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Regeneration of aspen following partial and strip understory 
protection harvest in boreal mixedwood forests
by Alison D. Lennie1, Simon M. Landhäusser1,2, Victor J. Lieffers1 and Derek Sidders3

ABSTRACT
Trembling aspen regeneration was studied in 2 types of partial harvest systems designed to harvest mature aspen but pro-
tect immature spruce and encourage natural aspen regeneration. Two partial harvest systems, where the residual aspen
was either left in strips or was dispersed uniformly, were compared to traditional clearcuts. After the first and second year
since harvest, aspen sucker density and growth was similar between the 2 partial harvests, but was much lower than in
the clearcuts. However, in the partial cuts the regeneration density was very much dependent on the location relative to
residual trees. The density of regeneration was inversely related to the basal area of residual aspen; however, sucker height
was inversely related to the basal area of the residual spruce. Although there were adequate numbers of suckers after 
partial harvest, their viability and contribution to the long-term productivity of these mixedwood stands is not clear. 

Key words: silvicultural systems, forest management, residual canopy, white spruce, Populus tremuloides, Picea glauca,
traffic 

RÉSUMÉ
La régénération du peuplier faux-tremble a été étudiée dans le cas de deux modes de coupe partielle conçus pour récolter
les trembles à maturité mais pour protéger les épinettes en croissance et favoriser la régénération naturelle du tremble.
Deux modes de coupe partielle, où les trembles résiduels ont été retenus dans des bandes ou dispersés uniformément, ont
été comparés à des coupes à blanc traditionnelles. Cependant, dans les coupes partielles, la densité de la régénération a été
très dépendante de localisation relative aux arbres résiduels. Même si le nombre de drageons est adéquat après une coupe
partielle, leur viabilité et leur contribution à long terme à la productivité de ces peuplements mélangés n’est pas évidente.  

Mots clés : régimes sylvicoles, aménagement forestier, couvert résiduel, épinette blanche, Populus tremuloides, Picea
glauca, trafic 
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Introduction
A large portion of Canada’s boreal forest is dominated by
mixed-species stands of trembling aspen (Populus tremuloides
Michx.) and white spruce (Picea glauca (Moench) Voss). Fol-
lowing disturbance, these mixedwood forests rapidly rede-
velop an overstory of aspen while the slower-growing and
longer-lived white spruce establishes under the aspen (Peter-
son and Peterson 1992, Lieffers et al. 1996b, Brais et al. 2004).

At about 60 years, the aspen is mature and ready for harvest.
At this time, however, the spruce is still in the understory and
unmerchantable (Lieffers et al 1996a). Brace and Bella (1988)
developed a 2-pass “understory protection” system to harvest
the mature aspen while leaving the understory spruce to grow
for another 40 to 60 years. Generally, these protection systems
left some residual mature aspen trees on these sites to mini-
mize windthrow of the understory spruce (Navratil et al. 1994).
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After logging mature aspen, a site is never fully stocked
with spruce because all trees are removed from the machine
corridors to allow logging equipment access into the stand,
and secondly, there are areas in the stands that have low den-
sities or no spruce due to the spatial variability of natural
regeneration of white spruce. For this reason, it is desirable to
have aspen regeneration fill in these understocked spaces fol-
lowing understory protection harvesting in mixedwood
stands. Aspen regeneration, however, may not grow well in
these understory protection sites since aspen is a shade-intol-
erant species and it is generally understood that optimal
regeneration is achieved by clearcutting (Navratil 1991). In
addition, there is a growing body of evidence that density of
aspen regeneration is suppressed by low densities of residual
aspen trees (Schier et al. 1985, Huffman et al. 1999, Palik et al.
2003, Man et al. 2008). However, this study of aspen regener-
ation following understory protection offers some differences
to these previous studies on aspen regeneration following par-
tial-cut logging. The very regular pattern of machine corridors
interspersed with protected areas offers an opportunity to
study aspen regeneration in regards to the spatial arrangement
of residual trees. As ramets of aspen clones can remain con-
nected throughout the life of the clone (DesRochers and Lief-
fers 2001) root systems of cut stumps can have suckering sup-
pressed by the auxins produced by the residual living trees. 
We propose that this suppression will be stronger if the resid-
ual aspen trees are evenly dispersed than when residual trees
are concentrated in strips far away from the cut stems of aspen.

Finally, the layout of this experiment also allowed us to
determine the influence of traffic on the regeneration of
aspen on the machine corridors as distal parts of the corridors
(away from the landing) had only a small fraction of the
machine traffic relative to areas closer to the landings.
Machine traffic is known to influence suckering (Bates et al.
1993, Zenner et al. 2007, Mundell et al. 2008), especially if
logging is done in summer months.

In this study we examined the natural regeneration and
growth of aspen root suckers as a result of 2 different patterns
of understory protection harvesting; one retained the residual
aspen in concentrated buffers while the other had the residual
aspen evenly dispersed. These 2 cutting patterns were selected

as promising options from a range of cutting patterns tested
for protection of understory spruce from windthrow
(MacIsaac et al. 1999). Aspen regeneration density and
growth were compared between these 2 harvesting systems
and compared to clearcut systems at the stand scale. We also
assessed the aspen regeneration at the microsite scale, i.e.,
machine corridors, different distances from residual aspen,
and zones of high and low amounts of machine traffic.

Materials and Methods
Site description
The study was conducted in 5 areas across the Boreal Mixed-
wood natural sub-region of Alberta: WNW High Level,
WSW of High Level, Grande Prairie, Wandering River and
Conklin, Alberta, Canada. At each area, 2 stands (20 to 50
hectares in size) of trembling aspen-dominated forest with an
understory of white spruce were selected. All stands were
aspen-dominated mixedwoods with understories of blue-
berry (Vaccinium myrtilloides), green alder (Alnus crispa),
Canada buffalo-berry (Shepherdia canadensis) and prickly
rose (Rosa acicularis) (Beckingham and Archibald 1996). The
aspen was about 24 m tall, had an average of 24 cm diameter
at breast height, and a basal area of about 29 m2·ha-1.

Stands were harvested in the winter of 2005/2006. During
that winter, there was little snow accumulation (<20 cm; Envi-
ronment Canada n.d.), resulting in frozen soils in all areas
harvested. Each of the ten stands was divided into 4 cutting
treatments (5 ha to 10 ha each): clearcut (CC), an uncut con-
trol, and 2 types of understory-protection harvests, a concen-
trated wind buffer (CWB) and a distributed wind buffer
(DWB) (Fig. 1 and Fig. 2). Full-tree harvesting was conducted
using tracked feller-bunchers. Trees were selected for harvest
based on residual tree distribution, rather than size. All har-
vested trees were bunched on the machine corridors and
moved by grapple skidders equipped with tire chains to land-
ings outside the harvest area.

In these treatments, equipment used for harvesting and
skidding was restricted to the machine corridors and land-
ings. Machine corridors were oriented north–south, perpen-
dicular to prevailing winds from the west. Machine corridors
ranged in length from 100 m to 250 m, and were restricted to

Fig. 1. Layout of the concentrated wind buffer (CWB) harvest treatment. The harvest treatment consisted of alternating 13-m-wide
spruce retention strips and 18-m-wide spruce retention strips with a central 5-m-wide canopy retention strip; retention strips were
separated by 5-m-wide machine corridors. Transects to measure regeneration consisted of 8 microsite locations (A–H) perpendicular
to the harvesting pattern. 
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5 m in width. Throughout harvesting, efforts were made to
protect understory white spruce adjacent to the machine cor-
ridors; the reach of the feller buncher was 6.5 m from the cor-
ridor edge.

After cutting, the CWB treatment had alternating 13-m-
and 18-m-wide strips of understory spruce, separated by 5-
m-wide machine corridors (Fig. 1). In the 13-m-wide reten-
tion strip, all of the overstory aspen was removed, but in the
18-m-wide retention strip there was a 5-m-wide central strip
of uncut aspen.

In the DWB treatment 13-m-wide retention strips alter-
nated with 5-m-wide machine corridors (Fig. 2). Here
retained mature canopy trees were uniformly dispersed over
this 13-m-wide strip. Belt-transects (description see below)
indicated that the CWB retained 23% of the canopy aspen
and the DWB 30%.

In the clearcut treatment (CC) all canopy and understory
trees were harvested and removed using conventional
clearcut techniques with random skidding. Only 8 of the 10
stands had a clearcut treatment and 2 clearcut sites were
removed from the study after the first growing season because
these sites were mistakenly site prepared and planted to
spruce.

Measurements
Stand assessments were conducted in the summer/fall of
2005, prior to harvesting and again in 2006 after the harvest
was completed (Keddy and Sidders 2007). Five-metre-wide
belt transects were run across the stands in an east–west
direction, perpendicular to the machine corridors. Transects
were divided into 20-m lengths (100 m2), and all trees within
were surveyed for density, basal area, canopy position, and
diameter at breast height. Both the CWB and DWB had a
similar average density and basal area of understory spruce.
The CWB had 4.7 m2·ha-1 or 375 stems per ha retained while
the DWB had 5.3 m2·ha-1 or 374 stems per ha of understory
spruce retained for release. The understory spruce ranged
from about 5 m to 12 m in height.

In August 2006, aspen sucker density was tallied in 10-m2

circular plots positioned on the same 5-m-wide belt transects
as described above. In the CWB treatment, 3 transects (each

41 m long) containing 8 microsite positions were established
on each site, perpendicular to the machine corridors and
retention strips and aspen regeneration was sampled. In the
DWB, 6 transects (18 m long) were established at each site
with 4 different microsite positions. Plots were placed on var-
ious microsite positions in the CWB and DWB harvests 
(Fig. 1 and Fig. 2). In the CWB microsite plots were located
on positions: (A) machine corridor; (B) near edge of 13-m-
wide retention strip; (C) centre of 13-m-wide retention strip;
(D) far edge of 13-m-wide retention strip; (E) second
machine corridor; (F) near edge of 18-m-wide retention strip;
(G) centre of 18 m-wide-retention strip (under 5-m-wide
100% forest retention); and (H) far edge of 18-m-wide reten-
tion strip (Fig. 1). In the DWB microsite plots were located
on: (A) mid-machine corridor; (B) near edge of 13-m-wide
retention strip; (C) centre of 13-m-wide retention strip; and
(D) far edge of retention strip (Fig. 2). In clearcuts, aspen
regeneration was assessed using transects (36 m) with 6
evenly spaced regeneration plots at each site.

Each circular regeneration plot was divided into quarters
to tally aspen suckers and measure the height of the tallest
sucker. In August of 2007, the regeneration was re-measured
to include suckers initiated in both 2006 and 2007 and the
tallest sucker was measured in each quarter of the plot.

Soil temperature was also assessed in the different
microsite positions within each of the 2 harvest treatments,
clearcut, and in the unharvested control stands. The CWB
had data loggers deployed in positions C, E, F, and G; the
DWB in positions A and C. Both the clearcut and unhar-
vested control had a single data logger deployed under repre-
sentative conditions for each harvest treatment. In total, there
were 6 replicates of temperature transects in the CWB, DWB
and unharvested control and 3 replicates in clearcuts. Tem-
perature sensors (HOBO 8, Onset Computer Corporation,
Bourne, MA) were vacuum-packed and positioned at a soil
depth of 12 cm from the top of the LFH layer, to collect grow-
ing-season soil temperatures. Hourly data were recorded for
the duration of the growing season (June 8 to September 15,
2006) and mean-daily soil temperature and growing degree
day (GDD) values above 8°C were calculated for the growing
season in each of the replicates.

Fig. 2. Layout of the distributed wind buffer (DWB) harvest treatment. Harvest treatment design consisted of 13-m-wide spruce reten-
tion strips, separated by 5-m-wide machine corridors. Regeneration was measured along transects consisting of 4 microsite locations
(A–D) perpendicular to the harvesting pattern. 
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To assess the impact of traffic on the machine corridors,
aspen regeneration was measured at 3 positions along
machine corridors of the CWB treatment on all 10 sites. 
Measurements were taken at the distal end of the machine
corridor (0 to 6 passes with the skidder), in the middle 
(8 to 20 skidder passes) and near the logging deck (more than
20 skidder passes). Pairs of 10-m2 regeneration plots were
surveyed at each position. Three root pits (40 3 40 3 12 cm
deep) were dug at each position perpendicular to the corridor
and root damage was assessed on the aspen roots that were
between 0.5 cm and 2 cm in diameter; damage was catego-
rized as scuffing – only the bark and phloem damaged, 
crushing – bark, phloem, and xylem damaged, and breakage
– roots totally severed and expressed as number of wounds
per length of root.

Data analysis
The 5 main site locations were considered to be experimental
blocks, each of which contained 2 replicates of the harvest
treatments (randomized complete block design with replica-
tion). Transects within each site and treatment were treated as
subsamples and averaged for each site and treatment combi-
nation. The data for stem density were transformed with nat-
ural logarithms to meet assumptions of normality and
homoscedasticity for ANOVA. To test for differences in
microsites on aspen regeneration, microsites in both the
DWB and CWB datasets were analysed separately.

All above data were analysed using Mixed Models in SAS
(SAS Institute, Cary, NC). The Tukey-Kramer test at a signif-
icance level of a = 0.05 was used for all post-hoc comparisons
among treatment means. We also examined the relationships
between density and height of sucker regeneration with the
basal area of post-harvest deciduous or coniferous trees. This
was done by linking the data collected from the circular
regeneration plots, averaged across all sample points, to the
data from the belt transects that were collected pre- and post-
harvest in the same cutting unit. Aspen regeneration density
and height was regressed against the post-harvest variables
for 2006 and 2007, using simple and multiple regression tech-
niques; however, no multiple regression calculations
approached significant values and as a result data were
analysed using simple regression analyses.

Results
Impact of harvest design on aspen regeneration
In the first summer after harvest, aspen sucker density was
twice as high in the clearcuts (74026 stems per hectare [sph]),
compared to the concentrated wind buffer (CWB) with 
38 535 sph and the distributed wind buffer (DWB) with 
30 750 sph (p < 0.001) (Fig. 3A). Overall, sucker densities
were not different between the 2 partial harvest types. After
the second growing season sucker numbers in the clearcut
treatment were still higher with an average of 50 513 sph
compared to 35 033 and 30 250 sph for the CWB and DWB
treatment, respectively (p = 0.005).

In the first summer, suckers in the clearcut were also taller
(97 cm) than those in the CWB (77 cm) and DWB (70 cm) 
(p = 0.001) (Fig. 3B). Similarly, in the second summer, 
suckers in the clearcut were tallest (156 cm) but only signifi-
cantly so between the clearcut and the DWB with 125 cm 
(p = 0.033) (Fig. 3B).

The accumulation of soil temperature growing degree
days (GDD, above 8°C) was influenced by harvest treatment
(p = 0.04) (Fig 3C); GDD was highest in clearcuts (449), fol-
lowed by DWB (404) and CWB (376) and was lowest in the
unharvested control (310).

Impact of microsite position on aspen regeneration 
After the first growing season, sucker densities in the CWB
were highest on the machine corridors (positions A and E; 
61 600 sph) (Fig. 4A) compared to all other positions 
(p < 0.001). The lowest aspen sucker densities were found
under the strips of residual aspen (position G; 18 150 sph)
and on the positions next to the residual strips (position F and
H; 30 299 sph). Positions with only residual spruce (B, C, and
D) had intermediate sucker densities of 35 444 sph. Similar

Fig. 3. Aspen sucker density (A), sucker height (B) in 2006 and
2007, and soil temperature growing degree days (GDD) over
8°C (C) in 2006, in response to harvest pattern: clearcut (CC),
concentrated wind buffer (CWB), distributed wind buffer (DWB)
harvest and control. Data from 2006 and 2007 were analyzed
separately and bars with different letters were significantly differ-
ent at a = 0.05. Error bars represent the standard error of the
mean, n = 10 for CWB and DWB, n = 8 for CC in 2006 and n =
6 for CC in 2007 for aspen density and height and n = 6 for
CWB, DWB and Control and n = 3 for CC for GDD.
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trends in aspen sucker densities in relation to position were
also found for the second growing season (p = 0.05), but as a
result of the mortality between the first and second growing
season, especially on the machine corridors, these between-
position differences were smaller (Fig 4A).

In the first growing season (2006), microsite position
affected the height of suckers in the CWB (p < 0.001). How-
ever, the only significant difference in height was between
suckers establishing under the retained strip of aspen (posi-
tion G) (62 cm) and suckers found on machine corridors
(positions E and A) and at the edge of the 13-m-wide spruce
retention strip (position B) furthest away from the aspen
retention strip; at this distal position height was 84 cm (Fig.
4B). After the second growing season (2007), these differ-
ences became more pronounced, where the average height of
suckers under the residual aspen strip (101 cm) were shorter
than suckers growing in all other microsite positions (140 cm
across all positions; p < 0.001; Fig 4B).

Soil temperature GDD were influenced by microsite loca-
tion in the CWB (p = 0.016). The highest soil temperature
GDD were found on the machine corridor (position E) with
437 GDD while the lowest was found in the middle of the
retention strips (position G) with 330 GDD (Fig. 4C).

After the first growing season, sucker densities in the
DWB harvest treatment were highest on the machine corri-
dors (position A) with 47 117 sph compared to the 3 other
positions on the retention strips, with an average of 25 294
sph (p < 0.001; Fig 5A). After the second growing season, the
machine corridor position had still higher density of suckers
(38 833 sph) but the difference was now significant only
between the machine corridor and the centre of the 13-m-
wide retention strip with 26 516 sph (position C; p = 0.032).

Fig. 4. Average (±SE) of aspen sucker density (A); sucker height
(B) (both 2006 and 2007 measurements [n = 10]); and soil
temperature growing degree days (GDD) over 8°C in 2006 (n =
6) (C) for selected microsite positions in the concentrated wind
buffer (CWB) treatment. Clearcut harvest and uncut control (only
for GDD) averages are shown for comparison. Years were
analysed separately and bars with different letters are signifi-
cantly different at a = 0.05 for each treatment.

Fig. 5. Average (±SE) of aspen sucker density (A); sucker height
(B) (both 2006 and 2007 measurements; n = 10); and soil tem-
perature growing degree days (GDD) over 8°C (only 2006; n =
6) (C) for selected microsite positions in the concentrated wind
buffer (CWB) treatment. Clearcut harvest and control (only GDD)
treatment averages are shown for comparison. Years were ana-
lyzed separately and bars with different letters are significantly
different at a = 0.05 for each treatment. 
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In 2006, suckers on the machine corridors were taller (81
cm) than suckers on the other 3 transect positions (p < 0.001).
Suckers on the retention strip edge (positions B and D) were
69 cm tall, whereas suckers in the mid position (C) were 63
cm tall (Fig 5B). After the second growing season, the suckers
on the machine corridors were still tallest (134 cm), but were
only significantly taller than those in the middle of the reten-
tion strip (p = 0.029; Fig. 5B).

In 2006, soil growing degree days above 8°C (GDD) on the
machine corridors (position A) were 458 GDD compared to
368 GDD in the centre of the 13-m-wide retention strip (posi-
tion C; p = 0.019; Fig. 5C).

Impact of post-harvest stand composition
on sucker regeneration 
The residual post-harvest deciduous
overstory had a strong negative impact
on sucker density in year 1 (R2 = 0.54; p
< 0.001) and year 2 (R2 = 0.37; p = 0.001)
while post-harvest conifer basal area did
not. Sucker density decreased with
increasing basal area of retained decidu-
ous trees (Fig. 6). On the other hand,
aspen sucker height was only affected by
post-harvest conifer basal area. Aspen
height decreased with increasing basal
area of the post-harvest-protected
conifers after the first (R2 = 0.41; p <
0.001) and second growing season (R2 =
0.22; p = 0.017; Fig. 7).

Impact of traffic on root wounding and
aspen regeneration
In this study there was no difference in
the amount of aspen-root wounding on
the machine corridors as a result of
increased traffic, but overall there were
more (p = 0.004) and larger wounds (p =
0.043) in roots on machine corridors
than in roots of the untrafficked control
areas. Sucker regeneration density (p =
0.107) and sucker height (p = 0.290),
after the second growing season, were
not different in relation to the amount of
traffic along the machine corridor.

Discussion
There was little difference in the density
of aspen regeneration between the dis-
tributed and the concentrated wind
buffer treatments (DWB and CWB; Fig.
3). Therefore, the configuration of the
residual aspen in the 2 partial cut regimes
did not significantly affect the overall
performance of aspen suckers at the
larger scale of this study. Since the resid-
ual trees in the DWB treatment were
spread uniformly over the treatment
area, we had expected that soil tempera-
tures and suckering in these areas would
be the lowest because of the closer prox-
imity to residual trees providing
increased shade and hormonal suppres-

sion of suckering (Steneker 1974, Frey et al. 2003). The rea-
sons for similar regeneration densities are not clear, small
clone sizes and/or uniform shading from the relative tall (5 m
to 12 m) protected understory spruce could have similarly
affected the aspen regeneration density at the stand scale for
both treatments. The slightly lower sucker numbers in the
DWB were likely more related to the slightly higher levels of
canopy retention in this treatment (30% retention in the
DWB vs. 23% in the CWB). A similar response was also
observed for height growth of the suckers in the first 2 years.

It appears that residual spruce had a greater effect on
sucker height growth (Fig. 7) and sucker density was more

Fig. 6. Relationship between aspen sucker density after the second growing season and
basal area of residual deciduous trees post harvest at the stand level and across all
treatments (y = -1622.35 x + 49359; R2 = 0.37; n = 27). 

Fig. 7. Height of dominant aspen suckers after the second growing season since harvest,
in relation to residual coniferous basal area (y = -3.17 x + 149.6; R2 = 0.23; n = 27). 
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affected by the amount of residual aspen (Fig. 6). The overall
suppression of suckering by a residual canopy of aspen and
retained basal area of understory spruce supports the findings
that aspen regeneration is best after clearcutting and is sup-
pressed by leaving residuals on the site (Huffman et al. 1999,
Palik et al. 2003, Brais et al. 2004, Man et al. 2008).

There were, however, significant differences in aspen regen-
eration at the various microsite positions within each treat-
ment. Machine corridors always produced the highest sucker
densities and tallest suckers while positions under the strip of
retained aspen produced the lowest densities and shortest suck-
ers. It is likely that at that scale, proximity to residual trees
(aspen and understory spruce) suppressed aspen sucker regen-
eration and growth through apical dominance (Steneker 1974),
shading (Huffman et al. 1999, Brais et al. 2004), reduced soil
temperature as measured in GDD (Fraser et al. 2002, Brais et al
2004, Landhäusser et al. 2006) and increased competition for
other resources (Canham et al. 2004) influenced sucker regen-
eration and growth (Frey et al 2003).

The fact that the aspen regeneration density and height on
the machine corridors was not affected by the number of
skidder passes likely relates to the frozen soils at the time of
logging. There likely had been deep frost penetration into the
ground at the time of logging because of the small amount of
snow in early winter; thus the weight of the logging machines
was supported by frozen soil, resulting in only moderate
damage to the roots. While moderate damage can promote
sucker regeneration (Fraser et al. 2004), heavy machine traf-
fic on unfrozen soil could have had detrimental effects on
suckering and sucker performance (Zenner et al. 2007,
Mundell et al. 2008).

Although there were relatively high numbers of suckers
across most microsites and harvest treatments 2 growing sea-
sons after harvest, it is not clear which of these suckers will be
viable and contribute to the long-term productivity of these
stands. The fact that the suckers in the areas with spruce and
aspen retention had slower growth rates than on the corridors
and clearcut sites, suggests that there could be problems with
performance of these aspen saplings and trees as time goes on.
Messier et al. (1999) suggested that shade-intolerant tree
species establishing in a light-limited environment may estab-
lish and grow reasonably well for a few years but if their
growth rates drop below a critical level, they are likely to die.
In addition, these weakened aspen saplings are more likely to
be attacked by insects or diseases than open-grown aspen,
which could further increase the mortality rates (Houston
1992, Mallett 1992). The competition from the already 5-m- to
12 m-tall residual conifers will also increase over time as the
conifers grow in size and leaf area density. We speculate that in
areas of the stands where the density of understory spruce is
high most of the aspen regeneration will die, while in open
areas with very few understory spruce the aspen will be more
successful—filling in the empty spaces. However, longer-term
studies are needed to assess the fate of the aspen regeneration
in understory spruce protection systems over time.
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