establishment success on first planting; therefore, a second batch was

planted on April 14, 2006. On June 5 and 6, 2006, the rootlings of all four genotypes were

transplanted into 9L pots (22 cm diameter and 22 cm depth) filled with 5:1 peat moss :

vermiculite mixture by volume, amended with 9 g lsoil
-1 dolomite lime and 3 g lsoil

-1 of

micronutrients (Scott 90505c). The 9L pots allowed for the increased development of

plants with larger root systems. At that time, half of the aspen root donor plants were

grown outside for the remainder of the growing season (outside treatment) and the other

half were grown in a greenhouse (23 h of light (photosynthetically active radiation (PAR)

was 100–700 lmolphotons m-2 s-1 depending on the sky conditions) and 20�C day and

18�C night) (inside treatment).

All root donor stock received the same fertilizer regime, which consisted of full strength

nutrient solution used by Woodmere Forest Nursery containing a blend of nitrogen,

phosphorous and potassium, as well as micronutrients consisting of boron, copper, iron,

magnesium, and zinc. During the hardening phase in late summer, the nitrogen concen-

tration of the fertilizer blend and the frequency of fertilization were reduced; fertilization

was discontinued by October. Inside-grown donor plants were hardened off in October by

decreasing the air temperature to 15�C during the day and 5�C at night, and exposing the

trees to the natural photoperiod (approximately 8 h day, 16 h night). These plants set bud

in August and lost their leaves by mid-October, and remained under greenhouse conditions

until December 5, 2006. Root donor plants grown outside received the same fertilizer

treatments, but were subjected to the natural fluctuations in temperature and photoperiod,

and remained outside until moved to cold storage. Outside plants set bud in July and lost

their leaves in September. Roots of the outside donor plants did not completely freeze until

November 4, 2006, whereas inside donor plant roots did not freeze until placed into cold

storage at -3�C on December 5, 2006. For the storage time experiment, all root donor

plants had their shoots cut off before the donor plants were bagged and placed in cold

storage. Donor plants used for the phenology experiment were all stored in cold storage in

large plastic bags with their stems attached.

Growth of root cuttings

Root donor plants taken out of cold storage were thawed for 2 days at 20�C before root

cuttings (5 cm long) could be collected. For all collection periods, soil was shaken from the

root ball, and roots were carefully cleaned under cold running water. Ten root cuttings

(subsamples), ranging in diameters from 0.9 to 10.6 mm, were cut from each individual

donor plant root. When harvesting root sections, the distal and proximal ends of the cutting

were noted. Root cuttings for all experiments were planted into (Superblock 2–11) sty-

roblock containers (Beaver Plastics LTD., Edmonton, Alberta); cells were 2 cm wide and

11 cm deep, and had a volume of 40 ml. Styroblocks (8 by 10 rows of cells) were filled

with Pro-mix (Sunshine, SunGro Horticulture Canada Ltd., Seba Beach, Alberta) con-

taining 55–65% sphagnum peat moss, plus perlite, dolomitic limestone, gypsum and

wetting agent. The soil was thoroughly watered, and root cuttings were carefully planted to

ensure good contact with the soil.
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All root cuttings were planted leaving 1.0–1.5 cm of the proximal end above the soil

level. For all experiments, root cuttings were grown for 31 days in a growth chamber.

Growth chamber conditions throughout the experiments were kept on an 18 h/6 h light/

dark cycle, with daytime air temperatures of 20�C and night temperature of 18�C. Relative

humidity was maintained at 60%. Light intensity was maintained at 350–400 lmolphotons

m-2 s-1 photosynthetically active radiation at the styroblock level. Rootlings were watered

every second day, and after leaf flush were fertilized weekly with 1 g/L of 10-52-10 (N-P-

K) commercial fertilizer with chelated micronutrients (Plant Products, Brampton, Ontario).

Measurements and TNC sample analysis for all experiments

At each root collection time, three additional samples of root cuttings (of varying diam-

eters) were collected from each donor plant and bulked to determine total soluble sugar,

starch, and non-structural carbohydrate concentrations (TNC) in the root tissue. In the

phenology experiment (see below), a sample of the stem of the donor plant was also

analyzed for TNC. For TNC analysis, samples were dried at 68�C and ground in a Wiley

mill to 40-mesh. For each sample, tissues were extracted three times with 80% hot ethanol

at 95�C. The ethanol extract was analyzed for total sugar concentration using phenol-

sulfuric acid. The residue obtained after extraction was analyzed for starch content by

digestion using an enzyme mixture of a-amylase and amyloglucosidase followed by the

colorimetric measurement of the glucose hydrolysate using a peroxidase-glucose oxidase-

o-dianisidine reagent (Chow and Landhäusser 2004).

Measurements of total root mass, shoot height, caliper and root total non-structural

carbohydrates were taken on a subsample of ten root donor plants from each clone to

describe the root donor stock (Table 1). Planted rootlings were harvested and measured

after a 31 day growing period. The total number of roots originating from each cutting was

counted, along with the height of the tallest shoot. A rootling was considered ‘‘established’’

if the cutting had produced both roots and shoots within the 31 day period.

Experimental design and analysis for all experiments

Both experiments (impact of storage time and donor plant phenological period) used a

randomized block design, with the styroblock as the block factor (replicated nine times),

Table 1 The average (± SD) of shoot height, root dry weight, and root carbohydrate reserves per dry mass
of root donor plants of the four selected genotypes grown for one season inside in a greenhouse and outside
in the open (n = 10)

Growing condition Genotype Shoot height (cm) Root dry mass (g) Root carbohydrate reserves (% dm)

IN 1006 154 ± 24.8A 35 ± 5.5ABC 28 ± 6.8BC

IN 1042 104 ± 9.6C 18 ± 6.6D 25 ± 4.2CD

IN 3118 162 ± 14.3A 24 ± 7.2CD 21 ± 3.5D

IN 3149 159 ± 18.7A 45 ± 12.3A 32 ± 5.9BC

OUT 1006 126 ± 29.7BC 46 ± 15.7A 32 ± 4.8ABC

OUT 1042 122 ± 26.8BC 28 ± 9.5BCD 29 ± 2.4BC

OUT 3118 134 ± 7.1AB 39 ± 6.4AB 32 ± 2.9AB

OUT 3149 114 ± 11.4BC 47 ± 7.5A 38 ± 3.6A

Different letters indicate significant differences among means (a\ 0.05)
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where each block contained 10 root cuttings (subsamples) each from the four genotypes,

that had been grown either inside or outside (growing condition). In both experiments the

donor plants consisted of the four genotypes (1006, 1042, 3118 and 3149), and the two

growing conditions (inside and outside). Each donor plant was only used once. Since clonal

differences were not within the scope of this study, and there were few interactions among

the clones and the treatments, data were not analyzed for a clonal effect; however, the

clonal variation was included in the analysis as part of the random effect. Depending on the

particular experiment, another fixed treatment variable was added (see experiments below).

Blocks were re-randomized every five days in the growth chamber to minimized potential

spatial differences in growth chamber conditions. Differences among the blocks were

tested, and no significant differences between blocks were found, and were left out of the

linear model as a result. The treatment effects on rootling establishment success and

growth were analyzed using the mixed model procedure in SAS (Ver. 8.1 SAS Cary, NC),

using a complete randomized block design. The linear model for the time in storage

experiment was Yijk = l ? Gi ? Sj ? GSij ? eijk, where Yijk is the response variable, l
is the overall average, Gi is the effect of the ith level of growing condition, Sj is the effect

of the jth level of time in storage, GSij is the interaction between growing condition and

time in storage and eijk is the random error in the experimental design, which included the

effect of clone, which was not analyzed separately as a factor. The linear model for the

phenological period experiment is Yijk = l ? Gi ? Pj ? GPij ? eijk, where Yijk is the

response variable, l is the overall average, Gi is the effect of the ith level of growing

condition, Pj is the effect of the jth level of phenological period, GPij is the interaction

between growing condition and phenological period and eijk is the random error in the

experimental design, which also included the affect of clone. All data met the statistical

assumptions of normality and homogeneity of variance. Statistical significance was

assessed using a = 0.05. To compare collection times T-tests were performed and the

experiment-wise error was adjusted for the number of comparisons.

Donor plant storage time

The effect of storage time on establishment success of root cutting was tested on root donor

plants that had been cold stored for 0, 30, 90, 120, 150 or 180 days starting in December

2006. At each storage time nine donor plants from each of the four genotypes that had been

grown either inside or outside were removed from cold storage (total of 72 donor plants per

collection). Ten root cuttings (subsamples) were taken from each donor plant and planted

into one of nine styroblocks (replicates). As a result each styroblock contained a total of 80

root cuttings.

Donor plant phenology

To test the effect of some distinct phenological periods during the dormant and growing

season of root donor plants on root cutting establishment success, six different stages of

root donor plant conditions were identified. Three stages during cold storage: (1) imme-

diately prior to cold storage (December 5, 2006); (2) after 75 days of storage (February 18,

2007); and (3) after 150 days of storage (May 4, 2007). After 150 days in storage all

remaining root donor plants were moved outside, divided into three groups and allowed to

grow to one of three stages: (4) leaf flush and shoot extension (June 5, 2007); (5) when leaf

senescence initiated (September, 2007); and (6) fully dormant (immediately prior to
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freezing) (November, 2007). For each stage, ten root cuttings (subsamples) were collected

from nine donor plants of each genotype that were grown either inside or outside, and were

planted into one of nine styroblocks each (replicate).

Results

Genotype differences among root donor plants

Genotype 1042 had half the average root mass and notably less height than the other

three genotypes as a result of the later start (Table 1); however, the rootlings of this

genotype responded to the treatments in similar patterns as the other genotypes, thus all

four clones were used in the experiments and subsequent analyses. Overall, outside-

grown donor plants were shorter (P \ 0.001), had more root mass (P = 0.001) and total

root carbohydrate reserves (P \ 0.001) than donor plants that were grown inside a

greenhouse.

Donor plant storage time

Length of cold storage of donor roots affected the rootling establishment success

(P \ 0.001), their average shoot height (P \ 0.001), and the average number of roots

produced from each root cutting (P \ 0.001). On average, rootlings from inside-grown

donor plants had lower establishment success (82%) than those from outside-grown

plants (87%) (P \ 0.001). This was especially true for rootlings from inside-grown donor

plants stored for 90–150 days, thus resulting in a significant interaction between the

storage time and the growing condition of donor plants (P = 0.01) (Fig. 1a). Rootling

success of inside-grown donor plants was highest (above 85%) when donor plants were

not stored, or stored for only 30 days. Rootling establishment success was the lowest

(65%) when donor root systems had been stored for 120 days; however, establishment

success increased again after storage of 150 and 180 days. Shoot height was greater in

rootlings produced from outside-grown donor plants compared with inside-grown donor

plants. Shoots were tallest when outside donor plants were not stored (4.43 cm), and

showed a linear decline in height with duration of storage, up to 120 days (Fig. 1b).

After 150 days in storage, shoot height growth recovered somewhat but was still lower

than the height growth after 0 days of storage. The number of roots produced on roo-

tlings from outside-grown donor plants was always higher than on rootlings produced

from inside-grown donor plants (P \ 0.001). The average number of roots produced

from rootlings from outside-grown donor plants was greatest after 30 days in storage (4.0

roots), then decreased to 2.6 roots by day 90. After 90 days, root numbers increased

slightly to 3.4 roots by 150 and 180 days (Fig. 1c).

Outside-grown donor plants had consistently higher total non-structural carbohydrates

(TNC), soluble sugars, and starch concentrations than inside-grown plants (all P \ 0.001)

(Fig. 2a). The duration of cold storage affected TNC, soluble sugars, and starch in the roots

of donor plants (all P \ 0.001); however, there was no clear decline in TNC with storage

time. Changes in TNC levels were accompanied by variations in soluble sugar and starch

concentrations within the roots of donor plants at each time. Percent sugar stayed close to

25% when donor plants were stored for 90 days or less, then dropped below 20% when

stored for more than 120 days (Fig. 2b). Percent starch decreased after 30 days in storage,
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then increased gradually as time in storage increased, resulting in approximately a 45%

increase after 180 days of storage (Fig. 2c).

Rootling growth rate was positively correlated with the diameter of root segments, but

rootling establishment success was not related to root diameter. Root segments with larger

diameters (across all four genotypes) produced rootlings with taller shoots over the 31 day

growing period (R2 = 0.269, P \ 0.001; Fig. 3); however, there was no influence of root

diameter on the number of roots produced (R2 = 0.004; P = 0.09), or on the overall

establishment success of rootlings (R2 \ 0.001, P = 0.978).
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Donor plant phenology

The phenological period of donor plants affected rootling establishment success

(P \ 0.001), average shoot height (P \ 0.001) and the average number of roots produced

on a cutting (P \ 0.001) (Fig. 4). Over the whole experiment, rootling establishment

success from inside- and outside-grown donor plants were similar, but there were some

differences over time; outside-grown plants initially had greater establishment success than

inside-grown donor plants (Fig. 4a). Rootling establishment was greater than 80% when

cuttings used to produce rootlings were collected on the three dates that occurred while the
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donor plants were dormant (December 5, February 18, and May 4). Whereas establishment

success fell sharply to 18% when root segments were collected when donor plants were in

leaf flush and early shoot extension (June 5). However, establishment increased again when

cuttings were collected in late summer when donor plants senesced (September 4), and

when the donor plants once again became dormant in the fall of 2007 (November 19).

Rootling establishment success on September 4 and November 19 was lower than at the

December 5th collection the previous year, which was at the initiation of this experiment.

Initially, rootlings grown from outside-grown donor plants had greater shoot height than

those from inside-grown plants; however, these differences disappeared during the growing

season (Fig. 4b). It is noteworthy, that the height growth of rootlings from senesced donor

plants collected on September 4 was as low as those during leaf flush (June 5), while

cuttings collected from fully dormant donor plants in November 19 were similar to those

cuttings collected during the previous dormancy cycle (February 18 and May 4). Root

cuttings grown from outside-grown donor plants initially produced more roots than inside-

grown donor plants, but as time went on these differences became negligible (Fig. 4c). In

addition, shoot height and number of roots decreased steadily when root segments were

harvested between December and the beginning of May, and were lowest when donor

plants were flushing (June 5th).

Total TNC levels in the donor roots were affected by the different phenological periods

of the donor plant (P \ 0.001) (Fig. 5a). Prior to the experiment outside-grown donor

plants had higher root and stem TNC concentrations than inside-grown donor plants;

however only root data are presented here. Throughout the three collection times during

the dormant period prior to bud flush/shoot extension, TNC levels in roots were between 26

and 33%; however, during leaf flush and shoot extension (June 5), root TNC levels dropped

dramatically to between 10 and 14%. By late summer, during senescence (September 4)

and when the donor plants were once again fully dormant (November 19, 2007), root TNC

had recovered to levels similar to those measured in the initial dormant period (Fall 2006)

(Fig. 5a). Soluble sugar concentration in roots dropped throughout the dormant periods,

and was lowest (10%) during the early growing season. Soluble sugar concentration in

roots collected in September and November 2007 had recovered to 22%, i.e., levels similar

to the first collection in December 2006 (Fig. 5b). Changes in root TNC levels appear

mostly driven by seasonal changes in starch concentrations. During the dormant period,

root starch concentrations increased from 8% in December to about 10% in early May.
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During leaf flush (June 5) the starch concentration decreased significantly to 2% (Fig. 5c).

Root starch concentration had a prominent peak (25% of dry mass) in September 2007;

although, by November 2007 root starch concentrations had decreased to levels similar to

those measured in the previous dormant season (Fig. 5c).

Discussion

Overall, root carbohydrate reserves appear to be a poor indicator of the initiation of buds

and thus, the success of rootling propagation in aspen. Although factors such as growing
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conditions of donor plants (inside and outside), and phenological period clearly affected

root carbohydrate reserves, there was no consistent relationship between the root carbo-

hydrate reserves and subsequent establishment success of rootlings. Only in the donor-

plant phenology experiment was there an indication of such a relationship, where the

lowest level of establishment success was found from donor plants harvested in spring at

the time of leaf flush (Fig. 4), and very low carbohydrate reserves (Fig. 5). However, the

fact that at the September sampling period the TNC concentration was the highest

recorded, but establishment success was only moderate does not lend much support to idea

that carbohydrate levels are the primary controlling factor for establishment success.

0

5

10

15

20

25

30

35

40

45

Inside
Outside

Collection Date
Dec 5 Feb 18 May4Jun 5 Sept 4 Nov 19

0

5

10

15

20

25

30

0

5

10

15

20

25

T
N

C
 (

%
 d

ry
 m

as
s)

S
ug

ar
 (

%
 d

ry
 m

as
s)

S
ta

rc
h 

(%
 d

ry
 m

as
s)

A

B

C

B

B

B

C

A

B

A

A B

C C

A

B
B

B

C

A

B

Fig. 5 Total non-structural
carbohydrates (a), sugar (b), and
starch in roots of inside- and
outside-grown root donor plants
(c) at different phenological
periods. Horizontal black bar
indicates dormant periods.
Symbols with different letters are
significantly different at a = 0.05
for storage time only (uses the
mean for inside and outside for
each date). Error bars represent
the standard error of the mean
(n = 9)

New Forests (2010) 39:169–182 179

123



Shoot height growth, however, was well linked to carbohydrate reserves. Root donor

plants grown outside had higher root carbohydrate reserves than inside-grown donor plants

(Table 1). This is likely due to the earlier budset occurring under outside conditions, as a

result of fluctuating air and soil temperature, exposure to wind, higher vapor pressure

deficits, and shortening day length. This resulted in a shift in allocation of carbohydrate

reserves away from stem growth, towards storage and root growth (Martens et al. 2007).

The differences between inside- and outside- grown root donor plants were carried through

the cold storage period. While the rootlings produced from roots of outside-grown plants

were taller and had greater numbers of roots than rootlings from inside-grown donor plants,

the rate of establishment success of rootlings was similar except for the period between 120

and 150 days of cold storage (Fig. 1a). It is interesting to note that the difference in

establishment success and growth between inside- and outside-grown donor plants in the

phenology experiment disappeared quickly during the following growing season where all

donor plants were grown outside (Fig. 4a). Coincidentally, the difference in root carbo-

hydrate reserves between the formerly inside- and outside-grown donor plants also dis-

appeared at that time.

We expected a decline in rootling performance with long periods in storage because of

the respiration losses of carbohydrates during storage (Zasada et al. 1994; Landhäusser and

Lieffers 1997), and the fact that root cuttings depend on carbohydrate reserves to establish

the buds and first leaves and roots prior to initiation of photosynthesis (Schier and Zasada

1973). However, the average rootling establishment success for all treatments was above

80% throughout the cold storage experiment, indicating that the length of cold storage and

the growing conditions of the root donor plants were not major factors affecting propa-

gation success. However, the decline in height and root growth of rootlings after 120 days

of storage is somewhat puzzling especially since shoot height and root growth recovered

with the longer storage times of 150 and 180 days. The reasons for this are unlikely to be

directly linked to root carbohydrate reserves, since there was no detectable change in total

nonstructural carbohydrate (TNC) supply with time in storage. Over the course of long-

term storage, there tended to be a gradual reduction in the amount of sugars, offset by a

gain in the amount of starch. As the sugars were high at the beginning of storage and low at

the end of storage, and performance was better at 0–30 and at 150 days of storage, the form

of the carbohydrate reserve (sugar vs. starch) does not appear to be directly associated with

bud initiation and early rootling establishment success; however, subsequent growth

appears to be affected. There are likely other mechanisms affecting rootling establishment

when root donor plants are stored for various lengths of time such as various growth

hormone and possibly nutrient concentrations within the plant (Eliasson 1969, 1971; Schier

and Zasada 1973) or other physiological processes such as dormancy and hardening (Lang

et al. 1987; Lindqvist 2001).

The most critical stage where rootling establishment success was severely limited

(down to 18%) was during the period of leaf and shoot extension early in the summer. This

period coincided with very low root carbohydrate concentrations. However, given that the

establishment success of rootlings was generally not strongly related to root carbohydrate

reserves, as described above, we speculate that due to the extremely low root TNC reserves

(10–15%) at the time of active shoot growth, roots and shoots on the cuttings might have

been initiated but their continued development was impeded (Schier and Zasada 1973).

Plant hormones play a critical role in the initiation of shoots and roots in aspen (Eliasson

1969, 1971; Schier and Zasada 1973; Frey et al. 2003), and likely have a larger effect on

establishment success than root carbohydrate reserves (Wan et al. 2006). Newly expanding

leaves and shoots produce large amounts of auxins (Cline 1991, 1994), which can severely
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suppress the initiation of shoots on aspen roots (Wan et al. 2006). This is especially

important in our donor plants where root to shoot ratios were low (data not shown), likely

resulting in auxins dominating in the root system (Cline 1991). This is also supported by

the observation that the bud initiation and rooting was not linked to the diameter of root

cuttings, while shoot height growth was. This suggests that initiation of stems and roots are

likely related to hormonal signals, while the initial growth rate of the roots and sprouts is

likely related to the carbohydrate reserves in the root segment. Larger root segments have

greater capacity for reserve storage and therefore more energy for increased growth rates,

but they do not necessarily have the correct physiological signal to initiate stems or roots

(Stenvall et al. 2006). The relatively good establishment success of rootlings at the end of

the growing season, coupled with relatively poor height growth of shoots and roots is also

interesting. At that time, TNC reserves were high, but most of the TNC were tied up in the

form of starch; starch reserves were twice as high as sugar reserves at any time during the

phenology experiment. It is possible that the starch was not as easily available for growth

of the rootling as starch needs to be converted to soluble sugars to be readily available for

shoot and root growth (Landhäusser and Lieffers 2003).

In conclusion, donor plants that were grown under outside conditions had higher root

carbohydrate reserves, produced larger and had slightly higher establishment success of

rootlings than donor plants grown and hardened-off in the greenhouse. Second, there was

only a small negative effect due to long periods of cold storage of donor roots on the

establishment success of rootlings. Thus, nursery operators could store donor plants for

long periods and start crops of rootlings at any time during the winter and early spring.

Third, collecting from donor plants near the end of the growing season, produced rootlings

that were smaller and had fewer roots but it did not affect establishment success. Fourth,

while there is evidence that high levels of root carbohydrates are beneficial to the growth of

rootlings, there are other unmeasured factors such as hormone and nutrient levels at the

time of collection that likely contribute to the establishment success of rootlings and

require further investigation.

Acknowledgments We thank Jill Fraser, Jennifer Langhorst, Geoffrey Kershaw, Mike Wagner, Tomasz
Gradowski, Kevin Renkema, Chris Williams and Dominique Deshaies for their help with this study. Pak
Chow for TNC analyses, Jeff Hoyem (Woodmere Nursery) for donor planting stock production and Larry
Lafleur (Smoky Lake Nurseries) for providing cold storage facilities. Financial support is gratefully
acknowledged from Western Boreal Aspen Corporation, Woodmere Forest Nursery, and Forest Resource
Improvement Association of Alberta (FRIAA).

References

Brouard JS, Niemi F, Charleson LR (2005) The effect of root segment origin, size, and orientation in aspen
rootling propagation. In: McKeand SE, Li B (eds) Proceedings 28th Southern forest tree improvement
conference. Raleigh, NC. National Technical Information Service, Springfield, Virginia, USA, pp 80–91
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