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Cyclobutanones are important synthetic intermediates in 
organic synthesis.1  We have recently reported that zwitterionic 
intermediate 2, which was generated by Lewis acid-catalyzed 
ring cleavage of 3-ethoxycyclobutanone 1, reacted with various 
aldehydes,2a allylsilanes,2b silyl enol ethers2c and imines2d to 
afford the corresponding formal [4+2] cycloadducts (eq 1).  We 
have also reported diastereoselective asymmetric [4+2] 
cycloaddition by using 3-alkoxycyclobutanone bearing L-ethyl 
lactate as a chiral auxiliary.3  The generation of zwitterionic 
intermediate 2 was promoted by the alkoxy group at the 3-
position of 1.  It was then thought that an alkyne-cobalt complex 
at the 3-position of cyclobutanone 4 would also promote 
generation of zwitterionic intermediate 5 since an alkyne-cobalt 
complex stabilizes the α-cation (eq 2).4  We report herein formal 
[4+2] cycloaddition of cyclobutanones bearing an alkyne-cobalt 
complex at their 3-positions to afford tetrahydropyrones. 

 

 

 

 

Scheme 1. Preparation of Cyclobutanone 11a−c 

 

Cyclobutanones 11a−c were prepared from amides 7a−c by 
seven steps (Scheme 1).  3-Benzyloxymethylcyclobutanones 
8a−c were prepared by [2+2] cycloaddition with ketene iminium 
ions,5 which were generated from amides 7a−c and allyl benzyl 
ether.  Protection of the carbonyl group of 8a−c with ethylene 
acetal, deprotection of the benzyl group of 9a−c, and Swern 
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Cyclobutanones bearing an alkyne-cobalt complex at their 3-positions reacted with aldehydes to 
give formal [4+2] cycloadducts by using tin(IV) chloride as a Lewis acid.  Highly substituted 
tetrahydropyrone derivatives were stereoselectively prepared by this method. 
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oxidation6 of the resulting primary alcohols gave aldehydes 

10a−c. Reaction of aldehydes                                   10a−c with 
Bestmann-Ohira reagent7 followed by deprotection of acetal and 
complexation with Co2(CO)8 gave the desired cyclobutanones 
11a−c. 
First, we explored a suitable Lewis acid for formal [4+2] 
cycloaddition between cyclobutanone 11a and benzaldehyde 12 
(Table 1).  The desired product 13 was obtained in 38% yield 
by using boron trifluoride etherate (entry 1).  Catalysis with 
titanium(IV) chloride gave enone 14 in 32% yield as the major 
product along with cycloadduct 13 (13%).  Tin(IV) chloride was 
found to catalyze the desired [4+2] cycloaddition most 
effectively among Lewis acids we tested, and 13 was obtained in 
82% yield with high cis-selectivity (cis/trans = 98:2) (entry 3).  
When ethylaluminum dichloride was employed, enone 14 was 
obtained in 79% yield (entry 4).  
 
Table 1. Effects of Lewis Acids a 
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a PhCHO (12, 1.0 equiv), cyclobutanone 11a (1.5 equiv) and Lewis acid (2.0 
equiv) were employed. 
b Isolated yield (%).  
c nd = Not detected.  
d Cis/trans = 98:2. The stereochemistry was determined by 1H NMR spectra. 
 
 

Next, the scope and limitations of tin(IV) chloride-catalyzed 
[4+2] cycloaddition of cyclobutanone 11a were investigated by 
using various aldehydes 15a−l (Table 2).  4-Methyl and 4-
methoxybenzaldehydes reacted with 11a to give the 
corresponding [4+2] cycloadducts in 57% and 31% yields, 
respectively (entries 1 and 2).  The use of halogen-substituted 
benzaldehydes 15c−e afforded the desired products 16c−e in high 
yields (entries 3−5).  These results suggest that electrophilic 
aldehydes reacted smoothly.  In comparison with 2-
naphtaldehyde 15g, which gave cycloadduct 16g in 45% yield 
(entry 7), the reaction with 1-naphtaldehyde 15f gave the desired 
adduct 16f in a lower yield (entry 6).  Aliphatic aldehydes 15h−k 
gave the corresponding tetrahydropyrones 16h−k (entries 8−12).  
Longer reaction time was required for sterically hindered 
aldehydes.  In all of the examples described above, cycloadducts 
16a−l were obtained with high cis-selectivity. 

 
 
 
 

Table 2. Tin(IV) Chloride-Catalyzed Formal [4+2] Cycloaddition of 
Cyclobutanone 11a to Various Aldehydes 15a−l 

 
 

 

 

 

a For reaction conditions, see Table 1. 
b Isolated yield (%).  
c The stereochemistry was determined by 1H NMR spectra. 
 

 
Reactions of spirocyclobutanones 11b and 11c also gave the 

corresponding cycloadducts 17b and 17c in 64% and 58% yields, 
respectively, as a single diastereomer (Table 3). 

 

Table 3. Tin(IV) Chloride-Catalyzed Formal [4+2] Cycloaddition of 2,2-
Dialkylcyclobutanones 11b and 11c to Benzaldehyde a 
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entry cyclobutanone 11 yield (%) b cis/trans c

1 R1, R2 = (CH2)4 (11b) 64 >99:1 

2 R1, R2 = (CH2)5 (11c) 58 >99:1 
 

a For reaction conditions, see Table 1. 
b Isolated yield (%). 
c The stereochemistry was determined by 1H NMR spectra. 

 

Decomplexation of alkyne-cobalt complex 13 with cerium(IV) 
diammonium nitrate afforded tetrahydropyrone 18 in 75% yield 
(Scheme 2).  Reaction of cyclobutanone 19 with benzaldehyde 
catalyzed by tin(IV) chloride did not proceed.  Therefore, 
stabilization of α-cation by the alkyne-cobalt complex was 
important for these cycloaddition reactions. 

entry Lewis acid Conditions 
yield (%)b

13 14 

1 BF3-OEt2 rt, 12 h 38 ndc 

2 TiCl4 −20 °C, 15 min 13 32 
3 SnCl4 rt, 4 h 82d trace
4 EtAlCl2 −20 °C to 0 °C, 1 h trace 79 

entry 15 (R) time (h) yield 
(%)b 

Cis/transc 

1 15a (4-MeC6H4) 4 57 >99:1

2 15b (4-MeOC6H4) 10 31 >99:1

3 15c (4-FC6H4) 4 77 99:1

4 15d (4-ClC6H4) 4 83 93:7

5 15e (4-BrC6H4) 4 87 91:9

6 15f (1-naphthyl) 22 27 >99:1

7 15g (2-naphthyl) 8 45 >99:1

8 15h (PhCH2CH2) 6 76 96:4

9 15i (n-heptyl) 6 68 91:9

10 15j (i-Bu) 9 42 94:6

11 15k (i-Pr) 18 61 97:3

12 15l (t-Bu) 12 11 98:2
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Scheme 2. Decomplexation of Alkyne-Cobalt Complex 13 

 

In summary, we have developed tin(IV) chloride-mediated 
intermolecular [4+2] cycloaddition of cyclobutanones bearing an 
alkyne-cobalt complex at their 3-positions. This formal [4+2] 
cycloaddition showed cis-stereoselectivity. 
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