Synt hesi s of 13a met hyl phenant hr oi ndol i zi di nes usi ng radical cascade cyclization: synt hetic st udi es toward (\pm)-hypoest est at in 1

著者	Takeuchi Kosuke, I shi ta At suko, Mat suo Jun- i chi,\quad I shi bashi Hi royuki
j our nal or publ i cat i on title	Tet rahedr on
vol une	63
nunber	45
page range	$11101-11107$
year	$2007-10-05$
URL	ht t p: //hdl . handl e. net /2297/7383
doi: 10.1016/j.tet.2007.08.030	

Synthesis of 13a-methylphenanthroindolizidines using radical cascade cyclization: synthetic studies towards (\pm)-hypoestestatin 1

Kosuke Takeuchi, Atsuko Ishita, Jun-ichi Matsuo and Hiroyuki Ishibashi
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Abstract

A radical cascade involving 6-endo cyclization of aryl radicals generated from N-acryloyl- N-(1-methylethenyl)-9-bromophenanthren-10-ylmethylamines, followed by 5-endo-trig cyclization of the resulting α-amidoyl radicals afforded phenanthroindolizidines bearing a methyl substituent at the angular C13a position. 2,3,6-Trimethoxy derivative was synthesized by using this method, but its spectral data were not in accord with those of literature values reported for hypoestestatin 1. Further synthetic study towards hypoestestatin 1 is demonstrated.

Keywords: Enamide; Hypoestestatin 1; Orhto-lithiation; Phenanthroindolizidine; Radical cascade.

* Corresponding author. Tel: +81 76234 4474; fax: +81 76234 4476: e-mail: isibasi@p.kanazawa-u.ac.jp

1. Introduction

Radical cascade cyclization is recognized as a powerful tool for the construction of polycyclic compounds, including natural products. ${ }^{1}$ We recently reported that $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclization of N-methacryloyl bromoenamine 1a gave the tricyclic compound 4a together with tetrahydroisoquiloline 5a. ${ }^{2}$ Formation of 4a from 1a can be explained in terms of a radical cascade that involves 6-endo cyclization of aryl radical 2a and successive 5-endo cyclization of the resulting α-amidoyl radical 3a. Compound 5a might be a so-called reduction product derived from 3a. We also reported that N-acryloyl enamine 1b gave no corresponding radical cascade product $\mathbf{4 b}$ but afforded only compound $\mathbf{5 b}$. These results indicated that the methyl substituent at the α-position of α, β-unsaturated amide acted as an effective radical-stabilizing group for the cyclization of α-amidoyl radical 3a. We have now found that the introduction of a methyl substitutent onto the alkenic bond of enamide (such as 6) also gives the radical cascade product. In this paper, we describe the results in this area together with an application of this method to the synthesis of a phenanthroindolizidine skeleton bearing a methyl substituent at the angular position.

Scheme 1.

2. Results and discussion

2.1. Attempt to synthesize hypoestestatin 1

The compound $\mathbf{6}$ having a methyl substituent on the alkenic bond of enamide was treated with
$\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of azobis(cyclohexanecarbonitrile) (ACN) in boiling toluene to give the radical cascade product $\mathbf{8}$ in 22\% yield (Scheme 2). As mentioned above, the compound 1b having no methyl substituent on the alkenic bond of enamide gave no radical cascade product $\mathbf{4 b}$ by the cyclization of $\mathbf{3 b} .^{2}$ The successful formation of $\mathbf{8}$ from $\mathbf{6}$ was probably because the presence of a methyl substituent on the radical center of α-amidoyl radical 7 retarded the intermolecular reduction with $\mathrm{Bu}_{3} \mathrm{SnH}$ more effectively than the radical $\mathbf{3 b}$.

We then applied this method to the synthesis of phenanthroindolizidines ${ }^{3}$ bearing a methyl substituent at angular position. Hypoestestatin 1 (9) is one such compound that was isolated from the extract of the East African shrub Hypoëstes verticillaris by Pettit's group ${ }^{4}$ and was found to markedly inhibit the growth of the murine P-388 cell line. There has been no report in the literature on the synthesis of hypoestestatin 1. Our retrosynthetic analysis of hypoestestatin 1 involved 6-endo/5-endo radical cascade cyclization of enamide $\mathbf{1 1}$ followed by reduction of the resulting lactam $\mathbf{1 0}$ (Scheme 3).

Scheme 3.

A radical precursor 11 was prepared as shown in Scheme 4. The Perkin reaction ${ }^{5}$ of potassium p-methoxyphenylacetate and 2-bromo-4,5-dimethoxybenzaldehyde gave carboxylic acid 12, whose esterification gave the corresponding methyl ester 13. Radical cyclization of 13^{6} followed by reduction of the ester group with LiAlH_{4} gave known phenanthrenyl methanol 14. ${ }^{7}$ Treatment of $\mathbf{1 4}$ with NBS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded bromo alcohol 15, which was converted to the secondary amine $\mathbf{1 7}$ by treatment with $\mathrm{Ph}_{3} \mathrm{P}$ and CBr_{4} and successive condensation of the resulting allyl bromide with amine 16. ${ }^{8}$ Treatment of 17 with acryloyl chloride gave α, β-unsaturated amide 18, whose oxidation with MCPBA and thermal elimination of the resulting sulfoxide in the presence of sodium hydrogen carbonate in boiling xylene gave $\mathbf{1 1}$.

Scheme 4.

The radical cyclization of $\mathbf{1 1}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of ACN gave lactam $\mathbf{1 0}$ in 39% yield (Scheme 5). Lactam $\mathbf{1 0}$ was reduced with LiAlH_{4} to give the target molecule $\mathbf{9}$.

Scheme 5.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9}$, however, were not in accord with those of hypoestestatin 1 reported by Pettit et al. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in $\mathrm{CD}_{3} \mathrm{OD}$, the signal due to the angular methyl group appeared as a singlet at $\delta 1.07$, whereas the corresponding signal reported for hypoestestatin 1 was shifted to a lower field at $\delta 1.30$. Its lower field shift was presumed to be a result of the formation of the quaternary ammonium salt. Hence, we turned our attention to the ${ }^{1} \mathrm{H}$ NMR spectra of carbonate salt derived from compound 9 . In the event, the signal due to the methyl protons of carbonate salt of $\mathbf{9}$ was shifted to a lower field at $\delta 1.27$, but the other signals were not in accord with those reported for hypoestestatin 1 . Therefore, it was thought that compound 9 was not hypoestestatin 1 .

2.2. Attempt to synthesize another possible structure of hypoestestatin 1

We speculated the correct structure of hypestestatin 1 to be 32 in which three methoxy groups occupied 3 , 6 and 7 positions on the phenanthroindolizidine ring. Our attention was then turned to the synthesis of $\mathbf{3 2}$ by radical cascade cyclization of compound $\mathbf{3 0}$ (Scheme 8). The synthesis of compound 30 was begun by Perkin reaction of 2-bromo-4,5-dimethoxyphenylacetic acid ${ }^{9}$ and p-anisaldehyde followed by esterification to
give 19 (Scheme 6). A subsequent radical cyclization of 19 in toluene gave the known phenanthrene ester $\mathbf{2 0}^{10}$ in $\mathbf{4 3} \%$ yield. The low yield of $\mathbf{2 0}$ might be ascribed to the formation of dehydro congener of $\mathbf{2 0}$ as a result that toluene acted as a hydrogen source. So, we then turned our attention to the use of chlorobenzene as a solvent for the radical cyclization of $\mathbf{1 9}$ to afford 20 in 53\% yield.

Scheme 6.

Reduction of $\mathbf{2 0}$ with LiAlH_{4} gave alcohol 21. However, treatment of 21 with NBS or Br_{2} under various conditions afforded no brominated compound 22. A substitution pattern of the
methoxy groups on the phenanthrene ring probably caused a reduction of relative electron density at the C-9 position of $\mathbf{2 1}$ as compared to compound $\mathbf{1 4}$.

We therefore tried to introduce a bromine atom at the desired position through an ortho-lithiation of amide. ${ }^{11} \quad N$-tert-Butylmethyl amide 23 was chosen as a substrate for the ortho-lithiation reaction, since the tert-butylmethyl amide group has higher direction ability for ortho-lithiation and is known to be hydrolyzed more easily than other tertiary amides such as diethylamide. ${ }^{12}$ Lithiation of compound 23 with sec-BuLi in the presence of tetramethylethylenediamine (TMEDA) at $-94^{\circ} \mathrm{C}$ to $-78^{\circ} \mathrm{C}$ followed by bromination with CBr_{4} gave the desired bromide 24. Deprotection of the tert-butyl group of $\mathbf{2 4}$ with trifluoroacetic acid afforded secondary amide 25 . Subsequent hydrolysis of $\mathbf{2 5}$, however, did not proceed under several conventional conditions, probably because of steric hindrance of a neighboring bromine. Therefore, we explored another functional group transformation of 25: that is, hydride was used for the nucleophile instead of sterically more demanding hydroxide ion. It was found that a combination of DIBAL and Schwartz reagent ${ }^{13}$ reduced secondary amide 25 to the corresponding imine 26, and aqueous treatment of $\mathbf{2 6}$ gave aldehyde 27 in a moderate yield.

26
27 (43\% from 25)

Scheme 7.

The method for the synthesis of the target compound $\mathbf{3 2}$ from aldehyde 27 is shown in Scheme 8. Reductive amination of aldehyde $\mathbf{2 7}$ with primary amine $\mathbf{1 6}$ afforded the secondary amine 28, which was converted to the radical precursor 30 via compound 29 by a similar sequence of reactions of $\mathbf{1 7}$ giving $\mathbf{1 1}$ (see Scheme 4). The radical cascade of $\mathbf{3 0}$ involving 6-endo/5-endo cyclizations proceeded successfully to give lactam 31. The subsequent reduction of $\mathbf{3 1}$ with LiAlH_{4} gave the target compound 32. However, unfortunately, the ${ }^{1} \mathrm{H}$ NMR spectral data of 32 were again not in accord with those of hypoestestatin 1 reported by Pettit et al. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the signal due to the angular methyl group of 32 appeared as a singlet at $\delta 1.07$ in $\mathrm{CD}_{3} \mathrm{OD}$, whereas the corresponding signal of carbonate salt of 32 was shifted to a lower
field at $\delta 1.22 \mathrm{ppm}$. However, the other signals of carbonate salt of 32 were not in accord with those reported for hypoestestatin 1.

Scheme 8.

3. Conclusion

We accomplished the synthesis of 2,3,6-trimethoxy phenanthroindolizidine 9 and 3,6,7-trimethoxy isomer 32 by 6-endo/5-endo radical cascade cyclization of the corresponding bromo enamide $\mathbf{1 1}$ and $\mathbf{3 0}$, respectively. Although ${ }^{1} \mathrm{H}$ NMR spectral data of the resulting 9 and 32 were not in accord with those of reported hypoestestatin 1 , the present study revealed that a phenanthroindolizidine skeleton bearing a methyl substituent at the angular C13a position can be easily constructed by this method.

4. Experimental

4.1. General

Melting points are uncorrected. Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100 spectrophotometer for solutions in CHCl_{3}. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL JNM-EX 270 or a JEOL JNM-GSX 500 spectrometer for solutions in CDCl_{3}. δ Values quoted are relative to tetramethylsilane. High resolution mass spectra (HRMS) were obtained with a JEOL JMS-SX-102A mass spectrometer. Column chromatography was performed on Silica gel 60 N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 $\mu \mathrm{m}$) under pressure. Thin layer chromatography was carried out on silica gel Wakogel B-5F.
4.1.1. (\pm)- N-Acryloyl- N-(1-methylethenyl)-2-bromobenzylamine (6). To a solution of N-acryloyl- N-[1-methyl-2-(phenylsulfanyl)ethyl]-2-bromobenzylamine, prepared in a manner similar to that described for $\mathbf{1 8}$ (see Supplementary data), ($1.09 \mathrm{~g}, 2.80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was added dropwise a solution of MCPBA (80%) (604 mg, 2.80 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 30 min , an aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added to the reaction mixture and the mixture was extracted with CHCl_{3}. The organic layer was washed with a saturated aqueous NaHCO_{3} solution and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt, 3:1) to afford N-acryloyl- N-[1-methyl-2-(phenylsulfinyl)ethyl]-2-bromobenzylamine as a colorless oil.

The above sulfoxide ($882 \mathrm{mg}, 2.17 \mathrm{mmol}$) was heated in boiling xylene (40 mL) in the presence of $\mathrm{NaHCO}_{3}\left(365 \mathrm{mg}\right.$) for 12 h . A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to the reaction mixture and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under a reduced pressure.

The residue was purified by column chromatography on silica gel (hexane/AcOEt, 10:1 $\rightarrow 6: 1)$ to afford $6(490 \mathrm{mg}, 62 \%, 2$ steps $)$ as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right)$ v 1645,1615 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}) $\delta 1.90(3 \mathrm{H}, \mathrm{s}), 4.77(1 \mathrm{H}, \mathrm{s}), 4.89(2 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, \mathrm{d}$, $J=1.3 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{dd}, J=10.1,2.1 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=16.8,2.3 \mathrm{~Hz}), 6.65(1 \mathrm{H}$, dd, $J=16.8,9.9 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{td}, J=7.7,1.9 \mathrm{~Hz}), 7.22-7.35(2 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{dd}, J=$ 7.9, 1.0 Hz); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,48.7,115.6,123.2,127.3,127.8,128.0$, 128.5, 129.4, 132.4, 136.2, 143.2, 165.0. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}$ C, 55.73 ; H, 5.04; N, 5.00. Found: C, 55.61; H, 5.04; N, 5.02.

4.1.2. (\pm)-1,2,3,5,10,10a-Hexahydro-10a-methylpyrrolo[1,2-b]isoquinolin-3-one (8).

 To a boiling solution of 6 ($264.0 \mathrm{mg}, 0.94 \mathrm{mmol}$) in toluene (30 mL) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.38 \mathrm{ml}, 1.41 \mathrm{mmol})$ and $\mathrm{ACN}(46.7 \mathrm{mg}, 0.19 \mathrm{mmol})$ in toluene (30 mL) over 2.5 h by employing a syringe-pump technique and the mixture was further heated for 10 min . After removal of solvent, the residue was purified by column chromatography on silica gel containing 10% KF (hexane/AcOEt, 3:1 $\rightarrow 2: 1 \rightarrow$ $1: 1 \rightarrow 2: 3$) to afford $8(41.1 \mathrm{mg}, 22 \%)$ as a colorless oil. $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \vee 1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}) $\delta 1.23$ (3H, s), 1.95-2.15 (2H, m), 2.35-2.65 (2H, m), 2.76 (1 H, d, $J=15.6 \mathrm{~Hz}$), 2.92 ($1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}$), 4.16 ($1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}$), 5.02 ($1 \mathrm{H}, \mathrm{d}, J$ $=17.6 \mathrm{~Hz}), 7.06-7.36(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8,29.7,33.1,40.1$, 41.5, 58.0, 126.4, 126.5, 126.6, 129.6, 131.0, 133.7, 173.4; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$: 201.1154, found: 201.1154.4.1.3. 10-Bromo-9-hydroxymethyl-2,3,6-trimethoxyphenanthrene (15). То а solution of $\mathbf{1 4}(119.0 \mathrm{mg}, 0.399 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added NBS $(78.1 \mathrm{mg}$, 0.439 mmol) at room temperature in the dark and the mixture was stirred at the same
temperature for 3 h . An aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added to the reaction mixture and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with a saturated aqueous NaHCO_{3} solution and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ to afford 15 (92.0 mg, 61\%) as a colorless crystal. $\mathrm{Mp} 176-177^{\circ} \mathrm{C}$ (hexane/AcOEt); IR $\left(\mathrm{CHCl}_{3}\right)$ v $3020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.96(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=6.5 \mathrm{~Hz}), 4.02(3 \mathrm{H}, \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 4.11(3 \mathrm{H}, \mathrm{s}), 5.41(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{dd}$, $J=9.0,2.5 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{s}), 7.83(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.5,55.8,56.0,63.5,103.1,104.6,109.3,115.7,121.9,125.0,125.2,125.6$, 127.1, 130.8, 132.1, 149.5, 149.7, 158.1. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{4}$: C, 57.31; H, 4.54. Found : C, 57.23; H, 4.57.

4.1.4.

 temperature and the mixture was stirred at the same temperature for 2 h . After removal of solvent, the residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ to afford 10-bromo-9-bromomethyl-2,3,6-trimethoxyphenanthrene quantitatively. $\quad{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.02(3 \mathrm{H}, \mathrm{s}), 4.08(3 \mathrm{H}, \mathrm{s}),(3 \mathrm{H}, \mathrm{s}), 5.24$ (2H, s), 7.29 (1H, dd, $J=8.2,2.3 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{s}), 7.80(1 \mathrm{H}, \mathrm{s}), 7.83(1 \mathrm{H}, \mathrm{d} J=2.6$ $\mathrm{Hz})$, $8.08(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$. Due to its lability, it was used in the next step immediately.To a mixture of 1-methyl-2-(phenylsulfanyl)ethylamine (16) (149.6 mg, 0.89 mmol),
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($37.2 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{NaI}(37.2 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NI}(12.4 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ in THF $(10 \mathrm{~mL}) / 1,4$-dioxane (5 mL) was added dropwise a solution of the above bromide (0.401 mmol) in THF (5 mL) at room temperature over 1.5 h and the mixture was stirred at the same temperature for 27 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the mixture was extracted with AcOEt. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 50: 1\right)$ to afford 17 (178.2 mg , 84\%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33(3 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 1.87$ (1H, brs), 2.98-3.13 (3H, m), $4.02(3 \mathrm{H}, \mathrm{s}), 4.09(3 \mathrm{H}, \mathrm{s}), 4.12(3 \mathrm{H}, \mathrm{s}), 4.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $12.2 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 7.13-7.33(6 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{s}), 7.85$ $(1 \mathrm{H}, \mathrm{s}), 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,41.7,49.8,52.5$, 55.9, 56.4, 56.5, 103.6, 105.0, 110.0, 116.2, 122.4, 125.3, 125.8, 126.5, 127.5, 129.2, 130.2, 131.3, 132.8, 136.5, 149.8, 150.3, 158.5. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{BrNO}_{3} \mathrm{~S}: \mathrm{C}$, 61.59; H, 5.36; N, 2.66. Found: C, 61.54; H, 5.49 N, 2.64.

4.1.5.

N-Acryloyl-10-bromo- N-(1-methylethenyl)-2,3,6-trimethoxyphenanthren-9-ylmeth ylamine (11). To a solution of $\mathbf{1 8}(753 \mathrm{mg}, 1.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise a solution of MCPBA (80\%) (280 mg, 1.30 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 10 min . An aqueous 10% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added to the reaction mixture and the mixture was extracted with CHCl_{3}. The organic layer was washed with a saturated aqueous NaHCO_{3} solution and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under a reduced pressure to give N-acryloyl- N-[1-methyl-2-(phenylsulfinyl)ethyl]-10-bromo-2,3,6-trimethoxyphenanthr en-9-ylmethylamine. The residue was used in the next step without further
purification.

The above sulfoxide was heated in boiling xylene (30 mL) in the presence of NaHCO_{3} ($218 \mathrm{mg}, 2.59 \mathrm{mmol}$) for 12 h . To the reaction mixture was added a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with AcOEt. The oraganic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt, 2:1) to afford 11 ($459 \mathrm{mg}, 75 \%, 2$ steps) as a colorless crystal. Mp $203{ }^{\circ} \mathrm{C}$ (hexane/AcOEt); IR $\left(\mathrm{CHCl}_{3}\right)$ v $1615 \mathrm{~cm}^{-1}, 1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.76(3 \mathrm{H}, \mathrm{s}), 4.00$ (3H, s), $4.10(3 \mathrm{H}, \mathrm{s}), 4.12(3 \mathrm{H}, \mathrm{s}), 4.30(1 \mathrm{H}, \mathrm{s}), 4.80(1 \mathrm{H}, \mathrm{s}), 5.68-5.72(3 \mathrm{H}, \mathrm{m})$, 6.51-6.58 (2H, m), $7.24(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{s})$, $7.88(1 \mathrm{H}, \mathrm{s}), 8.18(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.6,47.2,55.8$, 56.3, 56.4, 103.6, 105.0, 110.1, 116.1, 117.9, 124.7, 125.5, 126.1, 128.0, 128.5, 128.6, 129.7, 130.8, 142.2, 150.0, 150.2, 158.5, 164.7. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrNO}_{4}$: C, 61.28; H, 5.14; N, 2.98. Found: C, 61.08; H, 5.33 N, 2.90.

4.1.6.

9,11,12,13,13a,14-Hexahydro-2,3,6-trimethoxy-13a-methyldibenzo[f,h]pyrrolo[1,2-

 b]isoquinolin-11-one (10)To a boiling solution of $\mathbf{1 1}(80 \mathrm{mg}, 0.17 \mathrm{mmol})$ in toluene (15 mL) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.07 \mathrm{ml}, 0.26 \mathrm{mmol})$ and $\mathrm{ACN}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene (15 mL) over 2 h by employing a syringe-pump technique. After removal of solvent, AcOEt (20 mL) and an aqueous $8 \% \mathrm{KF}$ solution (20 mL) were added to the residue and the mixture was vigorously stirred at room temperature over night. The precipitate was filtered off and the filtrate was extracted with AcOEt. The organic layer was
washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt, 1:1 $\rightarrow 1: 3$ $\rightarrow \mathrm{AcOEt})$ to afford $\mathbf{1 0}$ (26 mg, 39\%) as a colorless crystal. Mp 222-223 ${ }^{\circ} \mathrm{C}$ (dec) (hexane/AcOEt); $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) ~ v 1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35(3 \mathrm{H}, \mathrm{s})$, 2.20-2.30 ($2 \mathrm{H}, \mathrm{m}$), 2.52-2.69 ($2 \mathrm{H}, \mathrm{m}$), $3.06(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}$), $3.24(1 \mathrm{H}, \mathrm{d}, J=16.0$ Hz), $4.03(3 \mathrm{H}, \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 4.11(3 \mathrm{H}, \mathrm{s}), 4.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.5 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{dd}, J=$ 17.5, 2.5 Hz), 7.25-7.28 (2H, m), $7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{s}), 7.94(1 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.3,29.9,33.4,38.2,38.6,55.5,55.9,56.1,57.5,103.8$, 104.1, 105.0, 115.1, 123.0, 123.3, 123.4, 124.0, 124.4, 126.7, 130.3, 148.7, 149.6, 157.9, 173.3; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4}$: 391.1784, found: 391.1782. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 73.64; H, 6.44; N, 3.58. Found: C, 73.36; H, $6.44 \mathrm{~N}, 3.56$.

4.1.7.

(\pm)-

9,11,12,13,13a,14-Hexahydro-2,3,6-Trimethoxy-13a-methyldibenzo[f,h]pyrrolo[1,2

-blisoquinoline (9). To a suspension of $\mathrm{LiAlH}_{4}(6 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF (5 mL) was added a solution of $\mathbf{1 0}(26 \mathrm{mg}, 0.07 \mathrm{mmol})$ in THF (5 mL) at room temperature and the mixture was heated at reflux for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added to the reaction mixture and the precipitate was filtered off through a Celite pad. The filtrate was concentrated in a reduced pressure and the residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 15: 1\right)$ to afford 9 (24 mg, 96%) as a yellow crystal. Mp was not determined due to its lability. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.05(3 \mathrm{H}, \mathrm{s}), 1.90-2.00(4 \mathrm{H}, \mathrm{m}), 2.88-2.94(1 \mathrm{H}, \mathrm{m}), 3.00(2 \mathrm{H}, \mathrm{s}), 3.08-3.14$ $(1 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 4.10(3 \mathrm{H}, \mathrm{s}), 4.11(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{s}), 7.85(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.91$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,20.1,35.7,39.3$, found: 377.1990.

4.1.8. 9-Bromo-2,3,6-trimethoxy- N-methylphenanthrene-10-carboxamide (25). To

 a solution of 23 ($738 \mathrm{mg}, 1.94 \mathrm{mmol}$) and TMEDA (0.35 ml , 2.32 mmol) in THF (20 mL) was added sec-BuLi (1.00 M in cyclohexane/hexane, $2.37 \mathrm{~mL}, 2.37 \mathrm{mmol}$) at $-94{ }^{\circ} \mathrm{C}$ and the mixture was slowly warmed to $-78{ }^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h , a solution of CBr_{4} ($3.27 \mathrm{~g}, 9.86 \mathrm{mmol}$) in THF (5 mL) was added and the mixture was slowly warmed to room temperature. $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under a reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/AcOEt, 3:1 \rightarrow 1:1) to afford9-bromo- N-tert-butyl-2,3,6-trimethoxy- N-methylphenanthrene-10-carboxamide along with a little amount of $\mathbf{2 3}$.

The mixture containing 24 was heated at reflux in TFA (5 mL) for 42 h . After evaporation of TFA, the residue was purified by column chromatography on silica gel (hexane/AcOEt, 1:1 $\rightarrow 1: 3 \rightarrow \mathrm{AcOEt}$) to afford 25 (515 mg , ca. 80\%) along with a little amount of inseparable by-product. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}^{81} \mathrm{Br}$: 405.0399, found: 405.0411. This mixture was used in the next step without further purification:
4.1.9. 9-Bromo-2,3,6-trimethoxyphenanthrene-10-carbaldehyde (27). Tо а suspension of 25 containing a little amount of unidentified product (206 mg, 0.51 mmol) (purity of $25=$ ca. 80%) in THF (18 mL) was added DIBAL (0.94 M in hexane,
$0.66 \mathrm{~mL}, 0.62 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was slowly warmed to room temperature. $\quad \mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(191 \mathrm{mg}, 0.74 \mathrm{mmol})$ was added at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 4 h . The mixture was filtered off through short column on silica gel (AcOEt) and the filtrate was concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt, 3:1 $\rightarrow 2: 1 \rightarrow 1: 1 \rightarrow 1: 3$). The first eluate gave 27 ($101 \mathrm{mg}, 43 \%, 3$ steps) as a yellow crystal. Mp 185.5-186.0 ${ }^{\circ} \mathrm{C}$ (hexane/AcOEt); IR $\left(\mathrm{CHCl}_{3}\right)$ v $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{H}, \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 4.10(3 \mathrm{H}, \mathrm{s}), 7.28(1 \mathrm{H}, \mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}), 7.78(1 \mathrm{H}$, s), $7.78(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.56(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 8.72(1 \mathrm{H}, \mathrm{s}), 10.9(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 55.5,55.7,55.8,102.6,103.7,105.3,116.3,123.3,123.7$, 124.3, 124.6, 130.8, 133.0, 134.0, 149.0, 150.4, 160.9, 196.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{4}: \mathrm{C}, 57.62 ; \mathrm{H}, 4.03$. Found: C, 57.25; H, 3.99.

The second eluate gave the recovered $\mathbf{2 5}(68 \mathrm{mg})$ (purity of $\mathbf{2 5}=\mathrm{ca} .80 \%$).

4.1.10.

9,11,12,13,13a,14-Hexahydro-3,6,7-trimethoxy-13a-methyldibenzo[f,h]pyrrolo[1,2-

 blisoquinolin-11-one (31). To a boiling solution of 30 ($39.1 \mathrm{mg}, 0.083 \mathrm{mmol}$) in toluene (8 mL) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.04 \mathrm{ml}, 0.15 \mathrm{mmol})$ and ACN ($4.6 \mathrm{mg}, 0.02 \mathrm{mmol}$) in toluene (8 ml) over 2 h by employing a syringe-pump technique and the mixture was further heated for 1 h . After removal of solvent, the residue was purified by column chromatography on silica gel containing 10\% KF (hexane/AcOEt, 1:1 $\rightarrow 1: 3 \rightarrow$ AcOEt) to give $31(11.6 \mathrm{mg}, 36 \%)$ as a pale yellow crystal. Mp 198.0-202.5 ${ }^{\circ} \mathrm{C}$ (dec) (Hexane/AcOEt); IR $\left(\mathrm{CHCl}_{3}\right)$ v $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.16(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 2.52-2.67(2 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}$,d, $J=15.6 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.01(3 \mathrm{H}, \mathrm{s}), 4.02(3 \mathrm{H}, \mathrm{s}), 4.11(3 \mathrm{H}, \mathrm{s}), 4.34$ $(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}), 7.80(1 \mathrm{H}$, d, $J=9.2 \mathrm{~Hz}$), $7.88\left(2 \mathrm{H}\right.$, like s); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,29.8,33.2,37.9$, 38.6, 55.4, 55.9, 55.9, 57.3, 102.7 ,103.8, 104.6, 114.9, 121.1, 123.2, 124.6, 124.6, 124.7, 124.9, 130.6, 148.4, 149.5, 157.7, 173.3; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4}$: 391.1784, found: 391.1776.

4.1.11.

9,11,12,13,13a,14-Hexahydro-3,6,7-trimethoxy-13a-methyldibenzo[f,h]pyrrolo[1,2-

 blisoquinoline (32). To a solution of 31 ($12.2 \mathrm{mg}, 0.03 \mathrm{mmol}$) in THF (2 mL) was added $\mathrm{LiAlH}_{4}(10.5 \mathrm{mg}, 0.28 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was heated at reflux for 30 min. $\quad \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$ and the precipitates were filtered off through a Celite pad. The filtrate was concentrated under a reduced pressure and the residue was purified by column chromatography on silica gel (MeOH/AcOEt, 1:4) to afford 32 (13.4 mg , quant.) as a pale yellow solid. Mp was not determined due to its lability. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(3 \mathrm{H}, \mathrm{s}), 1.80-2.05(4 \mathrm{H}, \mathrm{m}), 2.85-3.20(4 \mathrm{H}$, m), $4.02(3 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s}), 4.06-4.10(1 \mathrm{H}, \mathrm{m}), 4.11(3 \mathrm{H}, \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz})$, $7.20(1 \mathrm{H}, \mathrm{s}), 7.19-7.25(2 \mathrm{H}, \mathrm{m}), 7.91(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{s}), 7.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 9.1 Hz); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.3,20.2,36.1,39.4,47.4,50.9,55.5,55.9$, 56.0, 57.6, 103.1, 103.9, 104.7, 114.7, 123.2, 123.6, 125.0, 125.7, 125.8, 126.1, 130.5, 148.2, 149.4, 157.5; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3}$: 377.1991, found: 377.1987.
Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education , Culture, Sports, Science and Technology of Japan.

Supplementary data

Experimental procedure for the preparation of 12, 13, 14, 18, 19, 20, 21, 23, 28, 29 and 30.
Supplementary data associated with this article can be found in the online version, at doi:

References and notes

1. (a) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: New York, 1986. (b) Curran, D. P. Synthesis 1988, 417 and 489. (c) Curran, D. P. Comprehensive Organic Synthesis; Trost, B. M.; Flemin, I. Ed.; Pergamon: Oxford, 1991; Vol.4, p 715. (d) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
2. Ishibashi, H.; Ishita, A.; Tamura, O. Tetrahedron Lett. 2002, 43, 473.
3. Review on phenanthroindolizidine and phenanthroquinolizidine alkaloids : Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2365.
4. Pettit, G. R.; Goswami, A.; Cragg, G. M.; Schmidt, J. M.; Zou, J.-C. J. Nat. Prod. 1984, 47, 913.
5. Johnson, J. R. Org. React. 1942, 1, 210.
6. For intramolecular arylation using $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical reaction of aryl bromides, see: (a) Narasimhan, N. S.; Aidhen, I. S. Tetrahedron Lett. 1988, 29, 2987. (b) Suzuki, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1995, 36, 935.
7. Chauncy, B.; Gellert, E. Aust. J. Chem. 1970, 23, 2503.
8. Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. Tetrahedron 2001, 57, 2115.
9. Beckwith, A. L. J.; Mayadunne, R. T. A. Arkivoc, 2004, 80.
10. Bremmer, M. L.; Khatri. N. A.: Weinreb, S. M. J. Org. Chem. 1983, 48, 3661.
11. Reitz, D. B.; Massey, S. M. J. Org. Chem. 1990, 55, 1375.
12. For hydrolysis of diethyamides, see: (a) Krapcho, A. P.; Getahun, Z.; Avery Jr., K. J. Synth. Commun. 1990, 20, 2139. (b) Bates, M. A.; Sammes, P. G.; Thomson, G. A. J. Chem. Soc., Perkin Trans. 1 1988, 3037. (c) Bauta, W. E.; Lovett, D. P.; Cantrell Jr., W. R.; Burke, B. D. J. Org. Chem. 2003, 68, 5967.
13. Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115.
