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ABSTRACT 

 Homeostasis in the body is at least partially maintained by mechanisms that 

control membrane permeability and thereby serve to control the uptake of essential 

substances (e.g., nutrients) and the efflux of unwanted substances (e.g., xenobiotics and 

metabolites) in epithelial cells. Various transporters play fundamental roles in such 

bidirectional transport, but little is known about how they are organized on plasma 

membranes. Protein-protein interactions may play a key role: several transporters in 

epithelial cells interact with so-called adaptor proteins, which are membrane-anchored 

and interact with both transporters and other membranous proteins. Although most 

evidence for transporter-adaptor interaction has been obtained in vitro, recent studies 

suggest that adaptor-mediated transporter regulation does occur in vivo and could be 

relevant to human diseases. Thus, protein-protein interaction is not only associated with 

the formation of macromolecular complexes, but is also involved in various cellular 

events, and may provide transporters with additional functionality by forming 

transporter-networks on plasma membranes. Interactions between xenobiotic 

transporters and PDZ adaptors were previously reviewed by Kato and Tsuji (Eur J 

Pharm Sci 27, 487, 2006); the present review focuses on the latest findings about PDZ 

adaptors as regulators of transporter-networks and their potential role in human 

diseases. 



- 4 - 

1. Turnover of transporters 

 After membrane proteins have been biosynthesized, they are generally 

translocated from endoplasmic reticulum into Golgi apparatus, where they undergo 

post-translational processing. These proteins are then sorted to apical or basal 

membranes in epithelial cells, to exert their transport activity (Fig. 1). The membrane 

proteins are subsequently internalized and sequestrated into lysosomes, followed by 

degradation, or recycled back to the cell surface (Fig. 1). Cell-surface expression of 

transporters is therefore determined by the balance among sorting, internalization and 

recycling (Fig. 1). This implies that there could be some molecular mechanisms that 

allow functional transporters to remain stably localized on plasma membranes. The 

interaction of transporters with adaptor (scaffold) proteins is a candidate for such a 

mechanism1. Thousands of adaptor proteins including PDZ adaptors are known in the 

human proteome, and these are classified into more than 70 distinct families 2. Apart 

from PDZ adaptors, ERM (ezrin/radixin/moesin) proteins are known to directly interact 

with xenobiotics transporters 3,4. These adaptor proteins are involved in the assembly of 

various intracellular complexes and regulation of cellular functions. 
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 Translocation of transporters between plasma membranes and the intracellular 

compartment in peripheral epithelial cells has been most extensively studied for 

glucose transporter GLUT4, which plays a pivotal role in homeostasis of blood 

glucose 5,6, but has also recently been described for several other transporters, 

including multidrug resistance-associated protein (MRP) 2, cystic fibrosis 

transmembrane conductance regulator (CFTR), type-IIa sodium-phosphate 

cotransporter (NaPi-IIa), excitatory amino acid carrier (EAAC) 1 and organic 

cation/carnitine transporter (OCTN) 2 7-13. Most of these transporters are localized on 

apical membranes of epithelial cells. For example, MRP2 is expressed on canalicular 

membranes of hepatocytes, and its internalization is stimulated by oxidative stress 7,8. 

This internalization could occur to block MRP2-mediated efflux of a major 

antioxidant, glutathione, thus serving to protect hepatocytes 7,8. NaPi-II is expressed on 

apical membranes of renal tubular epithelial cells. NaPi-II is internalized and 

undergoes degradation in the presence of excessive phosphate 14, and these events 

could be associated with the regulation of phosphate reabsorption in the kidney 14-16. In 

both cases, the degradation process of the transporters occurs relatively slowly, within 
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4-6 hrs 7,14, whereas the internalization of MRP2 occurs at a much higher rate, within 

10 min 7. 

 

2. PDZ adaptor-mediated regulatory mechanisms for transporters  

This section summarizes the regulatory mechanisms for transporters by PDZ 

(PSD95/Dlg/ZO1) adaptors, most of which are based on in vitro evidence. The 

regulatory mechanisms by PDZ adaptors are summarized in Table 1. 

 

2-1. PDZ domain and binding motif: Relevant to sorting? (Fig. 2A) 

 Most transporters expressed on apical membranes of epithelial cells have a 

class I PDZ binding motif (-S/T-X-Φ, Φ is a hydrophobic acid) at their C-terminus. This 

is the reason why this motif has been thought to play a role in the sorting of transporters 

to the apical membranes. Recent studies have clarified that some of the motifs can 

directly bind to PDZ domains 17-21, which are structural regions generally consisting of 

80-90 amino acids. In humans, there are over 250 PDZ domains, which are present in 

over 100 PDZ domain-containing proteins 22. Some of these proteins act as scaffolds for 



- 7 - 

membranous proteins, so they are called PDZ adaptors.  

 Among them, four PDZ adaptors, PDZK1 (also known as diphor-1, NaPiCap1, 

CLAMP, CAP70 and NHERF3), PDZK2 (also named NaPiCap2, IKEPP and NHERF4), 

sodium/proton exchanger regulatory factor (NHERF) 1 (also named EBP50, 

SLC9A3R1) and NHERF2 (also known as E3KARP, SIP-1, TKA-1 and SLC9A3R2) 

interact with the C-terminus of transporters expressed in intestinal, renal and hepatic 

epithelial cells. PDZKs have four PDZ domains, whereas NHERFs have two PDZ 

domains at their N-terminus and an ERM (ezrin/radixin/moesin) binding domain at their 

C-terminus. ERM proteins can interact with actin, so NHERFs may also interact with 

the cytoskeleton. These four PDZ adaptors are mostly localized on apical membranes in 

small intestine and kidney, although there are some exceptions in liver. For example, 

NHERF1 is expressed on apical membranes of epithelial cells in intestine, kidney and 

liver 23-26. On the other hand, PDZK1 is localized on apical membrane and 

intermicrovillar clefts in renal proximal tubules 27,28, on apical membrane in intestinal 

epithelial cells 29, but on sinusoidal membrane of hepatocytes 30. Therefore, 

transporter-PDZ domain interaction alone cannot fully explain the localization of 
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transporters on apical membranes. 

 Mutation in the PDZ binding motif at the C-terminus results in 

down-regulation of several transporters from the apical membranes of epithelial cells in 

vitro 9-12,20. Thus, the PDZ binding motif could be essential for the apical membrane 

localization of certain transporters (Fig. 2A). However, limited information is available 

on how this PDZ binding motif affects the sorting of transporters. 

 

2-2. Stabilization of transporters on plasma membranes (Fig. 2B) 

The interaction of transporters with PDZ adaptors may affect their stable 

expression on the cell-surface. In fact, when transporters are cotransfected with PDZ 

adaptors such as PDZK1 and NHERF1 in cultured cell lines, expression levels of the 

transporters on the cell-surface are higher than in the case without cotransfection with 

the adaptors 13,19 ,31-35. On the other hand, mutants of these transporters lacking the PDZ 

binding motif do not interact with PDZ adaptors, and the expression level of the 

mutants is only minimally affected by cotransfection with PDZ adaptors 13,19,20,31-34. 

These results suggest that PDZ adaptors can stabilize the transporters on the cell-surface 
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(Fig. 2B). D'Amico et al. reported that the stable localization of EAAC1 endogenously 

expressed on plasma membranes of MDCK cells is controlled by the interaction with 

endogenous PDZK1 12. Deletion of the PDZ binding motif in EAAC1 promotes 

internalization of EAAC1 via the interaction with another adaptor for internalization, 

adaptor protein 2 complex 12, indicating the role of the interaction with PDZK1 in 

stabilization of EAAC1. Many of these studies, however, were performed by 

over-expressing exogenous proteins (e.g., transporters and/or PDZ adaptors). Therefore, 

it should be carefully considered whether or not these results reflect in vivo phenomena. 

On the other hand, recent studies using gene knockout mice for the PDZ adaptors also 

support the existence of the stabilizing effect (see section 3). 

Over-expression of a single PDZ domain, which interacts with NaPi-IIa, 

stimulates internalization and degradation of this transporter 10. This phenomenon is 

probably caused by a dominant-negative effect, which means that the exogenously 

transfected single PDZ domain competitively inhibits the interaction between 

transporters and endogenous PDZ adaptors. Thus, the interaction of this transporter with 

PDZ adaptor can enhance the residence time of the transporter on the cell-surface, 
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probably by stabilization in the plasma membrane. Recently, LaLonde and Bretscher 

have proposed a possible explanation of the stable localization mechanism by PDZ 

adaptors on cell-surface membranes, as follows. All ERM proteins, NHERF1 and 

PDZK1 undergo a “head-to-tail” intramolecular interaction (N-terminal domain 

interacts with C-terminal tail region), and this represents an inactive form having 

minimal interaction with other proteins, such as transporters. When a certain membrane 

protein, such as sodium/proton exchanger (NHE) 3, interacts with the first PDZ domain 

of PDZK1, the intramolecular interaction is broken, and PDZK1 can interact with the 

first PDZ domain of NHERF1 upon release of the C-terminal tail of PDZK1, leading to 

loss of intramolecular interaction in NHERF1. NHERF1 can then interact with ERM 

proteins, which can bind to filamentous actin. Thus, such a “domino-effect” in 

conformational change from inactive to active form could be associated with the 

stability of these large structural complexes 36. This hypothesis can explain how ERM, 

NHERF1 and PDZK1 are localized on plasma membranes, although further studies are 

needed to examine whether the same mechanism works in vivo. 
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2-3. Signal Transduction (Fig. 2C) 

PDZ adaptors, such as PDZKs and NHERFs, have multiple PDZ domains in 

their structure, and each domain alone can interact with the C-terminus of transporters. 

Therefore, it is speculated that these adaptors can serve to cluster various interacting 

proteins at a specific region of plasma membrane. PDZ adaptors are thought not only to 

play a static role as a scaffold, but also a dynamic role by gathering functionally 

associated proteins at a certain microdomain on the cell-surface. For example, 

parathyroid hormone (PTH) regulates the expression level of transporters, such as 

NaPi-IIa 37,38, sodium/proton exchanger (NHE) 3 25,39 and Na+/K+-ATPase 40. This 

regulation is associated with the recruitment of PTH receptor, protein kinases and 

phosphorylated NHERF1 41,42. Similar regulation is also reported for scavenger receptor 

class B type I (SR-BI) by protein kinase A (PKA) and phosphorylated PDZK1 43. These 

reports suggest that PDZ adaptors are involved in the signal transduction (Fig. 2C).  

PDZ adaptor-mediated clustering of protein complexes would be 

advantageous in minimizing unwanted diffusion of signal messenger(s). Li et al. have 

reported that the concentration of second messenger cAMP in close proximity to plasma 
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membrane is regulated by MRP4 44, which pumps out cAMP as a substrate. cAMP 

signaling is associated with the activity of several transporters, including CFTR. The 

dramatic elevation of cellular cAMP leads to an increase in CFTR-mediated Cl- 

secretion and thereby causes diarrhea. Therefore, the concentration of cAMP at the 

region close to CFTR should be tightly regulated. PDZK1 interacts with both CFTR and 

MRP4, and mrp4 gene knockout mice are more prone to CFTR-mediated secretory 

diarrhea 44, suggesting that PDZK1 regulates the local concentration of cAMP by 

bridging between MRP4 and CFTR. Similarly, NHERF1 is required for phosphorylation 

and functional regulation of NHE3 in response to intracellular cAMP 45-47. The PDZ 

adaptors are thus involved in homeostasis of signal transduction by clustering various 

proteins to prevent abnormal response (Fig. 2C).  

  

2-4. Activation and functional coupling (Fig. 2D) 

 PDZ adaptors increase the function of various transporters on cotransfection in 

cultured cell lines. Many of these cases, however, can simply be explained by the 

increase in expression levels of the transporters on plasma membrane (Fig. 2D) 
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9,19,20,32,34,48,49. In contrast, OCTN2-mediated uptake of the substrate carnitine is 

increased 6-fold in the presence of PDZK1, despite a minimal effect of PDZK1 on 

cell-surface expression of OCTN2 50. Such stimulation of transport activity is not 

observed for OCTN2 mutant with the PDZ binding motif deleted, suggesting that 

PDZK1 direct regulates the functional activity of OCTN2 50. In in vivo experiments, 

however, expression of OCTN2 on apical membranes of intestinal epithelial cells was 

reduced in pdzk1-/- mice, compared with wild-type mice, with a concomitant delay in 

gastrointestinal absorption of carnitine 51, indicating that PDZK1 is involved in 

stabilization of OCTN2 on the apical membrane. The pdzk1-/- mice thus exhibit reduced 

expression of interacting transporters, and this leads to difficulty in demonstrating the 

stimulatory effect on transporter function in vivo. 

 Clustering of multiple transporters by PDZ adaptors may allow the driving 

force for a certain transporter to be provided by another one located nearby, thereby 

leading to efficient transport activity. For example, the driving force of 

proton/oligopeptide cotransporter (PEPT) 1 is an H+ gradient, a part of which is 

supplied by NHE3 52. Both of them are expressed on the apical membranes of intestinal 
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epithelial cells and interact with PDZK1 51,53, possibly resulting in localization of NHE3 

adjacent to PEPT1 and effective rotation of H+ into or out of the cell (Fig. 2D) 54. 

 

3. Roles of PDZ adaptors in vivo: Influence of deficiency and mutation  

Concerning the four PDZ adaptors, gene knockout mice for PDZK1, 

NHERF1 and NHERF2 (pdzk1-/-, nherf1-/- and nherf2-/-, respectively) have already been 

constructed with the aim of establishing the functions of PDZ adaptors in vivo. In 

addition, gene knockin mice for PDZ adaptors or a single PDZ domain alone have also 

been constructed using transgenic technology. This section summarizes in vivo evidence, 

mainly obtained in such transgenic animals, concerning the pharmacological and 

physiological roles of PDZ adaptors (Fig. 3).  

 

3-1. Roles of PDZ adaptors in the small intestine 

Roles of PDZK1 as an adaptor have been demonstrated for various 

transporters in the small intestine (Fig. 3). For example, expression of PEPT1, OCTN2, 

and OATP1A was reduced on apical membranes in pdzk1-/- mice 51,55. This reduction 
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was accompanied by a reduction in gastrointestinal absorption of cephalexin and 

carnitine, typical substrates of PEPT1 and OCTN2, respectively 51. The absorption rate 

constant of cephalexin was much lower in pdzk1-/- mice (0.0654 and 0.0172 min-1 in 

wild-type and pdzk1-/- mice, respectively) 51. Intestinal accumulation of carnitine in 

pdzk1-/- mice was approximately 50% of that in wild-type mice 51. Similarly, the fraction 

of intestinal absorption of [3H]estrone-3-sulfate, a substrate of OATP1A, was also lower 

in pdzk1-/- mice (14.5 and 0.5% in wild-type and pdzk1-/- mice, respectively) 55.  

CFTR-dependent duodenal HCO3
- secretion was also reduced in pdzk1-/- mice 56,57. 

Interestingly, PEPT1 is localized at multivesicular bodies (MVBs) in pdzk1-/- mice 51. 

Because MVBs represent a compartment for degradation of plasma membrane proteins 

following their internalization (Fig. 1), the localization in MVBs may implies that 

PEPT1 is unstable on plasma membrane due to loss of PDZK1. On the other hand, 

forskolin-responsive intestinal net Na+ absorption was significantly reduced in pdzk1-/- 

mice, even though the expression level and localization of NHE3 were not significantly 

different from those of wild-type mice 56.  
In nherf1-/- mice, expression of NHE3 and CFTR on brush-border membranes 
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of epithelial cells and in crypt cells, respectively, is reduced 26,58. Both of these 

transporters are involved in the membrane permeation of water and inorganic ions. 

Absorption of fluid and Na+ 58, and secretion of HCO3
- 57 are also reduced in small 

intestine of nherf1-/- mice. Levels of NHE3 and NHERF1 were significantly lower in 

mucosal biopsies from patients with inflammatory bowel disease (IBD), as well as from 

acute murine IBD models, suggesting that down-regulation of NHERF1 induces 

IBD-associated diarrhea, possibly caused by unbalanced ion concentrations 59. 

 Regulation by PDZ adaptors of small intestinal transporters could be very 

complex. For example, a certain transporter can be regulated by multiple PDZ adaptors 

in opposite directions. For example, cAMP-dependent stimulation of HCO3
- secretion is 

reduced in nherf1-/- mice, but increased in nherf2-/- mice 57. This may imply that these 

two adaptors differentially regulate inorganic ion transporters, such as NHE3 and CFTR. 

In addition, the regulation by PDZ adaptors could be different between proximal and 

distal regions in the small intestine. For example, function of NHE3 and CFTR was 

reduced in proximal regions, but not in ileum of nherf1-/- mice 26,60. Similarly, we have 

recently found that expression on apical membrane of PEPT1 and OCTN2 is tightly 
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regulated by PDZK1 in proximal regions, but such regulation is only partial in distal 

regions (unpublished observation) 51. It is also noteworthy that no effect of PDZK1 and 

NHERF2 gene knockout on CFTR function can be observed in isolated tissues or 

Ussing-type chambers 26,56, but an effect was observed in an in situ perfusion system 57. 

Thus, the function of PDZ adaptors could highly depend on the experimental systems, 

and might be more easily observed under physiologically relevant conditions.  

Both NHERF1 and NHERF2 can also interact with cytoskeleton proteins, 

such as actin filament, via the interaction with ERM proteins. This may be associated 

with morphological change in the gene knockout mice, and indeed, the length of 

microville in small and large intestines was reduced in nherf1-/- mice 58,61. The length of 

microvilli was also reduced, though not significantly so, in pdzk1-/- mice 51. PDZK1 is 

localized not only on plasma membranes of microvilli, but also in the base of microvilli, 

which probably represents an intracellular subapical compartment with abundant actin 

filaments 29. Thus, PDZK1 may also be involved in linking membrane proteins and 

cytoskeleton components. 
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3-2. Roles of PDZ adaptors in the kidney 

On the apical membranes, uric acid/anion exchanger (URAT) 1 plays an 

important role in reabsorption of uric acid. URAT1 has a PDZ binding motif at its 

extreme C-terminus, and mutation in this motif leads to hypouricemia in humans, 

probably because of deficiency in its interaction potential with PDZ adaptors, such as 

PDZK1 and/or NHERF1 19,62,63.  In nherf1-/- mice, URAT1 is mislocalized in the 

intracellular compartment of proximal tubules with a concomitant reduction in 

expression of the gene product in membrane fractions, leading to an increase in urinary 

excretion of uric acid 62. Concomitantly, inhibitory effect of probenecid on uptake of 

uric acid in isolated proximal convoluted tubules was reduced in nherf1-/- mice 

(percentage of inhibition from control was 47 and 26 in wild-type and nherf1-/- mice, 

respectively) 62. Similarly, NaPi-IIa is involved in reabsorption of phosphate at proximal 

tubules and interacts with the four PDZ adaptors (PDZK1, PDZK2, NHERF1 and 

NHERF2) 18,27. In nherf1-/- mice, NaPi-IIa is mislocalized intracellularly with a 

concomitant reduction in expression of the gene product on plasma membranes 38,64, 

leading to hypophosphaturia 64. Serum phosphate concentration in nherf1-/- mice was 
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reduced to 72% of wild-type mice whereas urinary phosphate excretion in nherf1-/- mice 

was ~3-fold higher compared with wild-type mice 64. Thus, NHERF1 plays pivotal roles 

in homeostasis of these solute ions via direct interaction with tubular transporters.  

On the other hand, limited information is available on the roles of PDZ 

adaptors other than NHERF1 in relation to NaPi-IIa. Minimal change was observed in 

the expression level of NaPi-IIa or the urinary excretion of phosphates in nherf2-/- mice 

65, while down-regulation of NaPi-IIa in pdzk1-/- mice and a concomitant increase in 

urinary excretion of phosphate were observed only under a high phosphate diet 

condition, but not under a low phosphate diet 66.  

In kidneys, PDZ adaptors are suggested to be involved in receptor-mediated 

signal transduction: parathyroid hormone binds to the G-protein-coupled receptor 

(PTH1R), thereby stimulating intracellular signaling through phospholipase C and 

protein kinase C. This signal transduction is associated with the reduction of phosphate 

reabsorption by inducing internalization of NaPi-IIa. Both NHERF1 and NHERF2 play 

a pivotal role in the PTH-mediated activation of phospholipase C by directly interacting 

with the C-terminus of PTH1R and subsequently assembling signal complexes 67,68. In 
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addition, the internalization of NaPi-IIa is stimulated by the dissociation of NaPi-IIa 

from its adaptor NHERF1, and such dissociation follows phosphorylation of a serine 

residue in the first PDZ domain in NHERF1 by protein kinase C 41. Actually, the 

PTH-stimulated down-regulation of NaPi-IIa is minimally observed in nherf1-/- mice 38. 

Thus, homeostasis of phosphate is governed by macromolecular complex formation 

mediated by NHERF1.  

 A similar story was also reported for another G-protein-coupled receptor 

(dopamine D1-like receptor), which also binds to NHERF1 and is involved in the 

regulation of NaPi-IIa 69. The regulation of phosphate homeostasis by dopamine 

involves the second messenger cAMP and an intracellular signaling cascade mediated 

by PKA and PKC, finally leading to reduction of NaPi-IIa expression 70. In nherf1-/- 

mice, production of cAMP and subsequent PKC activation by dopamine is much 

impaired 69. Thus, NHERF1 is involved in phosphate homeostasis through at least two 

different receptor-mediated signal cascades. 

 

3-3. Roles of PDZ adaptors in the liver 
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In pdzk1-/- mice, expression of SR-BI, which plays a role as high-density 

lipoprotein receptor, is almost completely (by ~95%) down-regulated with a 

concomitant increase in plasma cholesterol level 71. In addition, sinusoidal organic 

anion transporting polypeptide OATP1A1 is internalized in hepatocytes of pdzk1-/- mice, 

and consequently elimination rate constant of its typical substrate 

bromosulphophthalein is reduced (0.78 and 0.59 min-1 in wild-type and pdzk1-/- mice, 

respectively) with minimal change in distribution volume 30. These results indicate that 

PDZK1 is an adaptor for certain types of receptor and transporter on sinusoidal 

membranes. On the other hand, NHERF1 interacts with MRP2 on canalicular 

membranes 72. In nherf1-/-, localization of MRP2 gene product on apical membranes is 

reduced, whereas the mRNA level for MRP2 is close to that in wild-type mice, 

demonstrating that NHERF1 is an adaptor protein for post-translational regulation of 

MRP2.  

Both OATP1A1 and MRP2 widely accept various types of organic anions, 

including bilirubin, bile acids and anionic therapeutic agents 73,74, implying that both 

PDZK1 and NHERF1 may affect the disposition of various types of endogenous and 



- 22 - 

exogenous compounds. However, PDZK1 does not interact with OATP1A4, another 

sinusoidal OATP transporter 30. In addition, expression of MRP2 on canalicular 

membrane is also regulated by an ERM protein, radixin, and is reduced in radixin-/- 

mice 75. Therefore, there could be other adaptors than PDZK1 and NHERF1 in the liver. 

The bile flow rate is much lower in nherf1-/- mice compared with wild-type mice, 

probably because of the down-regulation of MRP2, which is involved in bile 

acid-independent bile flow through the excretion of glutathione. 

 In addition to gene knockout mice, so-called gene knockin mice have also 

been used to clarify the role of endogenous PDZ adaptors in vivo. Such knockin mice 

include transgenic mice, in which a single PDZ domain is incorporated into the genome. 

Overexpression of the PDZ domain alone may interfere with the function of 

endogenous PDZ adaptor by competitively inhibiting binding to transporters and/or 

other interacting proteins (dominant-negative effect). Knockin mice of the first PDZ 

domain of PDZK1 exhibit a 75% reduction of expression of the gene product for SR-BI 

with internalization of a substantial amount of SR-BI inside hepatocytes 76, probably 

because the first PDZ domain can bind to the C-terminal PDZ binding motif of SR-BI 
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and competitively inhibit the binding of SR-BI with endogenous PDZ adaptors. On the 

other hand, knockin mice for full-length PDZK1 in pdzk1-/- mice show recovery of the 

expression of SR-BI on sinusoidal membrane to a level comparable with that of 

wild-type mice 77, supporting a pivotal role of PDZK1 in cell-surface expression of 

SR-BI in the liver.  

 

3-4. Roles of PDZ adaptors in other organs 

Compared with the above three organs, information on the roles of the four 

PDZ adaptors in other organs is limited. Nevertheless, NHERF1 is also expressed in 

neurons of the nucleus raphe magnus and is involved in signal transduction of G-protein 

coupled -opioid receptor (DOPr) 78, which is constitutively localized in intracellular 

compartments, and translocation of which into plasma membrane is stimulated by the 

substrate, morphine, present in the extracellular space. NHERF1 is essential for this 

translocation of DOPr, and in nherf1-/- mice the activation of DOPr by morphine is only 

minimally observed 78. 

In addition to its expression in various peripheral epithelial cells, PDZK1 was 
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recently identified in endothelium 79. Endothelial PDZK1 is not involved in expression, 

localization or cholesterol binding of SR-BI, but is required for intracellular signaling in 

response to HDL. HDL has various actions on the endothelium, including inhibition of 

apoptosis and promotion of cellular growth, so endothelial PDZK1 could also be 

involved in ensuring the integrity of the endothelial monolayer. Indeed, carotid artery 

reendothelialization after perivascular electric injury is hindered in pdzk1-/- mice 79. 

PDZK1 is also suggested to be associated with susceptibility to adult diseases, 

based on findings in pdzk1-/- mice. High-fat/high-cholesterol (‘western’) diet-fed 

apolipoprotein E gene knockout mice (apoE-/-) are a model of atherosclerosis. In 

western diet-fed pdzk1-/-apoE-/- mice, atherosclerosis is increased compared with apoE-/- 

mice 80. In a study with another atherogenic diet, high-fat, high-cholesterol, 

cholate-containing (‘paigen’) diet-fed pdzk1-/-apoE-/- mice exhibited severe 

hypercholesterolemia and aortic root atherosclerosis, leading to occlusive coronary 

arterial atherosclerosis and myocardial infarction 81. These results suggest that 

deficiency of PDZK1 may increase the risk for coronary heart diseases. 
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4. PDZ adaptors potentially relevant to pathogenesis of common diseases 

Recent genome-wide study has identified single nucleotide polymorphisms 

(SNPs) in human genes for PDZK1 and NHERF1. The role of PDZ adaptors in humans 

is gradually being clarified by investigations of the relationship between genotype and 

phenotype in subjects with SNPs (Table 2). Gene knockout mice completely lack the 

protein and may provide an example of the phenotype likely to be seen in certain human 

SNPs. In this section, we summarized the SNPs of PDZ adaptors and the corresponding 

phenotypes in humans (Table 2). The findings overall are compatible with the 

hypothesis that these PDZ adaptors control various types of transporters, and 

dysfunction of these adaptors is likely to play a role in the pathogenesis of multifactorial 

disorders, such as metabolic syndrome. 

 

4-1. PDZK1 

All SNPs so far identified in the PDZK1 gene are localized in the untranslated 

region (Table 2); no SNP involving amino acid mutation has yet been reported. 

However, one clone (AF012281) with an amino acid mutation of E195K is listed in the 
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NCBI database, whereas other two clones (BC006496, BC006518) have the same 

amino acid sequence as the reference sequence (wild-type, NM_002614). The mutation 

E195K involves a change in the side chain charge in the second PDZ domain in PDZK1. 

Co-transfection with E195K construct of PDZK1 with its interacting transporters, such 

as PEPT2, OCTN1 or OCTN2, in cultured cell lines, only partially increased the 

transport activity and resulted in activity intermediate between those of wild-type 

PDZK1 and transporter alone 49. Thus, genetic variability of PDZ adaptors affects the 

extent of increase of various transporter activities. It should be noted that mutation of 

PDZK1 may affect the membrane permeation of many compounds, because PDZK1 is 

known to bind to various transporters, and some of them have broad substrate 

specificity. 

For humans who have SNPs of PDZK1 (rs3912316, rs11576685), higher 

plasma concentrations of triglyceride (TG) and VLDL, and increased risk for metabolic 

syndrome or abdominal obesity are observed 82, suggesting the possible association of 

PDZK1 with lipid metabolism. PDZK1 regulates the expression of HDL receptor 

(SR-BI) in the liver 71,83. Moreover, an increased plasma concentration of VLDL is also 
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seen in SR-BI knockout mice 84. Therefore, it is possible that the phenotype seen with 

rs3912316 and rs11576685 is due to a decrease in SR-BI regulation by PDZK1. 

However, despite this possible influence of PDZK1 on cholesterol homeostasis, the 

frequency of another SNP (rs12129861) of PDZK1 is not associated with coronary 

artery disease 85. Rather, this SNP (rs12129861) tends to be related to higher systolic 

blood pressure 86. It is thus possible that PDZK1 mutation may be a risk factor for 

certain vascular diseases. 

The increase in plasma concentration of TG and VLDL by SNP-containing 

PDZK1 may also be explained by PDZK1-mediated regulation of carnitine transporter 

OCTN2. Carnitine is involved in ß-oxidation of fatty acids. OCTN2 mutant (jvs) mice 

exhibit carnitine deficiency and have a remarkably high TG concentration in plasma 87. 

Carnitine treatment significantly decreases the serum concentration of TG in humans 88, 

also supporting a negative correlation between carnitine and TG. Similarly, carnitine 

treatment decreases the plasma concentration of VLDL in rabbits fed a high fat diet 89. 

Thus, carnitine and OCTN2 could be highly relevant to plasma levels of both TG and 

VLDL. On the other hand, the carnitine transport activity of OCTN2 is highly 
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stimulated by PDZK1 and moderately stimulated by PDZK1-E195K 49,50. Therefore, it 

is possible that SNPs of PDZK1 decrease OCTN2 regulation by PDZK1, resulting in 

increased TG and VLDL concentrations. 

There are several reports concerning the association of PDZK1 SNPs with 

serum uric acid. Serum uric acid is lower in subjects who have one PDZK1 SNP 

(rs12129861), but higher in subjects who have another PDZK1 SNP (rs1471633), as 

compared with that in subjects with the wild-type 86,90. Other SNPs (rs1797052, 

rs1298954 and rs12129861) have no effect on serum uric acid 85,91. PDZK1 interacts 

with URAT1, which is involved in reabsorption of uric acid in renal proximal tubules 19. 

PDZK1 also interacts with apical phosphate transporter NaPi-I, which in turn secretes 

uric acid in proximal tubules 18,92. Thus, PDZK1 is involved in uric acid transport in 

both directions (reabsorption and secretion). Consequently, complicated phenotypes 

may be associated with SNPs in PDZK1. For example, if a certain SNP leads to more 

potent regulation by PDZK1 of the reabsorption transporter rather than the secretory 

transporter, this SNP may be associated with higher reabsorption of uric acid. 

Alternatively, if a certain SNP equally contributes to the regulation of both influx and 
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efflux transporters, essentially no change in phenotype may be observed. In short, PDZ 

adaptors might control multiple transporters involved in both influx and efflux, and the 

net flux of the substrate across membranes might reflect the sum of the regulatory 

effects of the PDZ adaptors on every individual transporter.  

 

4-2. NHERF1 

Subjects who have certain SNPs of NHERF1 (Table 2) exhibit several 

phenotypes, including hypophosphatemia, possibly due to impaired reabsorption of 

phosphate in renal tubules, increase in cAMP excretion and increase in serum calcitriol 

level, compared with the wild-type 93. Hypophosphatemia is a symptom observed in 

various diseases, including osteomalacia, and SNPs of NHERF1 could increase the risk 

of these diseases. Hypophosphatemia due to SNPs of NHERF1 can be explained by a 

decrease in reabsorption of phosphate owing to a decreased expression level of NaPi-IIa, 

which reabsorbs phosphoric acid in renal tubules. NHERF1 regulates apical localization 

of this transporter, and loss of NHERF1 down-regulates the expression of NaPi-IIa in 

the renal tubule 38.  
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On the other hand, NaPi-IIa expression is also under control by PTH: via the 

PTH receptor, PTH1 down-regulates the uptake of phosphoric acid in renal tubules 

through down-regulation of NaPi-IIa expression 38. In cultured cell lines, this 

PTH-induced down-regulation of phosphate uptake is not observed in the case of SNPs 

of NHERF1 93. Therefore, certain SNPs of NHERF1 may result in loss of such 

down-regulation of phosphate transporter, thereby possibly leading to 

hyperphosphatemia. Thus, NHERF1 might regulate not only the phosphate transporter, 

but also the receptor that is colocalized adjacent to the transporter and is involved in the 

regulation of transporter expression.  

 

5. Conclusion and Prospects 

PDZ adaptors directly or indirectly interact with various types of transporters, 

receptors and intracellular signaling molecules (see sections 2 and 3). On the other hand, 

genetic variation of PDZ adaptors is associated with metabolic syndrome and other 

human diseases (see section 4). The association of PDZ adaptors with such 

multifactorial disorders could be explained in terms of the regulation of multiple 
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proteins by the PDZ adaptors (Fig. 4). Thus, PDZ adaptors are not just regulators of 

certain proteins, but appear to function as pleiotropic factors involved in various cellular 

events and diseases (Fig. 4).  

 However, there is still a gap between the regulation of proteins and 

association with diseases: the molecular mechanism(s) involved in PDZ 

adaptor-mediated human disorders remain poorly understood (Fig. 4). To clarify how 

PDZ adaptor dysfunction is associated with failure of homeostasis, further genome-wide 

studies in humans and gene knockin/knockout studies in experimental animals seem to 

be necessary. An example of a road map to fill this scientific gap could be deficiency in 

small GTP-binding protein Rab8, which plays a pivotal role in the targeting of various 

transporters and receptors to apical membranes of small intestine. Deficiency of Rab8 in 

humans and mice results in missorting of transporters, such as PEPT1 and SGLT1. Such 

a reduction in multiple transporter functions could be associated with impairment of 

gastrointestinal absorption of multiple nutrients, including oligopeptides and glucose, 

leading to lethality just after weaning in rab8-/- mice and microvillus inclusion disease 

in humans 94,95. On the other hand, pept1-/- mice exhibit reduced intestinal absorption of 
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oligopeptides, but develop normally 96, while sglt1-/- mice exhibit hereditary 

malabsorption of glucose and galactose, but without lethality 97. This may imply that 

deficiency in a single nutrient transporter can be compensated, but deficiency in 

multiple transporters provoked by the knock-down of an adaptor protein cannot be 

compensated, possibly due to the malfunction of other compensating proteins, leading 

to irreversible imbalance of homeostasis. Research on the transporter network may thus 

clarify the mechanisms of multifactorial disorders and perhaps provide target molecules 

for pharmacotherapy of those diseases (Fig. 4). On the other hand, since PDZ adaptors 

are involved in various membrane permeation processes, they could be useful targets to 

clarify the importance of transporters in pharmacokinetics. Research on the 

transporter-network may also contribute to elucidation of unknown membrane 

permeation mechanisms.
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LEGENDS TO FIGURES 

Fig. 1 Schematic diagram representing intracellular trafficking of transporters  

 

 

Fig. 2 Schematic diagram representing regulatory mechanisms for transporters 

exerted by PDZ adaptors 

(A) PDZ adaptors are involved in sorting of transporters to specific cell-surface regions 

of plasma membrane.  

(B) PDZ adaptors stabilize transporters on the cell-surface, thereby increasing 

residence time in plasma membrane. 

(C) PDZ adaptors facilitate signal transduction by clustering various interacting 

proteins.  

(D) PDZ adaptors stimulate the functional activity of transporters. Loss of the 

interaction renders the effect of the adaptors on transporters less facilitative. 
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Fig. 3  Effect of PDZ adaptor gene knockout on transporters in the small intestine, 

kidney and liver  

 

 

Fig. 4 Possible association of impairment of the transporter network with 

increased risk of developing common diseases 

Loss or mutation in PDZ adaptors diminishes the expression and/or function 

of various interacting transporters. Simultaneous malfunction of various transporters 

may increase the risk of common diseases. 

 



Table 1   Regulatory Mechanisms for PDZ Adaptors (in vitro studies) 
PDZ 

Adaptor 
Binding Proteins Effect of Interaction  Cell line(s) or othera) Reference 

PDZK1 

MRP2 
Sorting and/or 
Stabilization 

Overexpression (HepG2) [98] 

DRA Signaling 
Overexpression (Caco2BBe and 

HEK293) 
[99] 

EAAC1 
Sorting 

 Stabilization 
Activation 

Overexpression (MDCKII) [12] 

MAP17/NaPi-IIa 
Sorting and/or 
Stabilization 

Overexpression (OK) [100] 

MRP2/CFTR Activation Endogenous (Calu-3) [101] 

MRP4/CFTR Signaling Endogenous (HT29-CL19A and T84) [44] 

NHE3 
Signaling 
Activation 

Overexpression (PS120 and Caco2BBe) [102] 

NOS2 Activation Endogenous (MDCKII) [103] 

OAT4 
Sorting and/or 
Stabilization 
Activation 

Overexpression (HEK293) [31] 

Overexpression (LLC-PK1) [34] 

OCTN1 
Sorting and/or 
Stabilization  
Activation 

Overexpression (HEK293) [49] 

OCTN2 Activation  Overexpression (HEK293) [50] 

PEPT1 
Sorting and/or 
Stabilization  
Activation 

Overexpression (HEK293) [51] 

PEPT2 
Sorting and/or 
Stabilization  
Activation 

Overexpression (HEK293) [20], [32] 

SR-BI Signaling 
Endogenous (mouse bovine aortic 

endothelial cells) 
[79] 

 



Table 1.   (continued) 
PDZ 

Adaptor 
Binding 
Proteins 

Effect of Interaction Cell line(s) or othera) Reference 

NHERF1 

β2-AR 
Sorting and/or 
Stabilization 

Overexpression (CHO-N10) [104] 

PTHR 
(PTH1R) 

Signaling 
Overexpression (PS120-R, CHO-R and 

HEK293R) 
[105] 

Sorting and/or 
Stabilization 

Signaling 
Overexpression (A10) [106] 

Sorting and/or 
Stabilization 

Overexpression (CHO-N10 and MC4) 
Endogenous (HEK293) 

[107] 

Sorting and/or 
Stabilization 

Signaling 
Overexpression (ROS 17/2.8) [108] 

Sorting and/or 
Stabilization 

Overexpression (CHO-N10) [104] 

PTEN 
Stabilization 

Signaling 
Endogenous and overexpression (GBM) [109] 

FzdR 
Stabilization  

Signaling 
Endogenous (MCF7) 

Overexpression (CHO-N10) 
[110] 

CCR5 
Stabilization 

Signaling 
Overexpression (HEK293) [111] 

MRP4 

Stabilization 
Activation 

Endogenous (HeLa) [112] 

Sorting Overexpression (MDCKI and LLC-PK1) [113] 

OAT4 

Sorting and/or 
Stabilization 
Activation 

Overexpression (LLC-PK1) [34] 

Stabilization Overexpression (COS7) [35] 

CFTR 

Stabilization Overexpression (COS7) [114] 

Stabilization Overexpression (CFBE41o-) [115] 

Sorting and/or 
Stabilization 
Activation 

Overexpression (16HBE14o- and 
CFBE41o-) 

[116] 

NaPi-IIa 

Stabilization Overexpression (OK and OK-H) [117] 

Sorting and/or 
Stabilization 
Activation 

Endogenous (OK and OK-H) [118] 

NaS1 Activation Overexpression (Xenopus oocyte) [119] 

iNOS 
Sorting 

Activation 
Endogenous and overexpression (RAW 

264.7) 
[120] 

ERK1/2 Signaling Overexpression (CHO-N10) [121] 

a) Endogenous: for proteins endogenously expressed in the cells; Overexpression: for 

proteins exogenously transfected into the cells 



Table 2.  SNPs reported for PDZK1 and NHERF1 genes 
Gene dbSNP rs#

cluster id 
Nucleotide 

changea) 
Amino acid
substitution

Allele 
frequency 

Population Phenotype Possible 
disorder 

Reference 

PDZK1 

rs1797052 
g.1055270C>T 

c.-69C>T 
- 0.039 Croatian 

Serum uric acid →

- [91] 

rs1298954 
g.1057747A>G 

c.-3+2411A>G 
- 0.689 Croatian - [91] 

rs12129861 g.1053276G>A - 

0.472b)

0.500c)
German Allele frequency in gout patients → - [85] 

0.492d)

0.483e)
German 

Allele frequency 

  in coronary artery disease patients 
→ - [85] 

0.46 European Serum uric acid ↓ Hypouricemia [90] 

0.48 Caucasian 
Serum uric acid 

Systolic blood pressure 

↓

↑

Hypouricemia 

Hypertension 
[86] 

rs1471633 g.1051326A>C - N.D. European Serum uric acid ↑ Hyperuricemia [90] 

rs3912316 N.D. - 0.131-0.261f) Caucasian 

Risk of metabolic syndrome 

Plasma triglycerides 

A trend toward abdominal obesity 

A trend toward hypertension 

Large and medium VLDL level 

↑

↑

↑

↑

↑

Metabolic syndrome 

Hypertension 

Hyperlipemia 

[82] 

rs11576685 
g.1070683A>G 

c.-73-167A>G 
- 0.035-0.070f) Caucasian A trend toward abdominal obesity ↑ Metabolic syndrome [82] 

rs1284300 
g.1075050C>T 

c.210+210C>T 
- 0.078-0.155f) Caucasian -  - - [82] 

 



Table 2.  (continued) 
Gene dbSNP rs#

cluster id 
Nucleotide 

changea) 
Amino acid
substitution

Allele 
frequency 

Population Phenotype Possible 
disorder 

Reference 

NHERF1 

rs35910969 
g.38019465C>G 

c.328C>G 
L110V 0.006-0.012f) Caucasian 

Tubular maximum for phosphate reabsorption  

    per glomerular filtration rate (TmP/GFR) 

Urinary cAMP excretion 

Serum 1,25-dihydroxyvitamin D (calcitriol) 

↓

 

 

↑

↑

Hypophosphatemia 

Osteomalacia 

Renal tubular acidosis

[93] 

rs41282065 
g.38032319G>A 

c.458G>A 
R153Q 0.003-0.006f) Caucasian [93] 

- c.673G>A E225K 0.003-0.006f) Caucasian [93] 

a) c, coding DNA reference sequence; g, genomic reference sequence 
b) in gout 
c) gout-free  
d) in coronary artery disease case 
e) coronary artery disease-free  
f) Estimated from the data shown in references 
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