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Abstract 

 

 In contrast to other ionotropic glutamate receptors, N-methyl-D-aspartate (NMDA) 

receptor channels are rather stable after the simulation. Brief exposure to NMDA at 50 µM 

rapidly increased the fluorescence intensity for increased intracellular free Ca2+ levels in a 

reversible- and concentration-dependent manner in rat cortical neurons cultured for 3 to 15 

days in vitro (DIV), while EC50 values were significantly decreased in proportion to cellular 

maturation from 3 to 15 DIV. Although a constant increase was persistently seen in the 

fluorescence throughout the sustained exposure to NMDA for 60 min irrespective of the cell 

maturation from 3 to 15 DIV, the second brief exposure for 5 min resulted in a less efficient 

increase in the fluorescence than that found after the first brief exposure for 5 min in a manner 

dependent on intervals between the 2 repetitive brief exposures. In vitro maturation 

significantly shortened the interval required for the reduced responsiveness to the second brief 

exposure, while in immature neurons prolonged intervals were required for the reduced 

responsiveness to the second brief exposure to NMDA. Brief exposure to NMDA led to a 

marked decrease in immunoreactivity to extracellular loop of NR1 subunit after brief 

exposure to NMDA when determined in cultured neurons not permeabilized in proportion to 

the time after washing. These results suggest that cellular maturation would reduce the 

responsiveness to repeated stimulation by NMDA, without markedly affecting that to 

sustained exposure to NMDA, through the decrease in the number of membranous NMDA 

receptors in cultured rat cortical neurons. 

 

Keywords: NMDA receptors; intracellular Ca2+; in vitro maturation; desensitization 
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1. Introduction 

 

 N-Methyl-D-aspartate (NMDA) receptor is a subtype of ionotropic glutamate (Glu) 

receptors supposed to be preferentially expressed by neurons in the central nervous system. 

Activation of NMDA receptor channels leads to the influx of Ca2+ ions across cell membranes 

and subsequent elevation of intracellular free Ca2+ levels in neurons (Segal and Manor, 1992). 

Increased intracellular free Ca2+ ions are responsible for a variety of subsequent physiological 

and pathological events in the brain. These include neuronal development (Scheetz and 

Constantine-Paton, 1994), plasticity (Lisman and McIntyre, 2001), learning and memory 

(Nakazawa et al., 2002), and cell death (Choi, 1994; Nakamichi et al., 2004). A confocal 

microscopic imaging study reveals a localized increase in intracellular free Ca2+ 

concentrations following exposure to NMDA in a single cultured hippocampal neuron with 

relatively large variations (Segal and Manor, 1992; Korkotian and Segal, 1996). 

Accumulating evidence for an increase in intracellular Ca2+ concentrations in response to 

activation of NMDA receptors in mature cultured neurons (Parks et al., 1991; Dayanithi et al., 

1995; Korkotian and Segal, 1997) is also available in the literature to date. 

 Activity-dependent alterations of synaptic responses are integral to the information 

processing in the brain. Thus, it is not surprising that synaptic efficacy can be reduced by 

many different mechanisms including downregulation of postsynaptic receptors (Krupp et al., 

2002). On a time scale of minutes such downregulation can involve endocytosis of 

α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors that are also a 

subtype of ionotropic Glu receptors (Man et al., 2000; Lin et al., 2000; Ehlers, 2001), and 

possibly also for NMDA receptors (Roche et al., 2001; Vissel et al., 2001; Nong et al., 2003, 

2004). The internalization of Glu receptors from cell surface may underlie long-term changes 

in synaptic strength (Luscher et al., 1999; Zhu et al., 2000). On the timescale of seconds and 
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milliseconds receptor desensitization can inhibit synaptic transmission (Trussell and 

Fischbach, 1989; Trussell et al., 1993; Tong et al., 1995). Desensitization is particularly 

important in shaping single synaptic events and the integration of high-frequency inputs 

during sustained firings (Trussell and Fischbach, 1989; Jones and Westbrook, 1996; Krupp et 

al., 2002). 

 Although AMPA receptors have been shown to rapidly internalize, NMDA receptors 

are often considered ‘stable’ in the plasma membrane (Man et al., 2000; Roche et al., 2001; 

Nong et al., 2003). However, recent accumulating evidence gives rise to the possibility that 

NMDA receptors may also undergo internalization (Man et al., 2000; Roche et al., 2001; 

Vissel et al., 2001; Carroll and Zukin, 2002; Nong et al., 2003, 2004), but mechanisms for 

internalization of NMDA receptor channels with neuronal development and maturation are 

not fully clarified so far. In this article, therefore, we have evaluated neuronal responses to 

NMDA with respect to intracellular free Ca2+ levels to investigate mechanisms underlying the 

possible desensitization of NMDA receptor channels during in vitro maturation in primary 

cultured rat cortical neurons. 

 

2. Materials and methods 

 

2.1. Materials 

 

 Antibodies against microtubule-associated protein-2 (MAP-2), glial fibrillary acidic 

protein (GFAP), synapsin-I, neuronal specific growth-associated protein-43 (GAP-43) and 

DNase I were purchased from Sigma Chemicals (St. Louis, MO, USA). Mouse monoclonal 

antibodies against neuronal nuclei (NeuN) and extracellular loop of NR1 subunit, as well as 

an anti-goat IgG antibody conjugated with peroxidase, were all supplied by Chemicon 
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International (Temecula, CA, USA). An antibody against neuron specific enolase (NSE) was 

obtained from Quartett (Berlin, Germany). Versene, Dulbecco’s Modified Eagle Medium 

(DMEM) and DMEM: Nutrient Mixture F-12 (DMEM/F-12) 1:1 Mixture were supplied by 

GIBCO BRL (Gaithersburg, MD, USA). Fetal calf serum (FCS) was obtained from JRH 

Biosciences, Inc. (Lenexa, KS, USA). Fluo-3 acetoxymethyl ester was provided by Molecular 

Probes (Eugene, OR, USA). An anti-mouse IgG antibody conjugated with rhodamine and an 

anti-rabbit IgG antibody conjugated with fluorescein were obtained from ICN 

Pharmaceuticals (Aurora, OH, USA). An anti-mouse IgG or anti-rabbit IgG antibody 

conjugated with peroxidase and ECLTM detection reagents were provided by Amersham 

Biosciences (Piscataway, NJ, USA). Other chemicals used were all of the highest purity 

commercially available. 

 
2.2. Preparation of neuronal cultures 

 

 This study was carried out in compliance with the Guideline for Animal 

Experimentation at Kanazawa University with an effort to minimize the number of animals 

used and their suffering. Primary neuronal cultures were prepared from cerebral neocortex of 

18-day-old embryonic rats as originally described by di Porzio et al. (1980) with minor 

modifications (Nakamichi et al., 2002a,b). In brief, cerebral neocortex was dissected from 

embryonic Wistar rats and incubated with Versene at room temperature for 12 min. Cells 

were then mechanically dissociated with a fire-narrowed Pasteur pipette in the culture 

medium, and plated at a density of 2.5 x 105 cells/cm2 in a 6-well dish (NUNC, Roskilde, 

Denmark) after counting cell numbers with a Trypan Blue exclusion test. Prior to use, dishes 

were sequentially coated with 7.5 µg/mL poly-L-lysine and 10% FCS. The culture medium 

contained basal DMEM/F-12 with supplementation by 33 mM glucose, 2 mM glutamine, 100 

U/mL penicillin, 100 µg/mL streptomycin, 5 mM HEPES, 0.11% sodium bicarbonate, 50 
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µg/mL transferrin, 500 ng/mL insulin, 1 pM β-estradiol, 3 nM triiodothyronine, 20 nM 

progesterone, 8 ng/mL sodium seleniate and 100 µM putrescine. Cells were treated with 10 

µM cytosine arabinoside (Ara-C) for 24 h during 2 to 3 days in vitro (DIV) as needed. The 

prior treatment with Ara-C indeed led to a drastic decrease in the endogenous level of 

immunoreactive GFAP in cortical neuronal cells cultured for 3 to 15 DIV, with a slight but 

statistically significant decrease in the endogenous level of immunoreactive MAP-2 on 15 

DIV (data not shown). In the present study, therefore, cortical neuronal cultures were not 

treated with Ara-C unless otherwise indicated. The culture medium was replaced with freshly 

prepared culture medium of the same composition every 3 days. Cultures were always 

maintained at 37°C in a 5% CO2/95% air-humidified incubator. 

 

2.3. Immunocytochemistry  

 

 Cortical neurons cultured for 3, 9 or 15 DIV were washed twice with 

phosphate-buffered saline (PBS), followed by fixation with 4% paraformaldehyde in PBS for 

20 min at room temperature and subsequent blocking with 10% bovine serum albumin in PBS 

containing 1% Triton X-100. Cells were then reacted with antibodies adequately diluted 

against the neuronal marker protein MAP-2, the neuron specific nuclear protein NeuN and/or 

the glial marker protein GFAP for 1.5 h at room temperature. Finally, cells were reacted with 

the corresponding secondary antibody, an anti-mouse IgG antibody conjugated with 

rhodamine or an anti-rabbit IgG antibody conjugated with fluorescein, and then observed 

under a confocal laser-scanning microscope (LSM 510; Carl Zeiss, Jena, Germany). 

 

2.4. Western blotting  
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 Cerebral cortical neurons harvested at 3, 9 or 15 DIV were homogenized in 20 mM 

Tris-HCl buffer (pH 7.5) containing 1 mM EDTA, 1 mM EGTA, 10 mM sodium fluoride, 10 

mM sodium β-glycerophosphate, 10 mM sodium pyrophosphate, 1 mM sodium 

orthovanadate and 1 µg/mL of various protease inhibitors 

[(p-amidinophenyl)methanesulfonyl fluoride, leupeptin, antipain and benzamidine], followed 

by the addition of 10 mM Tris-HCl buffer (pH 6.8) containing 10% glycerol, 2% sodium 

dodecylsulfate (SDS), 0.01% bromophenol blue and 5% mercaptoethanol (SDS sample 

buffer) at a volume ratio of 4:1 and subsequent boiling at 100°C for 10 min (Manabe et al., 

2001). Each aliquot of 10-40 µg proteins was loaded on a 7.5% polyacrylamide gel for 

electrophoresis at a constant current of 15 mA/plate for 2 h at room temperature and 

subsequent blotting to a polyvinylidene fluoride membrane previously treated with 100% 

methanol. After blocking by 5% skimmed milk, and 3% normal horse serum as needed, 

dissolved in 20 mM Tris-HCl buffer (pH 7.5) containing 137 mM NaCl and 0.05% Tween 20, 

the membrane was reacted with an antibody against MAP-2, GFAP, the synapse marker 

protein synapsin-I, GAP-43 or the neuronal marker proteins NSE and NeuN, adequately 

diluted with the buffer containing 1% skim milk, followed by a reaction with an anti-mouse 

IgG, anti-rabbit IgG or anti-goat IgG antibody conjugated with peroxidase. Proteins reactive 

with those antibodies were detected with the aid of ECLTM detection reagents through 

exposure to X-ray films. 

 

2.5. Measurement of intracellular free Ca2+ levels  

 

 Cortical neurons or astrocytes were washed with recording medium containing 129 

mM NaCl, 4 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 4.2 mM glucose and 10 mM HEPES (pH 

7.4) once and incubated at 37°C for 50 min in recording medium containing 30 nM Pluronic 
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F-127 and 3 µM fluo-3 acetoxymethyl ester that is a membrane-permeable form of the 

Ca2+-sensitive dye (Nakamichi et al., 2002a). Cultures were then washed with recording 

medium twice, followed by settlement for at least 1 h in the recording medium and 

subsequent placement of the 6-well dish under a confocal laser-scanning microscope. Medium 

was changed once more, followed by the addition of NMDA at 10 times higher 

concentrations than the final concentrations 5 min later. Cells were invariably used within 1 to 

5 h after these procedures for observation with a confocal laser-scanning microscope. Drugs 

were prepared in recording medium immediately before each use. Dye-loaded cells were 

monitored for fluorescence visualized with a confocal laser-scanning microscope equipped 

with an argon laser. Images were obtained by using objective lens with numeral apertures of 

0.5 (Plan-Neofluar) for 20-fold magnification. Fluorescence images labeled with fluo-3 were 

collected using an excitation wavelength of 488 nm. The parameters of illumination and 

detection were digitally controlled to keep the same settings throughout the experiments 

(Nakamichi et al., 2002b). For quantitative analysis, fluorescence images were quantified 

using Scion Image β 4.02 software (Scion Co., Frederick, MD, USA) as a mean of the whole 

screen. Fluorescence intensity was calculated in arbitrary digital units according to conversion 

of the photomultiplier output into numbers from 0 to 255. An image acquired 1 min before 

medium change was considered to be zero as described previously (Nakamichi et al., 

2002a,b). 

 

2.6. Determination of cell viability  

 

 Neuronal survivability analysis was performed by means of Trypan blue exclusion. 

Cortical neurons cultured for 3, 9 or 15 DIV were exposed to 50 µM NMDA for 5 min in the 

absence of MgCl2, followed by washing and subsequent second exposure to 50 µM NMDA 
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with intervals of 25 min after washing. Cells were immediately stained with 1.5% Trypan 

blue for 10 min at room temperature 5 min before or after the first exposure to NMDA, or 5 

min after the second exposure to NMDA, followed by fixation with isotonic formalin and 

subsequent rinsing with PBS (Taguchi et al., 2003). Cells stained with Trypan blue were 

regarded as non-viable. 

 

2.7. Preparation of astrocyte cultures  

 

 Astrocytes were prepared as described previously (Murakami et al., 2003). In brief, 

brain cortices from 19-day-old embryos of Wistar rats were cleared of meninges, cut into 

about 1-mm3 blocks, and treated with 0.25% trypsin in Ca2+, Mg2+-free PBS containing 5.5 

mM glucose for 20 min at 37°C with gentle shaking. An equal volume of horse serum 

supplemented with 0.1 mg/mL of DNase I was added to the medium to inactivate trypsin. 

Then, tissues were centrifuged at 1,500×g for 5 min. The tissue sediments were triturated 

through a Pasteur pipette with DMEM containing 10% FCS, 100 mg/L streptomycin, and 

5×104 unit/L penicillin. After filtration of cell suspensions through a lens-cleaning paper (Fuji 

Photo, Tokyo, Japan), cells were plated on polyethylenimine-coated 100 mm-diameter plastic 

dishes (NUNC, Roskilde, Denmark) at a density of 0.8-1.3×105 cells/cm2. Cultures were 

maintained in a humidified atmosphere of 5% CO2 and 95% air at 37°C with changing 

medium every 3 days. After one week, astrocytes were replated to remove neurons. On days 

12–14, they were replated onto a 6-well dish using an ordinary trypsin-treatment technique at 

a density of 1.0×105 cells/cm2 and cultured for additional 2 DIV. 

 

2.8. Detection of surface expressed receptors 
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Cortical neurons cultured for 9 DIV were exposed to 50 µM NMDA for 5 min in the 

absence of MgCl2, followed by washing and subsequent additional incubation at 37°C for 

different periods up to 45 min after washing. In immunocytochemical experiments, cells were 

immediately placed on ice before, immediately, 25 or 45 min after brief exposure to NMDA 

for 5 min, followed by washing with ice-cold PBS. Cells were then fixed with 4% 

paraformaldehyde in PBS for 20 min at 4°C, followed by blocking with 10% bovine serum 

albumin in PBS not containing Triton X-100. Finally, cells were reacted with the primary 

antibody directed against extracellular loop of NR1 subunit, followed by incubation with the 

secondary antibody conjugated with rhodamine for detection by a confocal laser-scanning 

microscope. 

 

2.9. Data analysis 

 

 Densitometric data were subjected to calculation of the area under the curve by the 

PC computer. For samples on the same gel, the area was directly used as a densitometric unit 

for quantitative analysis. Results are all expressed as the mean ± S.E. and the statistical 

significance was determined by the one-way analysis of variance ANOVA with 

Bonferroni/Dunnett post hoc test. 

 

3. Results 

 

3.1. In vitro neuronal maturation 

 

 Rat cortical neurons were cultured for 3 to 15 DIV, followed by determination of 

expression of the neuronal marker protein MAP-2 and the neuron specific nuclear protein 
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NeuN on immunocytochemistry. Immunoreactivities were similarly seen to both MAP-2 and 

NeuN in cell bodies, with a gradual increase in neurites during in vitro culture from 3 to 15 

DIV (data not shown). By contrast, the number of neurons rather decreased in proportion to 

the duration of cultivation. On Western blotting analysis, expression of MAP-2 was not 

markedly changed between cortical neurons cultured for 3 and 9 DIV, with a significant 

decrease on 15 DIV (Table 1). The glial marker protein GFAP was highly expressed in cells 

cultured for 9 DIV in a manner dependent on the duration of culturing (Table 1). Double 

immunocytochemical analysis using antibodies against MAP-2 and GFAP revealed that the 

population of MAP-2-positive cells was over 98%, 95% and 90% in cells cultured for 3, 9 and 

15 DIV, respectively (data not shown). Expression of the synapse marker protein synapsin I, 

the neuronal marker protein NSE and NeuN significantly increased in a manner dependent on 

the culture period up to 15 DIV, while GAP-43 significantly increased in cortical cells 

cultured for 3 to 9 DIV with a significant decrease in cells cultured for 9 to 15 DIV (Table 1).  

 

3.2. Changes in intracellular Ca2+ by NMDA 

 

 Cortical neuronal cells were cultured for 3, 9 or 15 DIV, followed by exposure to 50 

µM NMDA in the absence of MgCl2, because Mg2+ blocked the elevation of intracellular free 

Ca2+ levels by NMDA in previous our study (Nakamichi et al., 2002a,b), for determination of 

intracellular free Ca2+ levels on fluo-3 fluorescence image analysis. The exposure to NMDA 

markedly increased the number of cells with increased fluorescence intensity 5 min later in 

cortical neuronal cells cultured for 3, 9 and 15 DIV (Fig. 1a). The two different calcium 

ionophores ionomycin and A23187 at 10 µM were added 5 min after the addition of NMDA 

for normalization of the fluorescence by NMDA over the maximal fluorescence by the 

additions of the ionophores for 5 min. In both cases using ionomycin and A23187 for 

 11



normalization, NMDA was more efficient in increasing intracellular free Ca2+ ions in cortical 

neurons cultured for 9 and 15 DIV than in neurons cultured for 3 DIV (Fig. 1b). Values 

normalized by A23187 were smaller than these normalized by ionomycin, it may be 

dependent on the difference of efficacy between A23187 and ionomycin at the concentration 

used. Cortical neurons were exposed to NMDA at different concentrations from 1 to 100 µM, 

followed by determination of the fluorescence intensity 5 min later. The exposure to NMDA 

increased the fluorescence intensity in a concentration-dependent manner irrespective of the 

maturity of neurons used (Fig. 1c). EC50 values were calculated according to the Hill plot 

analysis using the computer program “Origin”. The sensitivity to NMDA was higher in 

cortical neurons cultured for 9 DIV (EC50=7.16±1.37 µM, P<0.05) and 15 DIV 

(EC50=4.89±0.47 µM, P<0.01) than in neurons cultured for 3 DIV (EC50=11.64±1.48 µM). 

 

3.3. Reduced responsiveness to repeated stimulation 

 

 When cortical neurons cultured for 3, 9 or 15 DIV were continuously exposed to 50 

µM NMDA, the fluorescence intensity was immediately increased and the increase was 

sustained for at least 60 min at constant levels as long as NMDA was present (Fig. 2).  

 Cultured neurons were briefly exposed to 50 µM NMDA for 5 min, followed by 

washing and subsequent second brief exposure to NMDA at the same concentration for 10 

min with an interval of 25 min. The second exposure to NMDA led to a less efficient increase 

in the fluorescence intensity than that found after the first exposure in neurons cultured for 9 

and 15 DIV, but not in those cultured for 3 DIV (Fig. 3a). When the interval was prolonged 

from 25 min to over 35 min, however, the second exposure was less effective in increasing 

the fluorescence intensity than the first exposure even in neurons cultured for 3 DIV as seen 

in neurons cultured for 9 and 15 DIV (Fig. 3b). When the interval was shortened from 25 to 5 
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min, by contrast, a similarly efficient increase was seen in the fluorescence intensity even 

after the second exposure irrespective of the duration of culturing. However, NMDA did not 

significantly affect cellular viability after the first and the second exposure compared with 

that before the first exposure (Fig. 3c).  

 

3.4. Possible involvement of astrocytes 

 

 As the glial marker protein GFAP was markedly expressed in cells cultured for a 

period longer than 9 DIV, an attempt was next made to determine whether astrocytes are 

involved in the decrease by repeated exposure to NMDA. For this purpose, astrocytes 

prepared from embryonic rat neocortex were cultured and loaded with the fluorescent dye 

fluo-3 2 days after replating. These cultured cells were exposed to 50 mM KCl in the presence 

of MgCl2 or to 50 µM NMDA in the absence of MgCl2, followed by determination of 

fluorescence intensity for 5 min. As shown in Figure 4a (left panel), KCl induced a marked 

increase in the number of cells with increased fluorescence intensity within 5 min after the 

addition, but NMDA did not markedly affect the number of fluorescent cells. Quantitative 

analysis revealed that KCl significantly increased the fluorescence intensity immediately after 

the addition, followed by a sustained increase during exposure to KCl (Fig. 4a, right panel). 

However, NMDA failed to increase the fluorescence intensity during exposure for 5 min in 

cultured cortical astrocytes. In cortical neuronal cells previously treated with Ara-C on 2 to 3 

DIV and cultured for up to 15 DIV, moreover, the second exposure to NMDA also led to a 

less efficient increase in the number of neurons with high fluorescence than that found after 

the first exposure in neurons cultured for 9 and 15 DIV, but not in those cultured for 3 DIV 

(Fig. 4b), as seen in cortical cells not treated with Ara-C.  
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3.5. Changes in membranous NMDA receptors 

 

 An attempt was made to determine whether the number of NMDA receptors 

expressed on cellular surfaces is changed after the stimulation by an agonist. Cortical neurons 

cultured for 9 DIV were briefly exposed to 50 µM NMDA for 5 min, followed by washing 

and subsequent additional incubation at 37°C for different periods up to 45 min after washing. 

Immunocytochemical analysis using an antibody against the extracellular loop of NR1 

subunit revealed that surface immunoreactivity to NR1 subunit was gradually attenuated in 

proportion to the time after the washing (Fig. 5). 

 

4. Discussion 

 

 The data provided above clearly indicate that cellular maturation increased the 

possibility for NMDA receptor channels to undergo desensitization in cultured rat neocortical 

neurons. In contrast to non-NMDA receptors that rapidly desensitize, NMDA channels are 

shown to have rather long opening times (Ascher and Nowak, 1987; Gasic and Hollmann, 

1992), as revealed by intracellular free Ca2+ levels in the present study where a sustained 

increase was seen at the constant level during continuous exposure to NMDA. Compared to 

studies using electrophysiological techniques, the present investigation has an advantage that 

desensitization of NMDA receptor channels could be monitored in terms of the level of 

intracellular free Ca2+ ions directly permeable to the channels. The possibility that sustained 

exposure to NMDA could lead to a persistent increase in intracellular free Ca2+ levels through 

facilitation of both the influx across voltage-sensitive Ca2+ channels and the release from 

intracellular Ca2+ stores as well as the activation of NMDA receptor channels to this divalent 

cation in cultured neurons as shown previously (Nakamichi et al., 2002a), by contrast, is a 
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disadvantage not ruled out in the present analysis. Our previous findings that the addition of 

an NMDA receptor antagonist completely abolishes the increased fluorescence in the 

presence of NMDA (Nakamichi et al., 2002b), however, argue in favor of an idea that 

activation of NMDA receptor channels are essentially required for the sustained increase in 

intracellular free Ca2+ levels in cultured neurons. The possible developmental desensitization 

shown here could involve mechanisms underlying altered subunit compositions (Monyer et al., 

1994; Dingledine et al., 1999; Perez-Otano and Ehlers, 2004) and/or amino acid substitutions 

(Sakurada et al., 1993) of NMDA receptor channels during maturation of cultured cortical 

cells from 3 to 15 DIV. Nevertheless, the significant decrease in responsiveness to the second 

exposure to NMDA with a prolonged interval gives rise to an idea that reduced 

responsiveness of NMDA-gated Ca2+ channels would occur even in immature cultured 

neurons.  

 It should be emphasized that NMDA responsiveness underwent possible 

desensitization with regard to intracellular free Ca2+ ions in cultured cortical neurons 

following repeated brief exposure to NMDA in a manner dependent on intervals between the 

2 brief exposures, but not after sustained continuous exposure to NMDA. Reduced 

responsiveness could lead to protection against the excitotoxicity mediated by NMDA 

receptor channels even when overactivation occurs with the channels following a massive 

increase in extracellular glutamate in particular pathological situations. Moreover, the brief 

exposure to NMDA led to decreased immunoreactivity to extracellular loop of NR1 subunit in 

proportion to the time after washing. Although NMDA receptors are often considered ‘stable’ 

in the plasma membrane (Man et al., 2000; Roche et al., 2001; Nong et al., 2003), there is 

accumulating evidence that NMDA receptors may also undergo internalization (Man et al., 

2000; Roche et al., 2001; Vissel et al., 2001; Carroll and Zukin, 2002; Nong et al., 2003, 

2004). In different metabotropic receptor systems, an agonist binds to surface receptor 
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proteins leading to initiate the internalization and subsequent desensitization processes 

(Claing et al., 2002; Dale et al., 2002). If NMDA receptors should internalize according to 

this model, NMDA receptors would have been internalized and desensitized following 

sustained exposure to an agonist. The possibility that the dissociation, but not association, of 

an agonist may prime the internalization of subunit proteins required for functional 

heteromeric assemblies of NMDA receptor channels is thus conceivable. Reduced 

responsiveness would rescue neurons from cell death due to the overload of free Ca2+ ions 

after overactivation of NMDA receptor channels under particular pathological conditions. 

 It thus appears that reduced responsiveness could lead to a decrease in intracellular 

free Ca2+ levels after repeated stimulation by NMDA through the internalization of NMDA 

receptor channels which could be primed by the dissociation, but not association, of an 

agonist in cultured neocortical neurons. Desensitization of NMDA receptors during repetitive 

firing is shown to contribute to shaping synaptic responses and neuronal activity (Tong et al., 

1995; Jones and Westbrook, 1996). Mechanisms for regulated desensitization of NMDA 

receptors may be responsible for several forms of long-term depression in the brain. As 

neuronal cell death would undoubtedly involve mechanisms relevant to overshooting of 

intracellular free Ca2+ levels, elucidation of the reduced responsiveness processes could give 

us a new point of view toward the therapy and treatment of a variety of neurodegenerative 

disorders in human beings. 
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Figure legends 

 

Fig. 1. Effects of NMDA on intracellular Ca2+ ions in cultured neurons. Cortical neurons 

cultured for 3 to 15 DIV were loaded with fluo-3, followed by the exposure to 50 µM NMDA 

in the absence of MgCl2. a). A representative observation is shown with similar results in 3 

independent experiments. b). Two different calcium ionophores ionomycin and A23187 at 10 

µM were added 5 min after the addition of NMDA. Values are the mean±S.E. of percentages 

over the maximal value (maximum) obtained 5 min later in neurons exposed to calcium 

ionophores in 8 to 9 independent determinations. *P<0.05, **P<0.01, significantly different 

from the value obtained in cells cultured for 3 DIV. c). Cortical neurons were exposed to 

NMDA at different concentrations from 1 to 100 µM in the absence of MgCl2. Values are the 

mean±S.E. of percentages over the maximal value (maximum) obtained 5 min later in cells 

exposed to 100, 50 and 20 µM NMDA in neurons cultured for 3, 9 and 15 DIV, respectively, 

in 9 to 13 independent determinations. *P<0.05, **P<0.01, significantly different from the 

value obtained in neurons cultured for 3 DIV. 

 

Fig. 2. Sustained exposure to NMDA. Cortical neurons cultured for 3 to 15 DIV were loaded 

with fluo-3, followed by the exposure to 50 µM NMDA in the absence of MgCl2. Values are 

the mean±S.E. of percentages over the value (control) obtained 5 min later in neurons 

exposed to NMDA in 6 independent determinations. **P<0.01, significantly different from 

the value obtained in neurons cultured for 3 DIV. 

 

Fig. 3. Repeated stimulation by NMDA. Cortical neurons cultured for 3 to 15 DIV were 

loaded with fluo-3. a). Cells were exposed to 50 µM NMDA for 5 min in the absence of 

MgCl2, followed by washing and subsequent second exposure to 50 µM NMDA with 
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intervals of 25 min after washing. Fluorescence intensity was determined 5 min after the 

second exposure to NMDA for quantitative analysis. Values are the mean±S.E. of percentages 

over the value (control) obtained 5 min later in neurons exposed to first NMDA in 6 to 8 

independent determinations. **P<0.01, significantly different from the value obtained in 

neurons cultured for 3 DIV. b). Intervals between first and second exposure to NMDA were 

changed from 5 to 45 min. *P<0.05, **P<0.01, significantly different from the value obtained 

in neurons exposed to second NMDA with interval of 5 min after washing. c). Cortical 

neurons cultured for 3 to 15 DIV were exposed to 50 µM NMDA for 5 min in the absence of 

MgCl2, followed by washing and subsequent second exposure to 50 µM NMDA with 

intervals of 25 min after washing. Cell viabilities were determined by Trypan blue exclusion 5 

min before or after first exposure to NMDA, or 5 min after second exposure to NMDA. 

Values are the mean±S.E. of percentages over the value (control) obtained 5 min before first 

exposure to NMDA in 20 different observations from 4 independent preparations. 

 

Fig. 4. Involvement of astrocytes. a). Cultured cortical astrocytes were loaded with fluo-3 at 2 

days after replating, followed by exposure to 50 mM KCl in the presence of MgCl2 or to 50 

µM NMDA in the absence of MgCl2. A representative observation is shown for pictures 

obtained 5 min after the addition of KCl or NMDA with similar results in 3 independent 

experiments. Quantitative data are shown as the mean ± S.E. in 3 separate measurements. b). 

Cortical neurons were treated with 10 µM Ara-C on 2 to 3 DIV and cultured for 3 to 15 DIV. 

Cells loaded with fluo-3 were exposed to 50 µM NMDA for 5 min in the absence of MgCl2, 

followed by washing and subsequent second exposure to 50 µM NMDA with intervals of 25 

min after washing. Fluorescence intensity was determined 5 min after the second exposure to 

NMDA for quantitative analysis. Values are the mean±S.E. of percentages over the value 

(control) obtained 5 min later in neurons exposed to first NMDA in 8 to 11 independent 
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determinations. *P<0.05, significantly different from the value obtained in neurons cultured 

for 3 DIV. 

 

Fig. 5. Changes in membranous NMDA receptors after NMDA stimulation. Cortical neurons 

cultured for 9 DIV were exposed to 50 µM NMDA for 5 min in the absence of MgCl2, 

followed by washing and subsequent additional incubation at 37°C for different periods after 

washing. A representative observation is shown with similar results in 3 independent 

experiments. 

 

Table 1. In vitro neuronal maturation. 

Cortical cultures were harvested on 3, 9 or 15 DIV, followed by homogenization and 

subsequent SDS-PAGE for immunoblotting using an antibody against MAP-2, GFAP, 

synapsin I, GAP-43, NSE or NeuN. Values are the mean±S.E. of percentages over the value 

obtained in neurons cultured for 3 DIV in 6 independent determinations. **P<0.01, 

significantly different from the value obtained in cells cultured for 3 DIV. 
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Table 1

3 DIV 9 DIV 15 DIV

MAP-2 100.00 ± 10.89 84.04 ± 6.59 52.60 ± 3.93**

GFAP 100.00 ± 17.40 318.88 ± 25.08** 696.59 ± 52.30**

Synapsin I 100.00 ± 9.31 334.32 ± 41.42** 487.85 ± 42.63**

GAP-43 100.00 ± 12.36 285.41 ± 32.61** 132.85 ± 16.90

NSE 100.00 ± 12.70 379.47 ± 52.19** 715.40 ± 71.10**

NeuN 100.00 ± 10.62 339.87 ± 34.40** 658.32 ± 52.87**
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