Formal [4+2] cycloaddition of cyclobutanones bearing alkyne-cobalt complex at their 3-positions

著者	Kawano Mizuki, Kiuchi Takaaki, Matsuo Jun-ichi, Ishibashi Hiroyuki
journal or	Tetrahedron Letters
publication title	
volume	53
number	4
page range	432-434
year	2012-01-25
URL	http://hdl.handle.net/2297/29752

doi: 10.1016/j.tetlet.2011.11.067

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Formal [4+2] cycloaddition of
cyclobutanones bearing alkyne-cobalt
complex at their 3-positionsLeave this area blank for abstract info.Mizuki Kawano, Takaaki Kiuchi, Jun-ichi Matsuo*, Hiroyuki Ishibashi $0 \leftarrow Ph \quad SnCl_4 \leftarrow CO_3 \leftarrow CO_3$

Tetrahedron Letters journal homepage: www.elsevier.com

Formal [4+2] cylcoaddition of cyclobutanones bearing alkyne-cobalt complex at their 3-positions

Mizuki Kawano, Takaaki Kiuchi, Jun-ichi Matsuo^{*} and Hiroyuki Ishibashi

School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

ARTICLE INFO

Received in revised form

Article history: Received

Available online Keywords: [4+2] Cycloaddition Alkyne-cobalt complex Cyclobutanone Lewis acid

Accepted

ABSTRACT

Cyclobutanones bearing an alkyne-cobalt complex at their 3-positions reacted with aldehydes to give formal [4+2] cycloadducts by using tin(IV) chloride as a Lewis acid. Highly substituted tetrahydropyrone derivatives were stereoselectively prepared by this method.

2009 Elsevier Ltd. All rights reserved.

Tetrahydropyrone Cyclobutanones are important synthetic intermediates in organic synthesis.¹ We have recently reported that zwitterionic intermediate 2, which was generated by Lewis acid-catalyzed ring cleavage of 3-ethoxycyclobutanone 1, reacted with various aldehydes,^{2a} allylsilanes,^{2b} silyl enol ethers^{2c} and imines^{2d} to afford the corresponding formal [4+2] cycloadducts (eq 1). We have also reported diastereoselective asymmetric [4+2] cycloaddition by using 3-alkoxycyclobutanone bearing L-ethyl lactate as a chiral auxiliary.³ The generation of zwitterionic intermediate 2 was promoted by the alkoxy group at the 3position of **1**. It was then thought that an alkyne-cobalt complex at the 3-position of cyclobutanone 4 would also promote generation of zwitterionic intermediate 5 since an alkyne-cobalt complex stabilizes the α -cation (eq 2).⁴ We report herein formal [4+2] cycloaddition of cyclobutanones bearing an alkyne-cobalt complex at their 3-positions to afford tetrahydropyrones.

Scheme 1. Preparation of Cyclobutanone 11a-c

Cyclobutanones **11a–c** were prepared from amides **7a–c** by seven steps (Scheme 1). 3-Benzyloxymethylcyclobutanones **8a–c** were prepared by [2+2] cycloaddition with ketene iminium ions,⁵ which were generated from amides **7a–c** and allyl benzyl ether. Protection of the carbonyl group of **8a–c** with ethylene acetal, deprotection of the benzyl group of **9a–c**, and Swern

Corresponding author. *E-mail address:* jimatsuo@p.kanazawa-u.ac.jp (J. Matsuo)

oxidation⁶ of the resulting primary alcohols gave aldehydes **10a–c**. Reaction of aldehydes **10a–c** with Bestmann-Ohira reagent⁷ followed by deprotection of acetal and complexation with $Co_2(CO)_8$ gave the desired cyclobutanones **11a–c**.

First, we explored a suitable Lewis acid for formal [4+2] cycloaddition between cyclobutanone **11a** and benzaldehyde **12** (Table 1). The desired product **13** was obtained in 38% yield by using boron trifluoride etherate (entry 1). Catalysis with titanium(IV) chloride gave enone **14** in 32% yield as the major product along with cycloadduct **13** (13%). Tin(IV) chloride was found to catalyze the desired [4+2] cycloaddition most effectively among Lewis acids we tested, and **13** was obtained in 82% yield with high *cis*-selectivity (*cis/trans* = 98:2) (entry 3). When ethylaluminum dichloride was employed, enone **14** was obtained in 79% yield (entry 4).

Table 1. Effects of Lewis Acids^a

entry	Lewis acid	Conditions	yield	yield $(\%)^b$	
		Conditions	13	14	
1	BF ₃ -OEt ₂	rt, 12 h	38	nd ^c	
2	TiCl ₄	−20 °C, 15 min	13	32	
3	$SnCl_4$	rt, 4 h	82^d	trace	
4	EtAlCl ₂	-20 °C to 0 °C, 1 h	trace	79	

^{*a*} PhCHO (**12**, 1.0 equiv), cyclobutanone **11a** (1.5 equiv) and Lewis acid (2.0 equiv) were employed.

^b Isolated yield (%).

^c nd = Not detected.

^d Cis/trans = 98:2. The stereochemistry was determined by ¹H NMR spectra.

Next, the scope and limitations of tin(IV) chloride-catalyzed [4+2] cycloaddition of cyclobutanone 11a were investigated by using various aldehydes 15a-l (Table 2). 4-Methyl and 4methoxybenzaldehydes reacted with 11a to give the corresponding [4+2] cycloadducts in 57% and 31% yields, respectively (entries 1 and 2). The use of halogen-substituted benzaldehydes 15c-e afforded the desired products 16c-e in high yields (entries 3-5). These results suggest that electrophilic aldehydes reacted smoothly. In comparison with 2naphtaldehyde 15g, which gave cycloadduct 16g in 45% yield (entry 7), the reaction with 1-naphtaldehyde 15f gave the desired adduct **16f** in a lower yield (entry 6). Aliphatic aldehydes **15h-k** gave the corresponding tetrahydropyrones 16h-k (entries 8-12). Longer reaction time was required for sterically hindered aldehydes. In all of the examples described above, cycloadducts 16a-l were obtained with high *cis*-selectivity.

 Table 2. Tin(IV) Chloride-Catalyzed Formal [4+2] Cycloaddition of Cyclobutanone 11a to Various Aldehydes 15a–l

entry	15 (R)	time (h)	yield $(\%)^b$	Cis/trans ^c
1	15a (4-MeC ₆ H ₄)	4	57	>99:1
2	15b (4-MeOC ₆ H ₄)	10	31	>99:1
3	15c (4-FC ₆ H ₄)	4	77	99:1
4	15d (4-ClC ₆ H ₄)	4	83	93:7
5	15e (4-BrC ₆ H ₄)	4	87	91:9
6	15f (1-naphthyl)	22	27	>99:1
7	15g (2-naphthyl)	8	45	>99:1
8	15h (PhCH ₂ CH ₂)	6	76	96:4
9	15i (n-heptyl)	6	68	91:9
10	15j (<i>i</i> -Bu)	9	42	94:6
11	15k (<i>i</i> -Pr)	18	61	97:3
12	15l (<i>t</i> -Bu)	12	11	98:2

^{*a*} For reaction conditions, see Table 1.

^b Isolated yield (%).

^c The stereochemistry was determined by ¹H NMR spectra.

Reactions of spirocyclobutanones **11b** and **11c** also gave the corresponding cycloadducts **17b** and **17c** in 64% and 58% yields, respectively, as a single diastereomer (Table 3).

 Table 3. Tin(IV) Chloride-Catalyzed Formal [4+2] Cycloaddition of 2,2-Dialkylcyclobutanones 11b and 11c to Benzaldehyde ^a

$ \begin{array}{c} O \\ (CO)_{3} \\$		$\begin{array}{c} \bullet \\ (CO)_3 \\ (OC)_3 \\ ($	
entry	cyclobutanone 11	yield $(\%)^{b}$	cis/trans ^c
1	$R^{1}, R^{2} = (CH_{2})_{4} (11b)$	64	>99:1
2	R^1 , $R^2 = (CH_2)_5$ (11c)	58	>99:1

^{*a*} For reaction conditions, see Table 1.

^b Isolated yield (%).

^c The stereochemistry was determined by ¹H NMR spectra.

Decomplexation of alkyne-cobalt complex **13** with cerium(IV) diammonium nitrate afforded tetrahydropyrone **18** in 75% yield (Scheme 2). Reaction of cyclobutanone **19** with benzaldehyde catalyzed by tin(IV) chloride did not proceed. Therefore, stabilization of α -cation by the alkyne-cobalt complex was important for these cycloaddition reactions.

Scheme 2. Decomplexation of Alkyne-Cobalt Complex 13

In summary, we have developed tin(IV) chloride-mediated intermolecular [4+2] cycloaddition of cyclobutanones bearing an alkyne-cobalt complex at their 3-positions. This formal [4+2] cycloaddition showed *cis*-stereoselectivity.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supplementary Material

Supplementary data associated with this article can be found, in the online version, at .

References and notes

- (a) Conia, J. M.; Robson, M. J. Angew. Chem., Int. Ed. Engl. 1975, 14, 473. (b) Belluš, D.; Ernst, B. Angew. Chem., Int. Ed. Engl. 1988, 27, 797. (c) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449. (d) Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103, 1485.
- (a) Matsuo, J.; Sasaki, S.; Tanaka, H.; Ishibashi, H. J. Am. Chem. Soc. 2008, 130, 11600. (b) Matsuo, J.; Sasaki, S.; Hoshikawa, T.; Ishibashi, H. Org. Lett. 2009, 11, 3822. (c) Matsuo, J.; Negishi, S.; Ishibashi, H. Tetrahedron Lett. 2009, 50, 5831. (d) Matsuo, J.; Okado, R.; Ishibashi, H. Org. Lett. 2010, 12, 3266.
- 3. Negishi, S.; Ishibashi, H.; Matsuo, J. Org. Lett. 2010, 12, 4984.
- (a) Teobald, B. J. *Tetrahedron.* 2002, *58*, 4133. (b) Allart, E. A.; Christie, S. D. R.; Pritchard, G. J.; Elsegood, M. R. J. *Chem. Commun.* 2009, 7339.
- (a) Houge, C.; Frisque-Hesbain, A. M.; Mockel, A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 2920. (b) Markó, I.; Ronsmans, B.; Frisque-Hesbain, A. M.; Dumas, S.; Ghosez, L. J. Am. Chem. Soc. 1985, 107, 2192.
- (a) Mancuso, A. J.; Swern, D. Synthesis 1981, 165. (b) Tidwell, T. T. Org. React. 1990, 39, 297.
- (a) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521. (b) Roth, G. J.; Liepold, B.; Müller, S. G.; Bestmann, H. J. Synthsis, 2004, 59. (c) Pietruszka, J.; Witt, A. Synthesis 2006, 4266.