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Abstract 

A total synthesis of (±)-stemonamide and (±)-isostemonamide has been achieved by using a 

radical cascade that involves two endo-selective cyclizations.  (±)-Stemonamine and 

(±)-isostemonamine are synthesized by chemoselective reduction of (±)-stemonamide and 

(±)-isostemonamide, respectively. 
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1.  Introduction 

 

   Stemona alkaloids such as (–)-stemonamide (1) and (–)-isostemonamide (2) and their 

reduced compounds, (±)-stemonamine (3) and (±)-isostemonamine (4), were isolated from the 

roots of Stemona japonica, which have been used in Chinese and Japanese folk medicine as 

cough medicines and insecticides.1,2  Their tetracyclic structure including 
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Figure 1.  Stemonamide and related alkaloids. 

 

contiguous spirocyclic quaternary centers provides attractive target molecules for total 

synthesis.3,4  We wish to report herein a total synthesis of (±)-stemonamide (1) and 

(±)-isostemonamide (2) using a radical cascade as the key step and the synthesis of 

(±)-stemonamine (3) and (±)-isostemonamine (4) by chemoselective reduction of (±)-1 and 

(±)-2, respectively.5 

    

2.  Results and Discussion 

 

2.1.  Synthesis of (±)-stemonamide (1) and (±)-isostemonamide (2) using radical cascade 
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involving two endo selective cyclizations 

 

   Our strategy for the synthesis of (±)-stemonamide (1) is shown in Scheme 1.  Compound 

(±)-1 was envisaged to arise from tricyclic compound 5, which, in turn, was obtained by a 

Bu3SnH-mediated radical cascade of 6 involving two endo-selective cyclizations.   
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Scheme 1.  Retrosynthetic analysis. 

 

   Synthesis of 6 was begun by condensation of 1,2-cyclopentanedione and 

4-(tert-butyldimethylsilyloxy)butylamine followed by acylation of the resulting imine with 

acryloyl chloride in the presence of N,N-diethylaniline to give enamide 7 (Scheme 2).  After 

removal of the TBS group of 7, mesylation of alcohol 8 followed by bromination of the 

resultant mesylate with lithium bromide afforded the radical precursor 6.   
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Scheme 2.  Synthesis and radical cyclization of 6. 

 

   When a boiling solution of enamide 6 in toluene was treated with Bu3SnH in the presence of 

1,1'-azobiscyclohexanecarbonitrile (ACN), a mixture of almost equal amounts of tricyclic 

compound 10 and its stereoisomer 11 was obtained in 55% total yield (Scheme 2).  Formation 

of 10 and 11 may be best explained by a radical cascade that involves a 7-endo-selective 

cyclization of an alkyl radical onto the alkenic bond of enamide6 followed by a 5-endo 

cyclization of the resulting α-amidoyl radical 9.7   

   The mixture of compounds 10 and 11 was then subjected to aldol reaction with benzaldehyde 

to give an inseparable mixture of α,β-unsaturated ketones 12a,b in 76% yield (Scheme 3).  A 

subsequent addition reaction of 12a,b with lithium ethyl propiolate afforded the adducts 13 and 

14 in 50% and 48% isolated yields, respectively.  X-ray crystallographic analysis of 13 and 14 

confirmed their structures, indicating that the phenyl groups of the mixture 12a,b have 
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stereochemistries as depicted in Scheme 3.8  Formation of 13 and 14 might be a result of an 

attack of lithium ethyl propiolate on the convex faces of 12a and 12b, respectively.    
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Scheme 3.  Synthesis of 13 and 14. 

 

   Treatment of the adduct 13 with magnesium methoxide in boiling MeOH9 afforded methyl 

tetronate (β-methoxy-α,β-unsaturated lactone) 15 in 85% yield (Scheme 4).  α-Methylation of 

the α,β-unsaturated bond of this tetronate with LDA/methyl iodide10 giving a compound such 

as 17 failed, and hence an alternative method of α-methylation was examined.  Iodination of 15 

with N-iodosuccinimide (NIS) in the presence of trifluoromethanesulfonic acid (TfOH) gave 

iodide 16.  Treatment of compound 16 with trimethylboroxine in the presence of PdCl2(dppf)2 

(Suzuki Miyaura coupling)11 afforded methylated compound 17 in high yield (Scheme 4). 
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Scheme 4.  Synthesis of 17. 

 

   Similarly, iodination of compound 18, prepared from 14 with magnesium methoxide, by 

bis(trimethylpyridine)iodonium hexafluorophosphate in the presence of TfOH12 gave 19.  

Iodination of NIS/TfOH gave an unsatisfactory result.  Suzuki-Miyaura coupling of 19 with 

trimethylboroxine/PdCl2(dppf)2 afforded compound 20 (Scheme 5) in 89% yield.   
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Scheme 5.  Synthesis of 20. 
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   Oxidative cleavage of alkenes 17 with OsO4/NaIO4 afforded ketone 21 in 88% yield 

(Scheme 6).  α-Methylenation of ketone 21 with Eschenmoser's salt13 in the presence of 

various bases such as KH or LDA afforded the unsaturated ketone 23 in poor yield.  Similar 

α−methylenation using paraformaldehyde/N-methylanilinium trifluoroacetate14 also gave an 

unsatisfactory result.  We therefore examined another route to 23.  Treatment of ketone 21 with 

tert-butoxybis(dimethylamino)methane (Bredereck’s reagent)15 gave enaminone 22, whose 

reduction with DIBAL16 followed by methylation with MeI afforded α-methylenated ketone 23 

in 67% yield (Scheme 6).  Similarly, compound 20 was converted to 26 in good yield. 
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Scheme 6.  Synthesis of 23 and 26. 
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    Finally, RhCl3-mediated isomerization of the double bond17 of exo-methylene ketone 23 

gave (±)-stemonamide (1) (mp 232-233 °C, lit.3 mp 240-241 °C) along with 27 in 31% and 

63% yields, respectively.  Spectral data of (±)-1 were in accord with those of natural (–)-1, 

kindly provided by Professor Ye.  1H NMR spectra of the unexpected compound 27 showed it 

to be a single stereoisomer.  It is presumed that an attack of RhCl3 on the same side (β-face) of 

9-H of 23 brings about isomerization of the double bond to give (±)-1, whereas, when RhCl3 

attacks the opposite side (α-face) of 9-H, and reduction of the double bond with RhCl3 takes 

place to give 27.  Therefore, the methyl group of 27 seemed to have a β-orientation.  On the 

other hand, RhCl3 attacked the same side (β-face) of 9-H of 26 to afford (±)-isostemonamide 

(2) (mp 223-224 °C, lit.3 mp 225-227 °C) quantitatively.  Spectral data of (±)-2 were in accord 

with those of natural (–)-2. 
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Scheme 7.  Synthesis of (±)-1 and (±)-2. 
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2.2.  Synthesis of (±)-stemonamine (3) and (±)-isostemonamine (4) from (±)-stemonamide 

(1) and (±)-isostemonamide (2) 

 

   We next examined a conversion of (±)-(1) or (±)-(2) to (±)-stemonamine (3) or 

(±)-isostemonamine (4) by reduction of the corresponding lactam carbonyl group.  

p-Methoxyphenylthionophosphine sulfide dimer (Lawesson’s reagent)18 is known to convert 

the lactam carbonyl groups into the corresponding thiocarbonyl derivatives selectively even in 

the presence of ketone and lactone groups.19  Therefore, we examined reduction of the 

thiocarbonyl group of lactam, prepared from (±)-(1) or (±)-2, with Raney nickel.  We were 

delighted to find that treatment of (±)-(2), obtained in large quantities, with Lawesson’s 

reagent afforded the desired thiocarbonyl lactam 28 quantitatively.  A subsequent reduction of 

28 with Raney nickel (W-2) in refluxing EtOH provided, in 40% yield, (±)-isostemonamine (3), 

the spectral data of which were in accord with those of a natural one.   
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Scheme 8.  Synthesis of (±)-4 and (±)-3. 
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   Surprisingly, the same reduction of 28 also afforded, in 56% yield, the unexpected 

(±)-stemonamine (3), the spectral data of which were in accord with those of a natural one.  

This result might indicate that (±)-stemonamine (3) and (±)-isostemonamine (4) can easily 

interconvert to each other.  This phenomenon is identical with the fact that natural 

stemonamine (3) and isostemonamine (4) are isolated as racemate forms.2a We assumed that a 

cleavage of the spirocyclic ring as depicted in Scheme 9 might result in an isomerization 

between (±)-3 and (±)-4, since they have β-amino cabonyl and vinylogous β-amino carbonyl 

moieties. 
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Scheme 9.  Equilibrium between 3 and 4. 

 

   We soon found, however, that such isomerization did not occur at a low temperature.  When 

compound 28 was treated with Raney nickel in EtOH at 0 °C, (±)-4 was obtained in 77% yield.  

Similarly, treatment of  (±)-stemonamide (1) with Lawesson’s reagent afforded, in 98% yield, 

(±)-29, whose reduction with Raney nickel at 0 °C gave (±)-stemonamine (3) in 79% yield. 
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Scheme 10.  Synthesis of (±)-3. 

 

3.  Conclusions  

 

   We achieved a total synthesis of (±)-stemonamide (1) and (±)-isostemonamine (2) by using a 

radical cascade involving two endo-selective cyclizations as the key step.  The present 

synthesis clearly demonstrates the usefulness of the radical cascade process for the synthesis of 

nitrogen-containing polycyclic compounds.  We also performed the synthesis of 

(±)-stemonamine (3) and (±)-isostemonamine (4) by reduction of the thicarbonyl lactams 29 

and 28, prepared from (±)-(1) and (±)-(2), respectively, with Raney nickel.  

 

4.  Experimental  

 

4.1  General  

 

     Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100 spectrophotometer for 

solutions in CHCl3.  1H NMR and 13C NMR spectra were measured on a JEOL EX 500 (500 

MHz) or a JEOL JNM-EX 270 (270 MHz) spectrometer.  Chemical shifts (δ) quoted are 
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relative to tetramethylsilane.  High-resolution mass spectra (HRMS) were obtained with a 

JEOL JMS-SX-102A mass spectrometer.  Column chromatography was carried out on silica 

gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63–210 μm) or on alumina 90 (Merck, 

neutral, 63-200 μm) under pressure. 

 

4.1.  N-[4-(t-Butyldimethylsilyloxy)butyl]-N-(5-oxocyclopentenyl)acrylamide (7)  

 

  A mixture of 1,2-cyclopentanedione20 (10 g, 102 mmol) and 

4-(t-butyldimethylsilyloxy)butylamine21 (20.8 g, 102 mmol) in benzene (350 mL) was heated 

under reflux with azeotropic removal of water for 2 h.  After cooling at 0 ˚C, acryloyl chloride 

(11.1 g, 122 mmol) and N,N-diethylaniline (22.8 g, 153 mmol) were added dropwise and the 

mixture was stirred at room temperature for 1 h.  The reaction mixture was diluted with water 

and extracted with AcOEt.  The organic layer was washed successively with a saturated 

aqueous solution of NaHCO3 and brine, dried (MgSO4), and concentrated.  The residue was 

chromatographed on silica gel (hexane/AcOEt, 3:1) to give 7 (12.0-19.2 g, 35-56%) as a pale 

yellow oil: IR (CHCl3) υ 1720, 1655, 1620 cm-1; 1H NMR (270 MHz, CDCl3) δ 0.02 (6H, s), 

0.87 (9H, s), 1.49-1.61 (4H, m), 2.51-2.55 (2H, m), 2.70-2.75 (2H, m), 3.59 (2H, t, J = 6.1 Hz), 

3.65 (2H, t, J = 7.1 Hz), 5.60 (1H, dd, J = 10.2, 2.0 Hz), 6.16 (1H, dd, J = 10.2, 6.1 Hz), 6.35 

(1H, dd, J = 16.8, 2.0 Hz), 7.46 (1H, t, J = 2.8 Hz); 13C NMR (67.8 MHz) δ –5.3, 18.3, 24.6, 

25.9, 29.8, 33.7, 46.9, 62.6, 128.0, 128.2, 144.6, 157.3, 165.4, 203.8; HRMS calcd for 

C18H31NO3Si 337.2073, found 337.2073. 
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 4.2.  N-(4-Bromobutyl)-N-(5-oxocyclopentenyl)acrylamide (6)   

 

  To a solution of 8 (4.90 g, 22.0 mmol) and diisopropylethylamine (4.82 g, 37.3 mmol) in 

DME (140 mL) was added dropwise methanesulfonyl chloride (3.77 g, 32.9 mmol) at 0 °C, 

and the mixture was further stirred at room temperture for 1.5 h.  LiBr (9.54 g, 110 mmol) was 

added, and the mixture was further stirred at room temperture for 8 h.  The reaction mixture 

was diluted with water and extracted with AcOEt.  The organic layer was washed with brine, 

dried (MgSO4), and concentrated.  The residue was chromatographed on silica gel 

(hexane/AcOEt, 1:1) to give 6 (5.21 g, 83%) as a colorless oil; 1H NMR and 13C NMR spectra 

of 6 showed it to be a mixture of two rotamers:  IR (CHCl3) υ  1720, 1660, 1620 cm-1; 1H NMR 

(270 MHz, CDCl3) δ 1.66  (2H, tt, J = 7.4, 7.1 Hz), 1.87 (2H, tt, J = 7.4, 6.4 Hz), 2.55-2.58 (2H, 

m), 2.74-2.79 (2H, m), 3.43 (2H × 17/20, t, J = 6.4 Hz), 3.55 (2H × 3/20, t, J = 6.4 Hz), 3.68 

(2H, t, J = 7.1 Hz), 5.62 (1H, dd, J = 10.1, 1.6 Hz), 6.15 (1H, dd, J = 16.8, 10.1 Hz), 6.36 (1H, 

dd, J = 16.8, 1.6 Hz), 7.50 (1H, t, J = 2.6 Hz); 13C NMR (67.8 MHz, CDCl3) δ 24.6, 26.6, 29.5, 

33.5, 33.6, 44.6, 45.9, 128.0, 128.2, 144.3, 157.6, 165.5, 203.8.  Anal. Calcd for C12H16BrNO2: 

C, 50.37; H, 5.64; N, 4.89. Found: C, 50.77; H, 5.84; N, 4.96. 

 

4.3.  A Mixture of 10 and 11   

 

  To a boiling solution of 6 (1.00 g, 3.50 mmol) in toluene (350 mL) was added dropwise a 

solution of Bu3SnH (1.53 g, 5.24 mmol) and ACN (1,1-azobiscyclohexanecarbonitrile) (171 

mg, 0.699 mmol) in toluene (100 mL) over 5 h by employing a syringe-pump technique, and 
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the mixture was further heated at reflux for 1 h.  After evaporation of the solvent, the residue 

was chromatographed on silica gel containing KF (10% w/w)22 (hexane/AcOEt, 1:2) to give a 

mixture of 10 and 11 (399 mg, 55%) as colorless solids: IR (CHCl3) υ 1750, 1680 cm-1; 1H 

NMR (500 MHz, CDCl3) δ 1.31-1.43 (1H, m), 1.50-2.07 (9H, m), 2.15-2.06 (6H, m), 4.04 

(1/2H, d, J = 14.6 Hz), 4.12 (1/2H, d, J = 14.6 Hz); 13C NMR (125 MHz, CDCl3) δ 22.6, 23.1, 

23.9, 24.2, 25.5, 27.58, 27.63, 28.0, 28.6, 29.4, 30.1, 30.7, 34.3, 34.7, 39.6, 40.3, 44.6, 46.9, 

73.3, 74.2, 175.4, 176.0, 212.4.  Anal. Calcd for C12H17NO2: C, 69.54; H, 8.27; N, 6.76. Found: 

C, 69.34; H, 8.50; N, 6.88. 

 

4.4.  A Mixture of 12a and 12b   

 

  To a solution of the mixture of 10 and 11 (399 mg, 1.93 mmol) in MeOH (7 mL) containing 

10% KOH was added benzaldehyde (225 mg, 2.12 mmol).  After stirring for 24 h, the reaction 

mixture was poured into a saturated NH4Cl solution and extracted with EtOAc.  The organic 

layer was washed with brine, dried (MgSO4), and concentrated.  The residue was 

chromatographed on silica gel (hexane/AcOEt, 1:1) to give a mixture of 12a and 12b (433 mg, 

76%, ca. 1:1 mixture of diastereoisomers) as a pale yellow amorphous: IR (CHCl3) υ 1720, 

1680, 1630 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.39-1.97 (8H, m), 2.03-2.13 (1H, m), 

2.25-2.34 (1H, m), 2.45-2.68 [(2 + 1/2)H, m], 2.73 (1/2H, td, J = 14.6, 3.7 Hz), 3.00 (1/2H, dd, 

J = 15.9, 6.7 Hz), 3.12 (1/2H, ddd, J = 17.7, 8.5, 3.1 Hz), 4.04-4.07 (1/2H, m), 4.20 (1/2H, td, J 

= 10.4, 4.3 Hz), 7.27-7.58 (6H, m); 13C NMR (125 MHz, CDCl3) δ 22.9, 25.1, 25.3, 26.6, 27.7, 

28.9, 29.4, 29.5, 30.0, 30.4, 30.8, 32.0, 39.47, 39.51, 42.8, 44.8, 73.9, 74.3, 128.78, 128.84, 
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129.8, 130.0, 130.4, 130.9, 132.1, 132.9, 134.6, 134.8, 134.9, 136.0, 175.4, 176.3, 202.3, 

206.3; HRMS calcd for C19H21NO2 295.1572, found 295.1572. 

 

4.5.  Esters 13 and 14  

 

  To solution of ethyl propiolate (232 mg, 2.34 mmol) in THF (5 mL) was added dropwise 1.6 

M solution of n-butyllithium in hexane (1.46 mL, 2.34 mmol) at -78 °C and the mixture was 

stirred at the same temperture for 30 min.  To this solution was added dropwise a solution of 

the mixture of 12a and 12b (230 mg, 0.778 mmol) in THF (5 mL) and the mixture was stirred 

at -78 °C for 20 min.  The reaction mixture was quenched with a saturated NH4Cl solution at 

-78 °C then extracted with EtOAc.  The organic layer was washed with brine, dried (MgSO4), 

and concentrated.  The residue was chromatographed on silica gel (hexane/EtOAc, 1:1).  The 

first eluent gave 13 (151 mg, 50%) as colorless crystals, mp 209-211 °C (EtOAc-MeOH): IR 

(CHCl3) υ 1705, 1675 cm-1; 1H NMR (270 MHz, CDCl3) δ 1.29 (3H, t, J = 7.1 Hz), 1.40-1.50 

(3H, m), 1.72-1.84 (4H, m), 2.06-2.40 (3H, m), 2.67-2.92 (3H, m), 3.24 (1H, dd, J = 14.3, 10.2 

Hz), 4.17-4.26 (1H, m), 4.22 (2H, q, J = 7.1 Hz), 5.87 (1H, br), 6.87 (1H, t-like), 7.21-7.40 (5H, 

m); 13C NMR (67.5 MHz, CDCl3) δ 14.0, 24.0, 25.7, 28.4, 30.3, 30.5, 31.7, 41.2, 42.2, 62.0, 

76.2, 77.6, 79.3, 87.5, 127.2, 127.3, 128.4, 128.7, 136.8, 140.5, 153.2, 178.3.   Anal. Calcd for 

C24H27NO4: C, 73.26; H, 6.92; N, 3.56. Found: C, 73.29; H, 7.00; N, 3.55.  The second eluent 

gave 14 (149 mg, 48%) as colorless crystals, mp. 190.5-192 °C (EtOAc-MeOH): IR (CHCl3) υ 

1705, 1675 cm-1; 1H NMR (270 MHz, CDCl3) δ 1.21-1.35 (1H, m), 1.30 (3H, t, J = 7.1 Hz), 

1.55-1.70 (4H, m), 1.83-2.06 (2H, m), 2.23-2.32 (2H, m), 2.62-2.92 (5H, m), 3.90 (1H, d, J = 
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14.3 Hz), 4.01 (1H, br), 4.23 (2H, q, J = 7.1 Hz), 6.79 (1H, t-like), 7.26-7.31 (1H, m), 7.37-7.39 

(4H, m); 13C NMR (67.5 MHz, CDCl3) δ 14.0, 22.1, 25.1, 28.2, 28.4, 29.4, 30.3, 41.4, 62.2, 

76.4, 79.0, 81.0, 86.7, 123.6, 123.7, 127.4, 128.5, 129.0, 136.2, 142.1, 153.3, 176.3.  Anal. 

Calcd for C24H27NO4: C, 73.26; H, 6.92; N, 3.56. Found: C, 73.30; H, 6.99; N, 3.57. 

 

4.6.  Methyl tetronate 15   

 

  To a solution of 13 (159 mg, 0.400 mmol) in MeOH (2 mL) was added 6-10% solution of 

magnesium methoxide in MeOH (1.5 mL), and the mixture was heated at reflux for 10 h.  

Sodium methoxide (4.3 mg, 0.0800 mmol) was added and the mixture was heated under reflux 

for 2 d.  The reaction mixture was cooled to room temperature and poured into a saturated 

NH4Cl solution then extracted with EtOAc.  The organic layer was washed with brine, dried 

(MgSO4), and concentrated.  The residue was chromatographed on silica gel (hexane/EtOAc, 

1:2) to give 15 (129 mg, 85%) as colorless crystals, mp 247-248 °C (EtOAc-CH2Cl2): IR 

(CHCl3) υ 1760, 1680, 1630 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.35-1.41 (2H, m), 1.50-1.57 

(1H, m), 1.71-1.80 (3H, m), 1.96 (1H, q, J = 11.6 Hz), 2.20-2.27 (2H, m), 2.49 (1H, t, J = 13.4 

Hz), 2.69 (1H, t, J = 12.2 Hz), 2.80-2.99 (3H, m), 3.87 (3H, s), 4.07 (1H, d, J = 14.0 Hz), 5.12 

(1H, s), 6.37 (1H, s), 7.35-7.39 (5H, m); 13C NMR (125 MHz, CDCl3) δ 25.2, 26.1, 28.2, 30.0, 

30.1, 32.2, 40.1, 41.2, 59.6, 75.0, 89.3, 94.4, 127.8, 127.9, 128.5, 128.7, 135.6, 135.8, 171.0, 

177.9, 181.5; HRMS calcd for C23H25NO4 379.1784, found 379.1772. 

 

4.7. α-Iodo methyl tetronate 16  

 16



 

  To a solution of 15 (200 mg, 0.527 mmol) and N-iodosuccinimide (356 mg, 1.581 mmol) in 

CH2Cl2 (7 mL) was added dropwise trifluoromethanesulfonic acid (277 mg, 1.85 mmol) at 0 

°C, and the mixture was stirred at room temperature for 16 h.  The reaction mixture was diluted 

with CH2Cl2 and washed successively with a saturated Na2S2O3 solution and brine. After the 

organic layer was dried (MgSO4) and concentrated, and the residue was chromatographed on 

silica gel (hexane/EtOAc, 1:2) to give 16 (306 mg, 92%) as colorless crystals, mp 234-237 °C 

(dec) (EtOAc-CH2Cl2): IR (CHCl3) υ 1755, 1685, 1615 cm-1; 1H NMR (270 MHz, CDCl3) δ 

1.33-1.58 (3H, m), 1.73-1.83 (3H, m), 1.89-2.05 (1H, m), 2.13-2.29 (2H, m), 2.44 (1H, ddd, J 

= 16.2, 13.2, 3.0 Hz), 2.66-2.87 (3H, m), 2.92-3.03 (1H, m), 4.11 (1H, d, J = 13.4 Hz), 4.42 (3H, 

s), 6.28 (1 H, t-like), 7.09 (2H, d, J = 8.4 Hz), 7.69 (2H, d, J = 8.4 Hz); 13C NMR (67.5 MHz, 

CDCl3) δ 25.1, 26.1, 28.2, 29.8, 30.0, 32.1, 40.3, 41.2, 47.2, 60.3, 75.3, 93.6, 96.6, 127.3, 130.4, 

135.0, 136.9, 137.6, 169.5, 177.9, 178.1; HRMS calcd for C23H23NO4I2 630.9717, found 

630.9716. 

 

 4.8.  α-Methyl methyl tetronate 17   

 

  A mixture of 16 (190 mg, 0.301 mmol), trimethylboroxine (126 mg, 0.903 mmol), 

PdCl2(dppf)2 (13 mg, 15.1 μmol) and Cs2CO3 (516 mg, 1.51 mmol) in dioxane (10 mL) was 

heated at reflux for 5 h.  After cooling to room temperature, the reaction mixture was diluted 

with water and extracted with AcOEt.  The organic layer was washed with brine, dried 

(MgSO4), and concentrated.  The residue was chromatographed on silica gel (hexane/EtOAc, 
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1:2) to give 17 (109 mg, 89%) as colorless crystals, mp 215-216 °C (hexane-EtOAc-CH2Cl2): 

IR (CHCl3) υ 1750, 1680, 1665 cm-1; 1H NMR (270 MHz, CDCl3) δ 1.39-1.77 (3H, m), 

1.80-1.87 (3H, m), 1.90-2.00 (1H, m), 2.06 (3H, s), 2.16-2.26 (2H, m), 2.35 (3H, s), 2.44 (1H, 

ddd, J = 16.3, 13.2, 3.1 Hz), 2.72-3.04 (4H, m), 4.08 (1H, d, J = 14.3 Hz), 4.09 (3H, s), 6.28 

(1H, t-like), 7.16 (2H, d, J = 8.2 Hz), 7.24 (2H, d, J = 8.2 Hz); 13C NMR (67.5 MHz, CDCl3) δ 

9.03, 21.2, 25.2, 26.1, 28.3, 29.9, 30.2, 32.2, 40.1, 41.2, 59.3, 75.0, 93.1, 97.8, 127.1, 128.6, 

129.2, 133.2, 135.3, 137.6, 172.9, 173.8, 178.1; HRMS calcd for C25H29NO4 407.2097, found 

407.2102. 

 

4.9.  α-Iodo methyl tetronate 19  

 

  To a solution of 18 (100 mg, 0.264 mmol) and bis(2,4,6-trimethylpyridine)iodonium 

hexafluorophosfate (488 mg, 0.949 mmol) in CH2Cl2 (10 mL) was added dropwise 

trifluoromethanesulfonic acid (139 mg, 0.924 mmol) at 0 °C, and the mixture was stirred at 

room temperature for 24 h.  The reaction mixture was diluted with CH2Cl2 and washed 

successively with a saturated Na2S2O3 solution and brine.  The organic layer was dried 

(MgSO4) and concentrated, and the residue was chromatographed on silica gel (EtOAc) to give 

19 (139 mg, 84%) as colorless crystals, mp 205-208 °C (dec) (EtOAc-CH2Cl2): IR (CHCl3) υ 

1770, 1680, 1620 cm-1; 1H NMR (270 MHz, CDCl3) δ 1.26-1.35 (1H, m), 1.51-1.68 (4H, m), 

1.84-1.97 (3H, m), 2.24-2.47 (3H, m), 2.74-3.05 (3H, m), 3.95 (1H, d, J = 14.7 Hz), 4.44 (3H, 

s), 6.40 (1H, t-like), 7.10 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 8.4 Hz); 13C NMR (67.5 MHz, 

CDCl3) δ 22.0, 25.1, 28.0, 28.9, 29.4, 29.9, 40.9, 43.0, 43.9, 60.4, 74.7, 93.6, 96.2, 123.7, 130.7, 
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135.0, 137.7, 138.3, 169.7, 174.0, 180.6; HRMS calcd for C23H23NO4I2 630.9717, found 

630.9728. 

 

4.10. Ketone 21   

 

  To a solution of 17 (100 mg, 0.245 mmol) and sodium metaperiodate (2.60 g, 12.3 mmol) in 

acetone (10 mL) and water (10 mL) was added 4% OsO4 solution (5 drops), and the mixture 

was stirred at room temperature for 30 h.  The reaction mixture was diluted with water and 

extracted with CH2Cl2.  The organic layer was washed with brine, dried (MgSO4), and 

concentrated.  The residue was chromatographed on silica gel (hexane/AcOEt, 1:2) to give 21 

(68.5 mg, 88%) as colorless crystals, mp 260-269 °C (dec) (EtOAc-CH2Cl2): IR (CHCl3) υ 

1780, 1685, 1620 cm-1; 1H NMR (270 MHz, CDCl3) δ 1.24-1.67 (3H, m), 1.78-1.85 (3H, m), 

2.00-2.12 (2H, m), 2.03 (3H, s), 2.21-2.37 (2H, m), 2.60 (1H, dd, J = 18.6, 7.7 Hz), 2.68-2.90 

(2H, m), 3.20 (1H, dt, J = 17.1, 8.7 Hz), 4.11 (3H, s), 4.14 (1H, d, J = 12.0 Hz); 13C NMR (67.5 

MHz, CDCl3) δ 9.1, 24.7, 26.0, 27.9, 29.6, 30.0, 38.0, 40.0, 40.3, 59.6, 73.5, 91.4, 100.1, 167.9, 

177.4, 206.0; HRMS calcd for C17H21NO5 319.1420, found 319.1416. 

 

4.11.  α,β-Unsaturated ketone 23 

 

  A mixture of 21 (25 mg, 78.3 μmol) and tert-butoxybis(dimethylamino)methane (45.8 mg, 

0.263 mmol) in DMF (1 mL) was heated at 100 °C for 1.5 h.  After the reaction mixture was 

cooled to room temperature, the solvent was removed under reduced pressure to give 22.  To a 
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solution of the crude 22 in CH2Cl2 (2 mL) was added dropwise 0.94 M solution of 

diisobutylalminum hydride in hexane (0.14 mL, 0.132 mmol) at -78 °C, and the mixture was 

further stirred at -78 °C for 10 min and at room temperture for 30 min.  To the solution was 

added methyl iodide (125 mg, 0.878 mmol), and the mixture was stirred at room temperature 

for 1 h.  The reaction mixture was quenched with a saturated NH4Cl solution and extracted 

with CH2Cl2.  The organic layer was washed with brine, dried (MgSO4), and concentrated.  

The residue chromatographed on silica gel (EtOAc) to give 23 (17.3 mg, 67%) as colorless 

crystals, mp 230-231 °C (EtOAc-CH2Cl2): IR (CHCl3) υ 1765, 1750, 1685, 1665 cm-1; 1H 

NMR (500 MHz, CDCl3) δ 1.43-1.58 (3H, m), 1.82-1.96 (4H, m), 2.03-2.12 (1H, m), 2.05 (3H, 

s), 2.24 (1H, dd, J = 16.8, 9.3 Hz), 2.77 (1H, ddd, J = 11.7, 8.3, 3.2 Hz), 2.88 (1H, ddd, J = 13.9, 

10.2, 2.2 Hz), 3.75-3.78 (1H, m), 4.11 (3H, s), 4.18 (1H, d, J = 14.9 Hz), 5.43 (1H, d, J = 3.2 

Hz), 6.27 (1H, d, J = 3.2 Hz); 13C NMR (125 MHz, CDCl3) δ 9.2, 22.2, 26.2, 27.1, 29.2, 30.2, 

40.1, 44.8, 59.6, 72.4, 90.6, 100.3, 118.6, 142.6, 168.0, 172.6, 177.5, 195.6; HRMS calcd for 

C18H21NO5 331.1420, found 331.1421. 

 

4.12.  (±)-Stemonamide (1) and (±)-dihydrostemonamide (27)   

   

  A mixture of 23 (50 mg, 0.151 mmol) and rhodium (III) chloride hydrate (30 mg, 0.453 

mmol) in EtOH-H2O (10:1) (3 mL) was heated at reflux for 4 h.  The reaction mixture was 

cooled to room temperature, the solvent was removed under reduced pressure, and the residue 

was chromatographed on silica gel (hexane/AcOEt, 1:2).   The first eluent gave 27 (30.8 mg, 

62 %) as a colorless solid, mp 237-238 °C (EtOAc-CH2Cl2): IR (CHCl3) υ 1770, 1685, 1665 
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cm-1; 1H NMR (500 MHz, CDCl3) δ  1.21 (3H, d, J = 7.3 Hz), 1.26-1.70 (4H, m), 1.80-1.91 

(2H, m), 1.98-2.12 (2H, m), 2.03 (3H, s), 2.20-2.28 (2H, m), 2.69-2.80 (2H, m), 2.85 (1H, t, J = 

12.2 Hz), 4.09 (3H, s), 4.14 (1H, d, J = 13.4 Hz); 13C NMR (125 MHz, CDCl3) δ 9.2, 12.6, 23.3, 

26.8, 28.4, 29.7, 30.2, 40.3, 44.7, 45.9, 59.7, 72.7, 90.8, 100.3, 168.3, 172.8, 177.5, 209.0; 

HRMS calcd for C18H23NO5 333.1576, found 333.1572.  The second eluent gave (±)-1 (15.2 

mg, 31%) as colorless crystals, mp 232-233 °C (EtOAc-CH2Cl2): IR (CHCl3) υ 1765, 1725, 

1685, 1665, 1640 cm-1; 1H NMR (500 MHz, CDCl3) δ 1.22-1.46 (2H, m), 1.83 (1H, d, J = 14.0 

Hz), 1.87 (3H, s), 1.95 (1H, td, J = 12.8, 8.9 Hz), 2.02 (3H, s), 2.04-2.18 (2H, m), 2.30 (1H, dd, 

J = 16.5, 8.5 Hz), 2.38 (1H, dd, J = 12.8, 7.3 Hz), 2.61 (1H, ddd, J = 16.7, 12.0, 7.9 Hz), 2.62 

(1H, t, J = 12.8 Hz), 3.00 (1H, dd, J = 12.2, 4.9 Hz), 4.00 (3H, s), 4.19 (1H, d, J = 14.0 Hz); 13C 

NMR (125 MHz, CDCl3) δ 8.4, 9.1, 27.3, 27.4, 29.8, 30.1, 31.8, 41.2, 59.1, 74.5, 90.0, 99.6, 

136.9, 168.7, 170.9, 172.9, 175.7, 196.5; HRMS calcd for C18H21NO5 331.1420, found 

331.1415.  1H and 13C NMR spectral data of (±)-1 were in accord with those of the natural and 

Kende’s synthetic stemonamide. 

 

4.13.  (±)-Isostemonamide (2)  

 

  A mixture of 26 (3.0 mg, 9.05 μmol) and rhodium (III) chloride hydrate (0.4 mg, 1.81 μmol) 

in EtOH-H2O (10:1) (0.5 mL) was heated at reflux for 30 min.  The reaction mixture was 

cooled to room temperature, and the solvent was removed under reduced pressure.  The residue 

was chromatographed on silica gel (EtOAc) to give (±)-2 (3.0 mg, 100%) as colorless crystals, 

mp 223-224 °C (EtOAc-CH2Cl2): IR (CHCl3) υ 1765, 1720, 1690, 1665, 1645 cm-1; 1H NMR 
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(500 MHz, CDCl3) δ 1.25-1.45 (2H, m), 1.78 (1H, dd, J = 14.5, 3.7 Hz), 1.86 (3H, s), 1.92 (1H, 

td, J = 13.2, 9.3 Hz), 2.07 (3H, s), 2.10-2.15 (2H, m), 2.27 (1H, ddd, J = 16.6, 12.2, 7.6 Hz), 

2.35 (1H, dd, J = 16.6, 9.3 Hz), 2.61 (1H, dd, J = 13.4, 7.3 Hz), 2.95 (1H, dd, J = 12.7, 6.6 Hz), 

3.00 (1H, t, J = 19.7 Hz), 4.15 (3H, s), 4.17 (1H, d, J = 15.0 Hz); 13C NMR (125 MHz, CDCl3) 

δ 8.3, 9.3, 26.9, 27.7, 28.0, 29.4, 29.8, 42.4, 59.9, 73.5, 86.5, 102.9, 136.6, 168.7, 171.7, 172.6, 

174.6, 196.9; HRMS calcd for C18H21NO5 331.1420, found 331.1417. 1H and 13C NMR 

spectral data were in accord with those of the natural and Kende’s synthetic isostemonamide. 

 

4.14. Isostemonamide thiocarbonyl lactam 28   

 

  Lawesson’s reagent (8.1 mg, 19.9 μmol) was added to a solution of (±)-2 (12 mg, 33.2 μmol) 

in toluene (1.5 mL), and the mixture was heated at reflux for 1 h.  After removal of solvent, the 

residue was chromatographed on silica gel (hexane/EtOAc, 1:1) to give 28 (12.7 mg, 100%) as 

a colorless solid, mp 204-206 °C (dec) (EtOAc-CH2Cl2): IR (CHCl3) υ 1765, 1725, 1665, 1645 

cm-1; 1H NMR (500 MHz, CDCl3) δ 1.36-1.45 (1H, m), 1.63-1.72 (1H, m), 1.77-1.81 (1H, m), 

1.89 (3H, s), 2.01-2.17 (3H, m), 2.07 (3H, s), 2.70 (1H, dd, J=13.4, 6.7 Hz), 2.76-2.83 (1H, m), 

2.95 (1H, t, J=13.4, 5.5 Hz), 3.04 (1H, dd, J=17.1, 8.5 Hz), 3.21 (1H, t, J=13.4 Hz), 4.16 (3H, 

s), 4.79 (1H, d, J=12.2 Hz); 13C NMR (125 MHz, CDCl3) δ 8.4, 9.3, 26.8, 27.2, 28.0, 29.5, 29.7, 

42.7, 47.6, 59.9, 79.6, 85.4, 102.6, 137.6, 168.8, 170.9, 171.4, 196.3; HRMS calcd for 

C18H21NO4S 347.1191, found  347.1191. 

 

4.15.  Treatment of 28 with Raney nickel in EtOH at reflux: stemonamine (3) and 
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isostemonamine (4)   

 

  A mixture of 28 (12 mg, 33.2 μmol) and Raney Ni (W-2) (ca. 5 g) in EtOH (2 mL) was heated 

at reflux for 1.5 h. The reaction mixture was filtered, the filtrate was concentrated and the 

residue was chromatographed on silica gel (hexane/EtOAc, 3:1→1:1).  The first eluent gave 

(±)-isostemonamine (4) (4.0 mg, 40%) as colorless crystals, mp 148-149 °C (Et2O): IR 

(CHCl3) υ 1750, 1710, 1660, 1630 cm-1;  1H NMR (500 MHz, CDCl3) δ 1.13-1.22 (1H, m), 

1.37-1.41 (1H, m), 1.49-1.59 (1H, m), 1.67-1.82 (4H, m), 1.76 (3H, s), 2.01-2.06 (1H, m), 2.08 

(3H, s), 2.37 (1H, dd, J=12.9, 5.9 Hz), 2.83-2.87 (2H, m), 3.10 (1H, dd, J=16.6, 12.2 Hz), 

3.17-3.22 (2H, m), 4.13 (3H, s); 13C NMR (125 MHz, CDCl3) δ 8.0, 9.3, 24.2, 24.3, 27.3, 27.8, 

35.6, 49.1, 50.9, 59.3, 75.3, 89.2, 102.3, 134.5, 169.5, 173.5, 176.4, 199.0; HRMS calcd for 

C18H23NO4 317.1627, found 317.1628.  The second eluent gave (±)-stemonamine (3) (5.7 mg, 

56%) as colorless crystals, mp 159-160 °C (Et2O): IR (CHCl3) υ 1750, 1710, 1665, 1630 cm-1; 

1H NMR (500 MHz, CDCl3) δ 1.18-1.27 (1H, m), 1.40-1.43 (1H, m), 1.73-1.91 (5H, m), 1.77 

(3H, s), 2.02 (3H, s), 2.11 (1H, td, J=12.8, 1.8 Hz), 2.16 (1H, dd, J=11.0, 4.9 Hz), 2.81 (1H, t, 

J=7.3 Hz), 2.89 (1H, dd, J=12.8, 6.1 Hz), 3.04 (1H, dd, J=15.3, 14.6 Hz), 3.11-3.16 (2H, m), 

3.97 (3H, s); 13C NMR (125 MHz, CDCl3) δ 8.2, 9.1, 24.5, 24.8, 26.9, 28.2, 39.0, 48.9, 51.4, 

58.6, 76.5, 91.8, 97.5, 135.1, 171.8, 174.8, 175.0, 198.7; HRMS calcd for C18H23NO4 317.1627, 

found 317.1626. 1H and 13C NMR spectral data were in accord with those of the natural 

stemonamine and isostemonamine. 

 

4.16.  Treatment of 28 with Raney nickel in EtOH at low temperature  
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  Compound 28 (10 mg, 28.7 μmol) was treated with excess Raney Ni (W-2) in EtOH (3 mL) at 

0 °C for 1.5 h and at room temperature for 0.5 h. The reaction mixture was filtered and the 

filtrate was concentrated and chromatographed on silica gel (hexane/EtOAc, 2:1) to give 4 (6.7 

mg, 77%) as colorless crystals. 

 

 4.17.  Stemonamide thiocarbonyl lactam 29   

 

  A mixture of (±)-1 (3.0 mg, 9.05 μmol) and Lawesson’s reagent (2.3 mg, 5.43 μmol) in 

toluene (0.5 mL) heated at reflux for 1 h.  After the reaction mixture was cooled to room 

temperture, solvent was removed under reduced pressure. The residue was chromatographed 

on silica gel (hexane/EtOAc, 1:1) to give 29 (3.1 mg, 99 %) as a colorless solid, mp 175-176 

°C (EtOAc-CH2Cl2): IR (CHCl3) υ 1770, 1725, 1665, 1640 cm-1; 1H NMR (500 MHz, CDCl3) 

δ 1.38-1.47 (1H, m), 1.62-1.70 (1H, m), 1.81-1.84 (1H, m), 1.91 (3H, s), 2.03 (3H, s), 2.08-2.20 

(3H, m), 2.52 (1H, dt, J=12.8, 4.0 Hz), 2.97-3.01 (3H, m), 3.18 (1H, t, J=12.8 Hz), 4.02 (3H, s), 

4.83 (1H, dd, J=9.8, 4.3 Hz); 13C NMR (125 MHz, CDCl3) δ 8.5, 9.1, 27.1, 27.6, 27.8, 32.8, 

42.9, 46.6, 59.4, 81.2, 88.2, 99.9, 138.4, 168.7, 169.2, 172.6, 196.1; HRMS calcd for 

C18H21NO4S 347.1191, found 347.1120. 

 

4.18.  Treatment of 29 with Raney nickel in EtOH at low temperature   

 

  A mixture of 29 (10 mg, 28.7 μmol) and excess Raney Ni (W-2) in EtOH (3 mL) was stirred 
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at 0 °C for 1.5 h and at room temperature for 0.5 h.  The reaction mixture was filtered, the 

filtrate was concentrated and and the residue was chromatographed on silica gel 

(hexane/EtOAc, 1:1) to give 3 (6.9 mg, 79%) as colorless crystals. 
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