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Abstract 

 

To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we 

developed a rapid, simple and sensitive method for determining 

1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a 

deuterated glucuronide was used as an internal standard. The method requires only 1 

mL of urine. The urine was treated with a mixed-mode anion-exchange and 

reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were 

analyzed with a C18 reversed-phase column with a gradient elution, followed by tandem 

mass spectrometry with electrospray ionization in negative ion mode. The detection 

limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. 

Urinary concentrations of 1-OHP-G determined by this method were strongly correlated 

(r2=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with 

fluorescence detection.  

 

Keywords: 1-Hydroxypyrene-glucuronide; LC-MS/MS; Urine; Polycyclic aromatic 

hydrocarbon; Biomarker  
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1. INTRODUCTION 

 

Polycyclic aromatic hydrocarbons (PAHs) are environmental carcinogens and/or 

mutagens [1]. PAHs are formed during the incomplete combustion of organic matter, 

and humans are exposed to PAHs from various sources, including occupational 

environments, dietary sources, cigarette smoking, fossil fuels and others [2-4]. PAHs are 

readily absorbed into the body through the skin, lungs, and gastrointestinal tract. Pyrene 

is a dominant compound of PAHs [5] and it is readily excreted in urine [6]. Metabolism 

of pyrene involves the formation of 1-hydroxypyrene (1-OHP) as a phase І metabolite 

which undergoes phase ІІ metabolism with conjugation to glucuronic acid and sulfate. 

An in vitro study on glucuronidation of 1-OHP under human recombinant 

UDP-glucuronosyltransferases (UGTs) showed that UGT 1A6, 1A7 and 1A9 are mainly 

involved in the glucuronidation [7] and the glucuronide levels account for more than 

80% of total pyrene metabolites in human urine [8-10]. 1-OHP is a urinary PAH 

metabolite that has often been used as a biomarker for recent exposure to multiple 

routes of PAHs. 1-OHP in human urine has been measured with analytical equipments 

like HPLC with fluorescence detection (HPLC-FL), GC-MS, LC-MS/MS [11-21]. 

However, these methods need enzymatic hydrolysis of its conjugates to 1-OHP for 
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generally 2 to 16 hours (overnight) [12, 22]. The hydrolysis step is time-consuming, and 

its possible incomplete hydrolysis should be taken into consideration [8]. GC-MS 

methods and some LC-MS/MS methods require a derivatization step in addition to the 

hydrolysis [15, 17, 20, 21]. Thus, direct measurement of 1-hydroxypyrene-glucuronide 

(1-OHP-G) would be ideal for the analysis of urine samples. Since 1-OHP-G yields 

three to five fold higher fluorescence than unconjugated 1-OHP [8, 10], some analytical 

methods use 1-OHP-G to take advantage of its higher fluorescence. Singh et al. 

determined urinary 1-OHP-G using reversed-phase SPE as a pretreatment step and 

HPLC-FL as a quantitative method [8]. Because of its polarity, 1-OHP-G is poorly 

retained on reversed phase columns and is not completely separated from fluorescent 

contaminants in urine. Strickland et al. developed an assay using immunoaffinity 

chromatography as a pretreatment step and synchronous fluorescence spectroscopy as a 

quantitative method [10]. However, the use of immunoaffinity chromatography may be 

lacking in flexibility and versatility for general use. Furthermore, the use of an 

appropriate internal standard is necessary to correct the recovery of 1-OHP-G in 

pretreatment steps. In this study, a rapid, sensitive and selective LC-MS/MS method 

using deuterated 1-OHP-glucuronide as an internal standard and an effective 

pretreatment method for urine samples were developed for qualitative analysis of 
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urinary 1-OHP-G. The developed method was evaluated by comparison with a 

conventional HPLC method that uses enzymatic hydrolysis. 
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2. EXPERIMENTAL 

 

2.1. Materials 

 

1-OHP-G was purchased from the NCI Chemical Carcinogen Repository (MRI, 

Kansas City, MO, USA). [2H9]-1-Hydroxypyrene (1-OHP-d9) was from Chiron 

(Trondheim, Norway). 1-OHP was obtained from Aldrich (Milwaukee, WI). HPLC 

grade acetonitrile was obtained from Kanto Chemical (Tokyo, Japan) and water was 

obtained from a Milli-Q water purification system (Millipore, Bedford, MA, USA). 

β-Glucuronidase/aryl sulfatase (type H-2: from Helix pomatia β-Glucuronidase activity, 

98,000 units/mL and aryl sulfatase activity, 2400 units/mL) was from Sigma (St. Louis, 

MO, USA). UDP-Glucuronyl transferase 1*1 Human recombinant microsome and 

3-[(3-cholamidopropyl) dimethylammonio] propanesulfonic acid (CHAPS) were 

purchased from Wako Pure Chemicals (Osaka, Japan). All other chemicals and solvents 

used were of analytical grade. 

 

2.2. 1-OHP-G analysis by LC-MS/MS  
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The Agilent 1100 series LC system consists of a G1379A degasser, a G1312A binary 

pump, a G1367A autosampler, a G1316A column oven (all from Agilent Technologies, 

Palo Alto, CA, USA). Chromatographic separation of 1-OHP-G in urine samples was 

performed on a ZORBAX Extend-C18 column (150 × 2.1 mm i.d., 5 μm, Agilent) with a 

guard column ZORBAX Extend-C18 column (12.5 × 2.1 mm i.d., 5 μm, Agilent). The 

column temperature was kept at 30°C. A gradient elution using 0.01% NH4OH in water 

(eluent A) and 0.01% NH4OH in methanol (eluent B) was carried out (B, 10% to 90% 

linear gradient for 20 min) at a flow-rate of 0.2 mL/min. Sample volumes of 5 μL were 

injected for each analysis. 

The mass spectrometric analyses were performed using an API 4000 Q-Trap tandem 

mass spectrometer (Applied Biosystems, CA, USA) equipped with an electrospray 

ionization (ESI) interface and operated in a negative ion mode. Sensitivity of the 

selective reaction monitoring (SRM) was optimized by testing with an infusion of 

1-OHP-G (1 μM) in a mixture of methanol and water (1/1, v/v) containing 0.01% 

NH4OH. The spray voltage was maintained at -4.5 kV. Nitrogen gas was used as the 

collision gas (CAD) and curtain gas (20 p.s.i.). Zero grade air was used as nebulizer gas 

(60 p.s.i.) and heater gas (70 p.s.i.). Source temperature was set at 600°C. The mass 

spectrometer was operated under SRM mode of the transitions at m/z 393.1 → 217.1 for 
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1-OHP-G and at m/z 402.1 → 226.1 for 1-OHP-d9-G (internal standard) with dwell 

times of 1000 ms. The collision energy and declustering potential were set at -38 V and 

-60 V, respectively. Analyst software (version 1.4, Applied Biosystems) was used to 

control the LC-MS/MS system, and to acquire and process the data. 

 

2.3. 1-OHP analysis by HPLC with fluorescence detection 

 

The HPLC system for 1-OHP included a DGU-14A degasser a LC-10AD pump, a 

CTO-10AS column oven, a C-R3A integrator (all from Shimadzu, Kyoto, Japan) and 

2475 Multi λ Fluorescence detector (Waters, Milford, MA, USA). According to a 

previous HPLC method [12], chromatographic separation of 1-OHP and 1-OHP-d9 

(internal standard) in urine samples was performed on a Discovery RP-Amide C16 

column (250 × 4.6 mm i.d., 5 μm, Supelco, Bellefonte, PA, USA) with a guard column 

(Discovery RP-Amide C16, 20 × 4.0 mm i.d., 5 μm, Supelco). The elution was run 

isocratically with a mobile phase consisting of acetonitrile / 10 mM phosphate buffer 

(pH 7.0) (57/43, v/v) at a flow-rate of 1 mL/min. The column temperature was set at 

40°C. The excitation and emission wavelengths were 240 and 387 nm, respectively. 
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2.4. Preparation of 1-OHP-d9-G conjugate 

 

1-OHP-d9-G was synthesized enzymatically from 1-OHP-d9, using a modification of 

the method in the previous studies [8, 23]. UDP-Glucuronyl transferase was diluted 

with 10 mM phosphate buffer (pH 7.4) and was activated with CHAPS on ice for 30 

min. A reaction mixture containing 1.5 mM UDP-Glucuronic acid tri sodium salt, 5 mM 

MgCl2・6H2O, and 500 nM 1-OHP-d9 and 5 mg/L of the activated enzyme in 20 mL of 

50 mM Tris-HCl buffer (pH 7.5) was incubated for 2 h at 37°C. The reaction mixture 

was loaded onto an OASIS HLB cartridge (Waters) that had been primed with 5 mL of 

methanol and 10 mL of water. The cartridge was sequentially washed with 10 mL of 

water. Final elution of the trapped glucuronide was performed with 20 mL of 

acetonitrile/water (30/70, v/v) and the eluate was then evaporated to dryness.  

 

2.5. Pretreatment of urine samples for LC-MS/MS analysis 

 

The deuterated internal standard (1-OHP-d9-G) was added to 1 mL of urine and then 

the urine sample was adjusted to pH 2 with phosphoric acid. The urine sample was then 

loaded onto an OASIS MAX cartridge (30 mg/1 cc, 30 μm, Waters) that had been 
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primed with 1 mL of methanol and 1 mL of water. The cartridge was sequentially 

washed with 1 mL of 50 mM sodium acetate buffer (pH 7) in methanol (95/5, v/v), 1 

mL of methanol, 1 mL of methanol/water (80/20, v/v) containing 1.8% HCOOH and 1 

mL of acetonitrile/water (30/70, v/v) containing 1.8% HCOOH. The trapped metabolite 

was eluted with 500 μL of acetonitrile/water (70/30, v/v) containing 3.6% HCOOH, and 

an aliquot (5 μL) of the eluate was injected into the LC/MS/MS system.  

 

2.6. Pretreatment of urine samples for HPLC with fluorescence detection 

 

Urinary 1-OHP was determined as described previously with a slight modification 

[12]. A 3 mL aliquot of the sample was adjusted to pH 5.0 with 0.1 M HCl, and then 

buffered with 6 mL of 0.1 M acetate buffer (pH 5.0). The reaction mixture was mixed 

with a deuterated internal standard (1-OHP-d9), incubated for 2 h with 

β-Glucuronidase/aryl sulfatase (784/19 units) at 37°C, and loaded onto a Sep-Pak C18 

cartridge (Waters) that had been primed with 5 mL of methanol and 10 mL of water. The 

cartridge was sequentially washed with 10 mL of methanol/water (40/60, v/v). The 

trapped metabolite was eluted with 5 mL of methanol and the eluent was evaporated to 

dryness. The residue was redissolved in 300 μL of acetonitrile/water (1/1, v/v). An 
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aliquot (10 μL) of the solution was injected into the HPLC system. 

    

2.7. Human studies 

 

Urine samples were obtained from eight smokers (age range 21-23) and thirteen 

non-smokers (age range 22-34) who lived in Kanazawa City, Japan. The urine samples 

were collected in the morning and kept at -20 °C until analysis. These urine samples 

were used for both 1-OHP-G analysis and 1-OHP analysis. The concentration of urinary 

creatinine was determined with alkaline picrate using a test kit (Wako Pure Chemicals) 

[24]. 
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RESULTS AND DISCUSSION 

 

3.1. Mass spectra obtained by infusion experiments 

 

The ESI of the 1-OHP-G and 1-OHP-d9-G were examined in both positive and 

negative ion modes. Both compounds produced signals only in the negative ion mode, 

probably because the carboxyl group of gluruconide tends to lose the hydrogen and 

generate [M-H]- ions. An enhanced product ion (EPI) scan gave information about the 

fragmentation pattern of the [M-H]- ions, and the main product ions of 1-OHP-G and 

1-OHP-d9-G were m/z 217.0 and 226.0 [M-H-176]-, respectively (Fig. 1). The 

fragmentation correspondence between the deuterated and non-deuterated compounds 

indicated that 1-OHP-d9-G should be suitable for an internal standard. The product ion 

at m/z 217.0 represents the loss of the sugar moiety [25]. The ions at m/z 175 and 113 in 

the spectrum correspond to fragment ions of glucuronide [25, 26]. A neutral loss of 176 

amu is generally used as a specific method for detecting O-glucuronide conjugates in 

tandem mass spectrometry. Therefore, the [M-H]- → [M-H-176]- transition was used in 

the SRM detection of 1-OHP-G and 1-OHP-d9-G.  
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3.2. Optimization of mobile phase  

 

In this study, a mixture of water and methanol was used as the mobile phase, and the 

effect of the addition of HCOOH or NH4OH on the sensitivity and retention time of the 

analyte was examined. Addition of 0.1% HCOOH increased retention of the analyte and 

decreased the detection sensitivity because of the ionization suppression of the 

glucuronic acid moiety. Addition of 0.01% NH4OH to the mobile phase had little effect 

on retention and sensitivity, whereas the addition of NH4OH decreased the interfering 

peaks on the chromatogram derived from the urine samples. Therefore, a gradient 

elution using water and methanol containing 0.01% NH4OH was applied for the 

LC/MS/MS analysis. The instrumental detection limit of 1-OHP-G was 0.13 

fmol/injection (signal-to-noise ratio >3). This method was found to be more sensitive 

than previous LC-MS/MS methods for the determination of 1-OHP [16, 19]. In most 

cases, the fragmentations, loss of CO (28 Da) from the [M-H] - ion [16, 18] and loss of a 

water molecule from [M+H] + [19] of 1-OHP were monitored as the product ion. The 

product ions used in the previous studies may have been difficult to fragment in the 

collision cell because of the highly conjugated and rigid chemical structure of 1-OHP 

[17]. On the other hand, the glucuronide is easy to fragment in the collision cell. Further, 
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the sensitivity of the present method which does not require a derivatization step was 

better than or comparable to those of LC-MS/MS methods with derivatization steps [17, 

20, 21]. 

 

3.3. Development of sample preparation 

 

In our preliminary study of 1-OHP-G, the use of reversed-phase SPE by itself was not 

enough to retain the analyte and clean up urinary interfering substances because of its 

high polarity. So we used the OASIS MAX cartridge which contains a mixed mode with 

reversed-phase and anion-exchange sorbent and which has selectivity for acidic 

compounds like 1-OHP-G. Standard spiked water or urine samples were adjusted to pH 

2 and then applied to the cartridge. Several types of solvents were examined for the 

elution of the analyte and the removal of interfering substances. 1-OHP-G was not 

eluted from the cartridge by 50 mM sodium acetate buffer (pH 7)/methanol (95/5, v/v) 

and methanol. These solvents were useful for the removal of inorganic salts and 

nonionized hydrophobic contaminants. Further, the cartridge was washed with 

methanol/water (80/20, v/v) and acetonitrile/water (30/70, v/v) containing 1.8% formic 

acid which enables the effective elution of anions except for the analyte. Finally, 
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1-OHP-G was eluted with acetonitrile/water (70/30, v/v) containing 3.6% HCOOH. 

Figure 2 shows representative SRM chromatograms of the standard solution with the 

analyte (A, left panel) and the internal standard (A, right panel), and a urine sample of a 

non-smoker, (B). The physiological components of the urine did not interfere with the 

identification and quantification of the analytes in the chromatograms. 

 

3.4. Calibration curve and validation 

 

Calibration for standard solutions and standard spiked urine samples was performed 

in the SRM mode under the optimized conditions described in the experimental section. 

The calibration curve was linear (r2 > 0.999) when the concentrations of the injected 

sample were in the range of 0.2 to 100 nmol/L, and the slope was 0.0858 ± 0.0027 

(mean ± SD, n = 3). The calibration range was based on the urinary concentrations of 

actual subjects [11, 12, 27]. The matrix effect on the mass spectrometric response was 

evaluated for the analytes by comparing the slope of the above calibration curve with 

that of the working curve obtained with the urine matrix. The slope of the curve 

prepared with four different urine samples was 0.0871 ± 0.0018 (mean ± SD, RSD 

2.0%), which was almost identical to that of the curve obtained from the standard 
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solutions. This clearly showed that the matrix did not affect the calibration curve. 

Therefore, 1-OHP-G was quantified by using the calibration curve obtained from the 

standard solution in the following studies. The precision and accuracy of 1-OHP-G 

determination in human urine with the present LC/MS/MS system were examined by 

adding two different known amounts of 1-OHP-G to a urine sample. The results are 

summarized in Table 1. The relative standard deviations (RSD, %) of the intra-day 

precision study (n = 6) were in the range 3.3 – 6.8, and those of the inter-day assay (n = 

4) were in the range of 4.4 – 5.7 for the urine samples spiked at the concentrations of 

1000 and 10000 pmol/L 1-OHP-G. The accuracy values (%) of the intra-day study and 

the inter-day assay were in the range of 98% – 99%. Both intra- and inter-day precision 

and accuracy were satisfactory for determining 1-OHP-G in human urine. 

 

3.5. Analysis of 1-OHP-G in human urine 

 

The LC/MS/MS method we developed in this study was used to determine the 

1-OHP-G concentrations in human urine samples. Figure 2 shows representative SRM 

chromatograms of a human urine sample. We quantitatively determined 1-OHP-G in 

human urine samples obtained from 8 smokers and 13 non-smokers (Table 2). The mean 

 16



concentrations of 1-OHP-G for smokers and non-smokers were 55.0 ± 21.4 and 27.8 ± 

12.3 nmol/mol creatinine (normalized to the concentration of creatinine). The urinary 

concentrations of 1-OHP-G for smokers were significantly higher than those for 

non-smokers, and the results obtained by the developed method were comparable to 

those previously reported [11, 28]. 

 

3.6. Correlation between 1-OHP-G by LC-MS/MS and 1-OHP by HPLC-FL 

 

The urine samples were also hydrolyzed in the presence of β-glucuronidase/ aryl 

sulfatase and then analyzed by conventional HPLC-FL [11]. The total amounts of 

glucuronide and sulfate conjugates were quantified as free (unconjugated) 1-OHP. A 

very strong linear correlation (r2=0.961) was found between the urinary 1-OHP-G and 

1-OHP concentrations (Fig. 3). Quantitative data obtained by the HPLC-FL method tend 

to be higher than those obtained by LC-MS/MS (the slope > 1), presumably due to the 

presence of 1-OHP sulfate. As 1-OHP-G and free 1-OHP have both been used as 

biomarkers for PAH exposure in many reports [10, 29-31], this result indicates that 

glucuronide conjugate account for a large percentage of the total urinary pyrene 

metabolites, and 1-OHP-G can be used instead of free 1-OHP after deconjugation. 
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4. CONCLUSIONS 

 

We developed an LC/MS/MS method for the direct, simple and sensitive 

determination of the concentration of 1-OHP-G in human urine. The method does not 

require time-consuming hydrolysis and derivatization steps. The method appears to be 

better than conventional methods based on fluorescence. The separation of 1-OHP-G 

from fluorescent contaminants in urine is difficult without the use of immunoaffinity or 

complicated SPE pretreatments. Although deconjugated 1-OHP is well suited for 

chromatographic separation, the efficiency in the enzymatic hydrolysis step should be 

taken into consideration. The proposed LC-MS/MS method avoids the problems 

associated with interfering substances and hydrolysis. Other advantages of the method 

are that it requires no more than 1 mL of urine, its precision and accuracy can be 

improved with an internal standard (1-OHP-d9-G), and the sample treatment time can be 

shortened by using commercially available 96-well format devices (SPE and 

autosampler). 
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Figure Legends 

Fig. 1. MS/MS (EPI) spectra of [M-H] - ion of standard 1-OHP-G. 

Fig. 2. Representative SRM chromatograms (transition m/z 393.1→217.1 for 1-OHP-G 

and m/z 402.1→226.1 for the internal standard (1-OHP-d9-G)) of a standard solution 

(A) corresponding to 25 fmol 1-OHP-G / injection and a non-smoker urine sample (B) 

(left panel: 1-OHP-G and right panel: internal standard).

Fig. 3. Correlation between 1-OHP-G and 1-OHP determined by LC-MS/MS and 

conventional HPLC-FL methods, respectively. 
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y = 1.286x - 231.66

r 2 = 0.9612



Table 1.  Precision a and accuracy b in the determination of 1-OHP-G in urine samples

Intra-day assay (n=6) Inter-day assay (n=4)

Added amounts (pM) 

Found±SD (pM)

RSD (%)

Accuracy (%)

0 1000 10000

632±43 1620±89 10400±340

6.8 5.5 3.3

- 99 98

647±37 1640±86 10500±460

5.7 5.3 4.4

- 99 99

0 1000 10000

a Precision is expressed as the percentage of relative standard deviation (RSD, %). 
b Accuracy is expressed as the percentage of accuracy [(mean observed concentration/ spiked 
concentration) ×100].

Table 1
Kakimoto et al.



Table 2. Urinary concentrations of 1-OHP-G in the study subjects (n = 21)

Smokers (n=8) Non-smokers (n=13)

Mean ±SD (nmol/mol of creatinine)

Range (nmol/mol of creatinine)

55.0±21.4*

34.6 - 99.7

27.8±12.3

15.3 - 47.9

* Significantly different from the value of the non-smoker group ( P < 0.01 ). 

Table 2
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