Novel formations of 6-mesyloxytryptamines and 1-substituted 3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indoles in the reaction of nb-substituted 1-hydroxytryptamines with mesyl chloride | 著者 | Hasegawa Masakazu, Nagahama Yoshiyuki,
Kobayashi Kensuke, Hayashi Masumi, Somei
Masanori | |-------------------|------------------------------------------------------------------------------------------------| | journal or | Heterocycles | | publication title | | | volume | 52 | | number | 1 | | page range | 483-491 | | year | 2000-01-01 | | URL | http://hdl.handle.net/2297/4355 | NOVEL FORMATIONS OF 6-MESYLOXYTRYPTAMINES AND 1-SUB-STITUTED 3a-(4-CHLOROBUTOXY)-1,2,3,3a,8,8a-HEXAHYDROPYRROLO-[2,3-b]INDOLES IN THE REACTION OF Nb-SUBSTITUTED 1-HYDROXY-TRYPTAMINES WITH MESYL CHLORIDE¹ Masakazu Hasegawa, Yoshiyuki Nagahama, Kensuke Kobayashi, Masumi Hayashi, and Masanori Somei* Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan Abstract — Formations of 6-mesyloxytryptamines and 1-substituted 3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indoles were newly found in the reactions of Nb-substituted 1-hydroxytryptamines with mesyl chloride in THF. The latter compounds suggest that the intermediate indol-3-yl cations can trap THF and cleave the ether bond. We have thus far disclosed that 1-hydroxyindoles^{2,3,4} undergo six types of reactions such as 1) regio-selective nucleophilic substitution to give 5-substituted indoles,⁴ 2) formation of pyrrolo[2,3-b]indoles,⁴ a) formation of kabutanes,⁴ e 4) dimerization to afford 2,2'-bisindole derivatives,⁵ 5) dehydroxylation to give indoles,⁴ and 6) formation of 3a,3a'-bispyrrolo[2,3-b]indoles¹b depending on reaction conditions and structures of 1-hydroxyindoles. Now we wish to report additional novel findings observed in the reactions of Nb-substituted 1-hydroxytryptamines with mesyl chloride (MsCl). The reaction of Nb-acetyl-1-hydroxytryptamine (1a) with MsCl in THF in the presence of triethylamine at 0 °C produced 1-acetyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indole (2a), Nb-acetyl-6-mesyloxytryptamine (3a), Nb-acetyl-2,3-dihydro-2-oxotryptamine (4a), 1-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (5a), and Nb-acetyltryptamine (6a) in 35, 4, 5, 7, and 2% yields, respectively. Under similar reaction conditions, 1-hydroxy-Nb-methoxycarbonyltryptamine (1b) provided 3b, 4b, and 5b in 7, 34, and 9% yields, respectively, but formation of 2b was not observed. In the case of Nb-trifluoroacetyl-1-hydroxytryptamine (1c), 2c, 3c, 4c, and 5c were isolated in 45, 8, 4, and 6% yields, respectively. It is interesting to note that the yield of 2 increases, while the yield of 4 decreases, in the order of electron withdrawing ability of Nb-substituents (COOMe<COMe<COCF3). These data seem to suggest that stability of 2 governs the quantity of 4, which is probably formed by hydrolysis of 2. Structural determinations were carried out as follows. The compound (2a) was identical with the authentic sample prepared according to Witkop's procedure⁶ by reacting 6a with t-butyl hypochlorite, followed by treatment with aqueous NaOH. The structures of 2b and 2c were confirmed by comparing their spectral data with those of 2a. On the other hand, compounds (3b and 3c) were transformed to 1-acetyl compounds (7b and 7c) in 71 and 71% yields, respectively, by treatment with NaH in DMF, followed by reaction with AcCl. In their ¹H-NMR spectra, meta-coupled C(7)-protons are deshielded by 1 ppm compared with those ## Scheme 1 of 3b and 3c, proving that these compounds are 6-substituted indoles. The structures of compounds (4a-c) and 6a were determined by their spectral data. Although structures of **5a-c** were deduced by spectral data, there remained a little worry because we failed to substitute the chlorine atom on the butoxy side chain for a hydroxy or acetoxy group under various reaction conditions with NaI-bases, NaOAc, and AgOAc. The presence of N(8)-H in **5b** was confirmed by obtaining acetyl derivative (**8**) in 73% yield by the reaction with Ac₂O-pyridine. Introduced acetyl group at the 8-position of **8** showed deshielding anisotropy effect on the C(7)-proton by 1 ppm. In order to determine the presence of the chlorobutoxy side chain in 5c, its trifluoroacetyl group was first removed off in 93% yield with K₂CO₃ in refluxing MeOH affording 9, which was then derived to stable sulfonamide derivative (10) in 87% yield by treatment with TsCl. The reaction of 10 with 15% aqueous NaSMe in MeOH was a slow process and after 192 h at room temperature thioether compound (11) was isolated in 54% yield together with 32% yield of recovery. When the reaction was performed at elevated temperature, the yield of 11 dropped significantly. Oxidation of 11 with m-chloroperbenzoic acid in CHCl₃ produced sulfone (12) and sulfoxide (13) as a mixture of diastereoisomers in 43 and 15% yields, respectively. The series of reactions and comparisons of spectral data of 9 through 13 clearly proved the existence of four carbon unit in their structures. Formations of **5a-c** are interesting to note and the reaction mechanism might be explained as shown in Scheme 2. Departure of the mesyloxy group from the initially formed 1-mesyloxytryptamine (**14**) would generate intermediate indol-3-yl cation (**15**), which then traps THF as an oxonium ion (**16**). Subsequent chloride attack on the carbon atom connected to the positive oxygen atom would cleave ether ring to build chlorobutoxy side chain on **17**. Final cyclization of *Nb*-nitrogen to the imine carbon atom would result in the formation of pyrrolo[2,3-b]indole structure. It is worthy to note as well that 6-substituted indoles (3a-c) were observed for the first time in the reaction of 1-hydroxyindoles. The mechanism of their formations would be explained by the [3,7] sigmatropic rearrangement of the intermediate (14). In summary, we have discovered interesting reactions characteristic to 1-hydroxyindole structure. 3 Reactions of 1-hydroxyindoles with p-toluenesulfonic acid and p-toluenesulfonyl chloride have also exhibited another novel results and they will be reported in due course. Applications of the present results and improvement of the yields are in progress. ## EXPERIMENTAL Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with a Shimadzu IR-420 spectrophotometer, and ¹H-NMR spectra with a JEOL GSX-500 spectrometer, with tetramethylsilane as an internal standard. MS spectra were recorded on a JEOL SX-102A spectrometer. Column chromatography was performed on silica gel (SiO₂, 100-200 mesh, from Kanto Chemical Co. Inc.). 1-Acetyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indole (2a), Nb-acetyl-6-mesyloxytryptamine (3a), Nb-acetyl- $2,3-dihydro-2-oxotryptamine~(4a),~cis-1-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,a,a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,a,a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,a-hexahydropyrrolo \cite{A}-acetyl-3a-(4-chlorobutoxy)-1,2,3,3a-(4-chlorobutoxy)-1,2,3,3a-(4-chlorobutoxy)-1,2$ b]indole (5a), and Nb-acetyltryptamine (6a) from Nb-acetyl-1-hydroxytryptamine (1a) — A solution of MsCl (250.3 mg, 2.185 mmol) in dry THF (1.0 mL) was added to a solution of 1a (299.5 mg, 1.374 mmol) in dry THF (10.0 mL) and dry Et₃N (1.0 mL) and stirring was continued for 6 h at 0 °C. After addition of H₂O under ice-cooling, the whole was extracted with CHCl₃-MeOH (95:5, v/v). The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized twice from CHCl₃ - hexane to give 2a (95.6 mg, 35%). The mother liquor was column-chromatographed repeatedly on SiO₂ successively with CHCl₃, CHCl₃-MeOH (99:1, v/v), and AcOEt to give 5a (30.5 mg, 7%), 6a (6.7 mg, 2%), 3a (16.0 mg, 4%), and 4a (15.0 mg, 5%) in the order of elution. 2a: mp 221 °C (decomp, colorless powder recrystallized from MeOH-CH₂Cl₂) (lit., 6 mp 243 -244 °C; in our hand, authentic sample prepared according to Witkop's procedure⁶ melted at 221 °C with decomp). IR (KBr): 3300, 1643, 1610, 1585, 1530, 1440, 1350, 1325, 1215, 970, 735, 710 cm⁻¹. ¹H-NMR (DMSO-d₆) δ : 2.13 (3H, s), 3.09 (2H, t, J=7.5 Hz), 4.48 (2H, t, J=7.5 Hz), 6.90 (1H, dt, J=2.0 and 7.5 Hz), 6.94 (1H, dt, J=2.0 and 7.5 Hz), 7.23 (1H, d, J=7.5 Hz), 7.33 (1H, d, J=7.5 Hz). High resolution MS m/z: Calcd for $C_{12}H_{12}N_2O$: 200.0950. Found: 200.0944 (M⁺). Anal. Calcd for $C_{12}H_{12}N_2O \cdot 2/3H_2O$: C, 67.92; H, 5.66; N, 13.20. Found: C, 67.68; H, 5.85; N, 12.83. **3a**: mp 143— 144°C (colorless prisms recrystallized from AcOEt). IR (KBr): 3390, 3255, 1631, 1552, 1364, 1174, 974, 873, 815, 528 cm⁻¹. 1 H-NMR (CD₃OD) δ : 1.91 (3H, s), 2.93 (2H, dt, J=0.6 and 7.3 Hz), 3.12 (3H, s), 3.45 (2H, t, J=7.3 Hz), 6.98 (1H, dd, J=8.8 and 2.2 Hz), 7.16 (1H, s), 7.31 (1H, dd, J=2.2 and 0.5Hz), 7.59 (1H, dd, J=8.8 and 0.5 Hz). Anal. Calcd for $C_{13}H_{16}N_2O_4S$: C, 52.69; H, 5.44; N, 9.45. Found: C, 52.68; H, 5.46; N, 9.27. 4a: mp 146-147 °C (colorless prisms recrystallized from MeOH-CH₂Cl₂). IR (KBr): 3300, 3060, 1693, 1618, 1543, 1225, 940, 740 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.88 (3H, s), 2.00—2.08 (1H, m), 2.10—2.18 (1H, m), 3.21—3.29 (1H, m), 3.32—3.40 (1H, m), 3.49 (1H, t, J=6.3 Hz), 6.89 (1H, d, J=7.5 Hz), 7.02 (1H, dt, J=1.3 and 7.5 Hz), 7.20 (1H, t, J=7.5 Hz), 7.32 (1H, d, J=7.5 Hz). MS m/z: 218 (M⁺). Anal. Calcd for C₁₂H₁₄N₂O₂: C, 66.03; H, 6.47; N, 12.84. Found: C, 66.05; H, 6.53; N, 12.80. **5a**: mp 107—108 °C (colorless prisms recrystallized from AcOEt). IR (KBr): 3323, 2950, 2945, 2898, 1617, 1609, 1439, 1313, 1197, 1101, 1085, 1070, 750 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.55—1.65 (2H, m), 1.75—1.83 (2H, m), 2.03 (3H, s), 2.40—2.54 (2H, m), 3.14 (1H, dt, J=9.3 and 6.4 Hz), 3.25 (1H, dt, J=6.4 and 10.5 Hz), 3.31 (1H, dt, J=9.3 and 6.4 Hz), 3.48 (2H, t, J=7.0 Hz), 3.68 (1H, ddd, J=10.5, 7.8, and 2.4 Hz), 5.24 (1H, br s, disappeared on addition of D₂O), 5.41 (1H, s), 6.61 (1H, d, J=8.0 Hz), 6.81 (1H, ddd, J=8.0, 7.5, and 0.8 Hz), 7.18 (1H, ddd, J=8.0, 7.5, and 1.2 Hz), 7.21 (1H, br d, J=7.5 Hz). MS (EI⁺) m/z: 311 (MH⁺) and 309 (MH⁺). Anal. Calcd for C₁₆H₂₁N₂O₂Cl: C, 62.23; H, 6.85; N, 9.07. Found: C, 62.04; H, 6.87; N, 9.09. 6-Mesyloxy-Nb-methoxycarbonyltryptamine (3b), 2,3-dihydro-Nb-methoxycarbonyl-2-oxotryptamine (4b) and cis-3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydro-1-methoxycarbonylpyrrolo[2,3-b]indole (5b) from 1-hydroxy-Nb-methoxycarbonyltryptamine (1b) — A solution of MsCl (427.5 mg, 3.732 mmol) in dry THF (5.0 mL) was added to a solution of 1b (703.8 mg, 3.008 mmol) in dry THF (22.0 mL) and dry Et₃N (2.7 mL) at 0 °C and stirring was continued for 1 h at 0 °C. After addition of H₂O under ice-cooling, the whole was extracted with CHCl3-MeOH (95:5, v/v). The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO₂ successively with CHCl₃, CHCl₃ – MeOH (99:1, v/v), and CHCl₃ – MeOH – 28% aqueous NH₃ (46:2:0.2, v/v) to give 5b (87.0 mg, 9%), 3b (61.3 mg, 7%), and 4b (239.5 mg, 34%) in the order of elution. 3b: Colorless oil. IR (film): 3400, 2950, 1703, 1623, 1523, 1458, 1353, 1250, 1175, 1118, 950, 860 cm⁻¹. ¹H-NMR (5% CD₃OD-CDCl₃) δ: 2.95 (2H, t, *J*=5.6 Hz), 3.14 (3H, s), 3.48 (2H, q, J=5.6 Hz), 3.66 (3H, s), 5.10 (1H, br s), 7.00 (1H, dd, J=2.5 and 8.8 Hz), 7.10 (1H, s), 7.35 (1H, d, J=2.5Hz), 7.58 (1H, d, J=8.8 Hz), 9.24 (1H, br s). High resolution MS m/z: Calcd for C₁₃H₁₆N₂O₅S: 312.0780. Found: 312.0781 (M⁺). 4b: mp 123.5 — 125.0 °C (colorless powder recrystallized from CH₂Cl₂-hexane). IR (KBr): 3390, 3190, 3090, 1695, 1620, 1538, 1466, 1282, 1264, 1232, 1181, 1142, 747 cm⁻¹. ¹H-NMR (pyridine-d₅+D₂O, 60°C) δ: 2.21—2.29 (1H, m), 2.29—2.37 (1H, m), 3.57—3.66 (4H, m), 3.67 (3H, s), 7.00 (1H, dd, J=7.8 and 7.4 Hz), 7.04 (1H, d, J=7.8 Hz), 7.20 (1H, dd, J=7.4 and 7.8 Hz), 7.36 (1H, d, J=7.4 Hz). MS m/z: 234 (M⁺). Anal. Calcd for C₁₂H₁₄N₂O₃· 1/4H₂O: C, 60.36; H, 6.12; N, 11.73. Found: C, 60.48; H, 5.95; N, 11.61. 5b: Colorless oil. IR (film): 3350, 2950, 1703 (br), 1613, 1458, 1383, 1305, 1200, 1100, 750 cm⁻¹. ¹H-NMR (DMSO-d₆, 90°C) δ: 1.51—1.59 (2H, m), 1.68 - 1.76 (2H, m), 2.24 - 2.37 (2H, m), 3.12 (1H, dt, J=8.8 and 5.6 Hz), 3.27 (1H, dt, J=8.8)J=8.8 and 5.6 Hz), 3.54 (2H, t, J=6.3 Hz), 3.56—3.65 (3H, m), 5.25 (1H, d, J=1.9 Hz), 6.24 (1H, br s), 6.60 (1H, d, J=6.3 Hz), 6.68 (1H, dt, J=1.3 and 6.3 Hz), 7.08 (1H, dt, J=1.3 and 6.3 Hz), 7.16 (1H, d, J=6.3 Hz). High resolution MS m/z: Calcd for C₁₆H₂₁N₂O₃Cl: 326.1211 and 324.1241. Found: 326.1225 (M⁺) and 324.1243 (M⁺). 1-Trifluoroacetyl-1,2,3,8-tetrahydropyrrolo[2,3-b]indole (2c), Nb-trifluoroacetyl-6-mesyloxytryptamine (3c), Nb-trifluoroacetyl-2,3-dihydro-2-oxotryptamine (4c), and cis-3a-(4-chlorobutoxy)-1-trifluoroacetyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (5c) from Nb-trifluoroacetyl-1-hydroxytryptamine (1c) — A solution of MsCl (653.7 mg, 5.70 mmol) in dry THF (5.0 mL) was added to a solution of 1c (1.2308 g, 4.53 mmol) in dry THF (35.0 mL) and dry Et₃N (4.0 mL) and stirring was continued for 1 h at 0°C. After addition of H₂O under ice-cooling, the whole was extracted with CH₂Cl₂. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from CH₂Cl₂-hexane to give 2c (435.3 mg). The mother liquor was column-chromatographed repeatedly on SiO₂ successively with CH₂Cl₂ and AcOEt-hexane (1:1, v/v) to give additional 2c (77.5 mg, total 512.8 mg, 45%), 5c (99.8 mg, 6%) and 3c (121.1 mg, 8%) and 4c (46.8 mg, 4%) in the order of elution. 2c: mp 238—240°C (decomp, colorless plates recrystallized from CH₂Cl₂-hexane). IR (KBr): 3370, 1670, 1619, 1446, 1351, 1278, 1233, 1203, 1139, 1069, 746 cm⁻¹. ¹H-NMR (CDCl₃) δ: 3.30 (2H, t, J=7.4 Hz), 4.71 (2H, t, J=7.4 Hz), 7.15 (1H, dt, J=1.6 and 6.9 Hz), 7.18 (1H, dt, J=1.6 and 6.9 Hz), 7.36 (1H, dd, J=6.9 and 1.6 Hz), 7.42 (1H, dd, J=6.9 and 1.6 Hz), 9.11 (1H, br s). High resolution MS m/z: Calcd for C_{1.2}H₉N₂OF₃: 254.0665. Found: 254.0662 (M⁺). 3c: mp 114.5—115.5 °C (colorless needles recrystallized from CH₂Cl₂-hexane). IR (KBr): 3430, 3340, 1700, 1563, 1355, 1172, 1119, 976, 952, 870 cm⁻¹. 1 H-NMR (CDCl₃) δ : 3.04 (2H, t, J=6.6 Hz), 3.15 (3H, s), 3.67 (2H, q, J=6.6 Hz), 6.37 (1H, br s), 7.05 (1H, d, J=8.8 Hz), 7.11 (1H, s), 7.37 (1H, br s), 7.58 (1H, d, J=8.8 Hz), 8.26 (1H, br s). High resolution MS m/z: Calcd for C₁₃H₁₃N₂O₄F₃S: 350.0546. Found: 350.0539 (M⁺). 4c: mp 182.0 — 182.5 °C (pale beige prisms recrystallized from benzene). IR (KBr): 3275, 1704, 1671, 1472, 1232, 1208, 1174, 752 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 1.99-2.07 (1H, m), 2.36-2.42 (1H, m), 3.50-3. 56 (2H, m), 3.76—3.82 (1H, m), 6.91 (1H, d, J=7.5 Hz), 7.10 (1H, t, J=7.5 Hz), 7.25 (1H, d, J=7.5Hz), 7.26 (1H, t, J=7.5 Hz), 8.18 (2H, br s). High resolution MS m/z: Calcd for $C_{12}H_{11}N_2O_2F_3$: 272.0771. Found: 272.0777 (M+). 5c: Colorless oil. IR (film): 3370, 2940, 1694, 1612, 1486, 1471, 1255, 1206, 1145, 1101, 1066, 750 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.60—1.69 (2H, m), 1.75—1.83 (2H, m), 2.34—2.41 (1/6H, m), 2.47—2.59 (5/6H, m), 3.15 (5/6H, dt, J=8.8 and 6.4 Hz), 3.20 (1/6H, dt, J=8.8 and 6.4 Hz), 3.25 (1/6H, dt, J=8.8 and 6.4 Hz), 3.30 (5/6H, dt, J=8.8 and 6.4 Hz), 3.36 (1H, dt, J=6.4 and 11.2 Hz), 3.49 (2H, t, J=7.8 Hz), 3.95—3.98 (5/6H, m), 4.14—4.18 (1/6H, m), 5.52 (5/6H, br s), 5.64 (1/6H, br s), 6.65 (1H, d, J=7.8 Hz), 6.85 (5/6H, t, J=7.8 Hz), 6.86 (1/6H, t, J=7.8 Hz), 7.22 (1H, t, J=7.8 Hz), 7.23 (1H, d, J=7.8 Hz). High resolution MS m/z: Calcd for C₁₆H₁₈N₂O₂ClF₃: 364.0978 and 362.1007. Found: 364.1003 (M+) and 362.1022 (M+). *cis*-8-Acetyl-3a-(4-chlorobutoxy)-1,2,3,3a,8,8a-hexahydro-1-methoxycarbonylpyrrolo[2,3-b]indole (8) from 5b — Ac₂O (3.5 mL) was added to a solution of 5b (69.1 mg, 0.213 mmol) in pyridine (7.0 mL) and the mixture was stirred for 48 h at rt. After evaporation of the solvent, H₂O was added to the residue and the whole was extracted with CHCl₃-MeOH (95:5, v/v). The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO₂ successively with CHCl₃-hexane (1:2, v/v) and CHCl₃ to give 8 (56.6 mg, 73%). 8: Colorless oil. IR (film): 3500, 2970, 1713, 1673, 1453, 1398, 1377, 1105, 760 cm⁻¹. ¹H-NMR (DMSO-d₆, 90°C) δ: 1.50—1.58 (2H, m), 1.65—1.75 (2H, m), 2.32 (1H, dt, *J*=8.8 and 11.3 Hz), 2.42 (1H, m), 2.42 (3H, s), 2.73 (1H, dq, *J*=11.3 and 6.9 Hz), 3.16 (1H, dt, *J*=8.8 and 6.9 Hz), 3.32 (1H, dt, *J*=8.8 and 6.9 Hz), 3.53 (2H, t, *J*=6.9 Hz), 3.64 (3H, s), 3.77 (1H, dd, *J*=8.8 and 11.3 Hz), 5.96 (1H, s), 7.18 (1H, dt, *J*=1.9 and 7.5 Hz), 7.36 (1H, dt, *J*=1.9 and 7.5 Hz), 7.44 (1H, dd, *J*=1.9 and 7.5 Hz), 7.92 (1H, d, *J*=7.5 Hz). High resolution MS *m/z*: Calcd for C₁₈H₂₃N₂O₄Cl: 368.1317 and 366.1346. Found: 368.1319 (M⁺) and 366.1331 (M⁺). 1-Acetyl-6-mesyloxy-Nb-methoxycarbonyltryptamine (7b) from 3b— A solution of 3b (58.8 mg, 0.188 mmol) in dry DMF (5.0 mL) was added to 60% NaH (30.5 mg, 0.763 mmol, washed with dry benzene) at 0°C with stirring. A solution of AcCl (60.5 mg, 0.771 mmol) in dry DMF (0.5 mL) was added to the resultant solution and the mixture was stirred for 1 h at rt. After addition of H₂O under ice cooling, the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO₂ successively with CHCl₃ and AcOEt to give 7b (47.0 mg, 71%). 7b: mp 132.0 °C (colorless powder recrystallized from CH₂Cl₂-hexane). IR (KBr): 3400, 2970, 1695, 1613, 1520, 1360, 1180, 970, 960, 908, 884, 840, 808 cm⁻¹. ¹H-NMR (DMSO-d₆) δ : 2.63 (3H, s), 2.82 (2H, t, J=6.3 Hz), 3.32 (2H, q, J=6.3 Hz), 3.38 (3H, s), 3.53 (3H, s), 7.30 (1H, dd, J=7.5 and 3.1 Hz), 7.68 (1H, d, J=7.5 Hz), 7.77 (1H, s), 8.25 (1H, d, J=3.1 Hz). MS m/z: 354 (M⁺). Anal. Calcd for C₁₅H₁₈N₂O₆S · 1/4 H₂O: C, 50.20; H, 5.20; N, 7.81. Found: C, 50.38; H, 4.97; N, 7.77. 1-Acetyl-6-mesyloxy-Nb-trifluoroacetyltryptamine (7c) from 3c — A solution of 3c (109.6 mg, 0.313 mmol) in dry DMF (2.0 mL) was added to 60% NaH (20.7 mg, 0.518 mmol, washed with dry benzene) at 0°C with stirring. A solution of AcCl (49.8 mg, 0.634 mmol) in dry DMF (2.0 mL) was added to the resultant solution and the mixture was stirred for 2 h at rt. After addition of H₂O under ice cooling, the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO₂ with AcOEt-hexane (1:1, v/v) to give unreacted 3c (19.8 mg, 18%) and 7c (47.0 mg, 71%) in the order of elution. 7c: mp 133–134°C (colorless needles recrystallized from CH₂Cl₂-hexane). IR (KBr): 3260, 3100, 1728, 1691, 1568, 1442, 1341, 1326, 1192, 1175, 1154, 894, 807 cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.51 (3H, br s), 3.01 (2H, t, *J*=6.3 Hz), 3.20 (3H, s), 3.72 (2H, q, *J*=6.3 Hz), 6.70 (1H, br s), 7.28 (1H, d, *J*=8.7 Hz), 7.31 (1H, s), 7.54 (1H, d, *J*=8.7 Hz), 8.37 (1H, s). High resolution MS *m/z*: Calcd for C₁5H₁5N₂O₅F₃S: 392.0653. Found: 392.0653 (M⁺). cis-3a-(4-Chlorobutoxy)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (9) from 5c — 20% Aqueous K₂CO₃ (2.0 mL) was added to a solution of 5c (35.2 mg, 0.097 mmol) in MeOH (2.0 mL) at 0°C. The mixture was stirred for 15 min at rt. After addition of ice cooled H₂O, the whole was extracted with CH₂Cl₂-MeOH (95:5, v/v). The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃-MeOH-28% aqueous NH₃ (46:5:0.5, v/v) to give 9 (24.0 mg, 93%). 9: Pale brown oil. IR (film): 3250, 2920, 1610, 1483, 1470, 1310, 1103, 1078, 743 cm⁻¹. 1 H-NMR (CDCl₃) δ : 1.62—1.68 (2H, m), 1.79—1.85 (2H, m), 2.22—2.28 (2H, m), 2.74—2.82 (1H, m), 3.08—3.12 (1H, m), 3.17 (1H, dt, 2 9.3 and 6.4 Hz), 3.24 (1H, dt, 2 9.3 and 6.4 Hz), 3.51 (2H, d, 2 9.4 (1H, t, 2 9.3 and 6.4 Hz), 7.17 (1H, t, 2 9.5 (1H, s), 6.59 (1H, d, 2 9.5 (1H, t, 2 9.6 Hz), 7.13 (1H, t, 2 9.6 Hz), 7.17 (1H, t, 2 9.6 Hz). High resolution MS 2 9.18 (181 (M⁺) and 266.1184 (M⁺). cis-3a-(4-Chlorobutoxy)-1,2,3,3a,8,8a-hexahydro-1-tosylpyrrolo[2,3-b]indole (10) from 9 — p-Toluene-sulfonyl chloride (10.4 mg, 0.055 mmol) was added to a solution of 9 (12.5 mg, 0.047 mmol) in pyridine (1.0 mL) at 0 °C. The mixture was stirred for 15 min at rt. Evaporation of the solvent under reduced pressure afforded an oil, which was column-chromatographed on SiO₂ with CHCl₃ to give **10** (17.1mg, 87%). **10**: Colorless oil. IR (film): 3385, 2950, 1613, 1483, 1473, 1340, 1160, 820, 753, 665 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.50—1.56 (2H, m), 1.66—1.72 (2H, m), 2.17 (1H, ddd, J=8.1, 9.4 and 12.5 Hz), 2.27 (1H, ddd, J=3.8, 6.3 and 12.5 Hz), 2.45 (3H, s), 3.08 (1H, dt, J=9.4 and 6.3 Hz), 3.15 (1H, dt, J=9.4 and 6.3 Hz), 3.21 (1H, ddd, J=6.3, 9.4 and 10.0 Hz), 3.41 (1H, ddd, J=3.8, 8.1 and 10.0 Hz), 3.43 (2H, t, J=6.3 Hz), 4.90 (1H, br s), 5.19 (1H, s), 6.65 (1H, d, J=7.5 Hz), 6.80 (1H, dt, J=1.3 and 7.5 Hz), 7.13 (1H, d, J=7.5 Hz), 7.18 (1H, dd, J=1.3 and 7.5 Hz), 7.35 (2H, d, J=8.1 Hz). High resolution MS m/z: Calcd for C₂₁H₂₅N₂O₃ClS: 422.1245 and 420.1275. Found: 422.1247 (M⁺) and 420.1270 (M⁺). cis-3a-(4-Methylthiobutoxy)-1,2,3,3a,8,8a-hexahydro-1-tosylpyrrolo[2,3-b]indole (11) from 10 — 15% Aqueous NaSMe (9 mL, 19.3 mmol) was added to a solution of 10 (57.5 mg, 0.137 mmol) in MeOH (4.5 mL) and stirring was continued for 192 h at rt. After addition of H₂O, the whole was extracted with CHCl₃ –MeOH (95:5, v/v). The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO₂ with CH₂Cl₂-hexane (10:1, v/v) to give unreacted 10 (18.6 mg, 32%) and 11 (31.7mg, 54%) in the order of elution. 11: Colorless oil. IR (film): 3370, 2930, 1615, 1485, 1470, 1343, 1160, 815, 750, 665 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.47—1.53 (4H, m), 2.05 (3H, s), 2.18 (1H, dt, *J*=12.5 and 7.5 Hz), 2.28 (1H, ddd, *J*=3.8, 6.3 and 12.5 Hz), 2.39 (2H, t, *J*=7.3 Hz), 2.45 (3H, s), 3.03—3.10 (1H, m), 3.11—3.17 (1H, m), 3.20 (1H, dt, *J*=6.3 and 9.7 Hz), 3.41 (1H, ddd, *J*=3.8, 7.5 and 10.6 Hz), 4.89 (1H, br s), 5.20 (1H, s), 6.64 (1H, d, *J*=7.5 Hz), 6.80 (1H, t, *J*=7.5 Hz), 7.14 (1H, d, *J*=7.5 Hz), 7.18 (1H, t, *J*=7.5 Hz), 7.34 (2H, d, *J*=8.1 Hz), 7.76 (2H, d, *J*=8.1 Hz). High resolution MS *m/z*: Calcd for C₂₂H₂₈N₂O₃S₂: 432.1541. Found: 432.1540 (M⁺). cis-1,2,3,3a,8,8a-Hexahydro-3a-(4-mesylbutoxy)-1-tosylpyrrolo[2,3-b]indole (12) and cis-1,2,3,3a,8,8ahexahydro-3a-(4-methylsulfinylbutoxy)-1-tosylpyrrolo[2,3-b]indole (13) from 11 — m-Chloroperoxybenzoic acid (80%, 23.0 mg, 107 mmol) was added to a solution of 11 (21.9 mg, 0.051 mmol) in CHCl₃ (2.0 mL) and the mixture was stirred for 15 min at rt. 10% Aqueous Na₂S₂O₃ was added to the reaction mixture under ice cooling and the whole was extracted with AcOEt. The extract was washed with brine, dried over Na2SO4, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO2 successively with AcOEt-hexane (3:1, v/v) and MeOH-CH₂Cl₂ (1:99, v/v) to give 12 (10.0 mg, 43%) and 13 (3.3 mg, 15%, a mixture of diastereomers) in the order of elution. 12: Colorless oil. IR (film): 3370, 2930, 1613, 1483, 1473, 1297, 1163, 1138, 1100, 820, 755, 665 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 1.52—1.61 (2H, m), 1.78—1.86 (2H, m), 2.18 (1H, ddd, J=7.5, 9.4 and 12.5 Hz), 2.29 (1H, ddd, J=3.8, 6.3 and 12.5 Hz), 2.53 (3H, s), 2.86 (3H, s), 2.87—2. 97 (2H, m), 3.09 (1H, ddd, J=5.6, 6.9 and 9.4 Hz), 3.14-3.24 (2H, m), 3.42 (1H, ddd, J=3.1, 8.1 and 10.0 Hz), 4.91 (1H, br s), 5.19 (1H, d, J=1.3 Hz), 6.65 (1H, d, J=7.5 Hz), 6.81 (1H, dt, J=1.3 and 7.5 Hz), 7.14 (1H, d, J=7.5 Hz), 7.19 (1H, dt, J=1.3 and 7.5 Hz), 7.35 (2H, d, J=8.1 Hz), 7.76 (2H, d, J=8.1 Hz). High resolution MS m/z: Calcd for C₂₂H₂₈N₂O₅S₂: 464.1440. Found: 464.1441 (M⁺). 13 (a mixture of diastereomers, their separation was not easy): Colorless oil. IR (film): 3370, 3250, 2920, 1613, 1483, 1470, 1340, 1162, 1095, 1050 (br), 750, 662 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.50—1.63 (2H, m), 1.64—1.78 (2H, m), 2.19 (1H, ddd, J=8.5, 9.8 and 12.5 Hz), 2.29 (1H, ddd, J=3.9, 6.3 and 12.5 Hz), 2.45 (3H, s), 2.52 (3/2H, s), 2.53 (3/2H, s), 2.49—2.59 (1H, m), 2.60—2.67 (1H, m), 3.05—3.12 (1H, m), 3.14—3.24 (2H, m), 3.41 (1/2H, ddd, J=3.9, 8.5 and 10.0 Hz), 3.42 (1/2H, ddd, J=3.9, 8.5 and 10.0 Hz), 4.91 (1H, br s), 5.19 (1H, br s), 6.65 (1H, br d, J=8.1 Hz), 6.80 (1/2H, dt, J=1.0 and 8.1 Hz), 6.81 (1/2H, dt, J=1.0 and 8.1 Hz), 7.13 (1/2H, d, J=8.1 Hz), 7.14 (1/2H, d, J=8.1 Hz), 7.19 (1H, br t, J=8.1 Hz), 7.35 (2H, br d, J=8.5 Hz), 7.76 (2H, d, J=8.5 Hz). High resolution MS (FAB⁺) m/z: Calcd for C₂₂H₂₉N₂O₄S₂: 449.1569. Found: 449.1565 (M⁺). ## ACKNOWLEDGMENT This work is supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan, which is gratefully acknowledged. ## REFERENCES AND NOTES - 1. a) This is Part 92 of a series entitled "The Chemistry of Indoles". b) Part 91: M. Somei, N. Oshikiri, M. Hasegawa, and F. Yamada, *Heterocycles*, 1999, **51**, 1237. - 2. M. Somei and T. Kawasaki, Heterocycles, 1989, 29, 1251. - 3. Review: M. Somei, J. Synth. Org. Chem., 1991, 49, 205; M. Somei, Heterocycles, 1999, 50, 1157 and references cited therein. - 4. a) M. Somei, T. Kawasaki, Y. Fukui, F. Yamada, T. Kobayashi, H. Aoyama, and D. Shinmyo, Heterocycles, 1992, 34, 1877; b) F. Yamada, Y. Fukui, D. Shinmyo, and M. Somei, ibid., 1993, 36, 99; c) F. Yamada, D. Shinmyo, and M. Somei, ibid., 1994, 38, 273; d) M. Somei, K. Kobayashi, K. Tanii, T. Mochizuki, Y. Kawada, and Y. Fukui, ibid., 1995, 40, 119; e) M. Hasegawa, M. Tabata, K. Satoh, F. Yamada, and M. Somei, ibid., 1996, 43, 2333; f) M. Somei, F. Yamada, and G. Yamamura, Chem. Pharm. Bull., 1998, 46, 191, and references cited therein. - 5. M. Somei and Y. Fukui, *Heterocycles*, 1993, **36**, 1859; M. Somei, Y. Fukui, and M. Hasegawa, *ibid.*, 1995, **41**, 2157. - 6. M. Ohno, T. F. Spande, and B. Witkop, J. Am. Chem. Soc., 1970, 92, 343. Received, 21st April, 1999