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Abstract    

Long chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic and 

arachidonic acids, which are enriched in the brain, are important for multiple aspects of 

neuronal development and function including neurite outgrowth, signal transduction and 

membrane fluidity. Recent studies show that PUFA are capable of improving 

hippocampal long-term potentiation, learning ability of aged rats, and cognitive function 

of humans with memory deficits, although the underlying mechanisms are unknown. 

There have been several reports studying physiological roles of G-protein coupled 

receptor 40 (GPR40) in the pancreas, but no studies have focused on the function of 

GPR40 in the brain. As GPR40 was recently identified in neurons throughout the brain, 

it is probable that certain PUFA may act, as endogenous ligands, on GPR40 at their cell 

surface. However, the effects of PUFA upon neuronal functions are still not clearly 

understood. Here, although circumferential, a combination of in-vitro and in-vivo data is 

introduced to consider the effects of docosahexaenoic and arachidonic acids on brain 

functions. GPR40 was found in the newborn neurons of the normal and postischemic 

hippocampi of adult macaque monkeys, while the positive effects of PUFA upon Ca2+ 

mobilization and cognitive functions were demonstrated in both GPR40 

gene-transfected PC12 cells and human subjects with memory deficits. The purpose of 

this review is to propose a putative link among PUFA, GPR40, and hippocampal 

newborn neurons by discussing whether PUFA can improve memory functions through 

GPR40 activation of adult-born neurons. At present, little is known about PUFA 

requirements that make possible neurogenesis in the adult hippocampus. However, the 

idea that ‘PUFA-GPR40 interaction might be crucial for adult neurogenesis and/or 

memory’ should be examined in detail using various experimental paradigms. 
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1. Introduction 

 

Involvement of the hippocampus in learning and memory is well known from rodents to 

primates. Synaptic plasticity within the hippocampal formation and various 

neurotransmitters such as glutamate and γ-aminobutyric acid are required for the 

acquisition and retention of memory (Lamprecht and LeDoux, 2004). However, the 

exact mechanism of memory actually remains unknown, and recently the interests in 

adult neurogenesis have grown exponentially for considering it. Since the pioneer work 

of Nottebohm and colleagues about song learning of birds (Goldman and Nottebohm, 

1983, Nottebohm, 1985), the adult-born neurons in the subgranular zone (SGZ) of the 

hippocampus have been assumed to participate in learning and memory, but evidence in 

favor and against does exist simultaneously (Leuner et al., 2006). Nevertheless, the link 

between the hippocampal newborn neurons and memory function is becoming 

reinforced by their increase with enriched environment (Kempermann et al., 1997) and 

physical exercise (van Praag et al., 1999a,b) as well as their necessity for spatial 

learning and memory (Madsen et al., 2003, Rola et al., 2004, Snyder et al., 2005). 

Nowadays, it is widely believed that the continued production of new neurons in the 

hippocampus is vital for the cognitive and behavioral performance of an individual. For 

example, growth and maturation of adult-born granule cells are considered closely 

related to the encoding of time in new memories of rodents (Fig. 1).  

PUFA, making up 20% of the brain's dry weight, are critical for the normal brain 

development, maintenance of the membrane structure and the neuronal function. 

Omega-6 fatty acid such as arachidonic acid [20:4(n-6)] and omega-3 fatty acid such as 

docosahexaenoic acid [22:6(n-3)] are known to have an important role for the 
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hippocampal long-term potentiation and cognitive function of mammals (Fukaya et al., 

2007). Arachidonic acid preserves membrane fluidity of hippocampal neurons (Fukaya 

et al., 2007) and shows anti-apoptotic effect on neural apoptosis (Kim et al., 2000). 

Docosahexaenoic acid enhances neurite outgrowth of hippocampal and cortical neurons 

and rat clonal pheochromocytoma (PC12) cells in culture (Calderon and Kim, 2004, 

Cao et al., 2005, Kawakita et al., 2006). Further, it is likely that PUFA are incorporated 

into the neuronal membranes to influence the quarternary structure of receptors and 

transporters (Bourre, 1991, Beltz, 2007). However, the exact mechanism of PUFA 

modulation of the neuronal function still remains obscure. 

 

G-protein coupled receptors (GPR), a member of the large family with seven- 

transmembrane domains, are known to play physiological roles in response to peptide 

hormones, neurotransmitters or free fatty acids. GPR40 is a member of a subfamily of 

homologous GPR that includes GPR41 and GPR43. Along with GPR41-43, GPR40 was 

identified downstream of CD22 on human chromosomal locus 19q13.1 (Sawzdargo et 

al., 1997). Fatty acids are important not only as an energy source, but also as an 

endogenous ligand for GPR (Briscoe et al., 2003, Itoh et al., 2003, Kotarsky et al., 

2003). GPR40 has been shown to be localized in β-cells of the pancreas to modulate 

insulin secretion in response to free fatty acids. Interestingly, GPR40 gene was 

identified also in the human brain by RT-PCR (Briscoe, 2003). The ubiquitous 

distribution of this receptor in the primate brain (Briscoe at al., 2003, Ma et al., 2007a) 

suggests that PUFA might act as extracellular signaling molecules at the membrane 

receptor to regulate neuronal function. Briscoe et al. (2003) have identified many kinds 

of PUFA as ligands for GPR40. To date, however, no receptor for PUFA has been 
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identified in neurons, but recently the author’s group found that GPR40 protein is 

ubiquitously present in neurons throughout the central nervous system of primates (Ma 

et al., 2007a). Then, it is probable that long chain PUFA may directly act at the cell 

surface receptor GPR40 in neurons. Nonetheless, there is a paucity of theoretical and 

experimental insights into the potential role of PUFA and GPR40 for the brain 

functions. 

 

For the past decade, adult neurogenesis has been a fascinating biological trait, which has 

captivated minds of many researchers since its debut 45 years ago (Altman, 1962). Most 

of the current researches focusing on adult neurogenesis are aimed at understanding 

how generation of new neurons contributes to learning and memory. However, we still 

don’t have a detailed understanding of how neurogenesis affects the function of neural 

circuitry in distinct brain regions. The function of this evolutionarily conserved 

phenomenon still remains elusive especially in the mammalian hippocampus. For 

predicting the function of GPR40 in the neural progenitor cells of adult hippocampus, 

the author would unravel the mystery of how PUFA are correlated with the function of 

GPR40-transfected cells or with the cognitive function of human subjects using in-vitro 

and in-vivo approaches. Here a link among PUFA, GPR40, and hippocampal newborn 

neurons is proposed as a possible mechanism of memory functions.  

 

This review aims at highlighting the new concept that PUFA such as docosahexaenoic 

and arachidonic acids might improve memory functions by interacting with 

hippocampal newborn neurons through GPR40. For this purpose the author presents 

experimental and clinical evidence that (1) expression of GPR40 protein is present in 
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the normal adult hippocampus and upregulated in the second week after ischemia on 

Western blots, (2) hippocampal newborn neurons of the postischemic monkeys 

remarkably increase after ischemia, showing intense GPR40 immunoreactivity 

compared with the control, (3) PC12 cells transfected with GPR40 gene show Ca2+ 

mobilization in response to arachidonic acid, and (4) memory function of human 

subjects is significantly improved with PUFA supplementation. To the best of the 

author’s knowledge, no previous publications are available concerning the role of 

GPR40 in the brain at present. Accordingly, original data of the author’s group are 

introduced here, and the possibility that PUFA might act on GPR40 to regulate adult 

neurogenesis for memory functions is discussed with citing related papers.  

 

 2.1. GPR40 expression in the monkey hippocampus  

 

In the hippocampal SGZ of the control and day 4, 7, 9 & 15 postischemic monkeys, the 

anti-GPR40 antibody (Ma et al., 2007a,b) recognized a single band of GPR40 at a 

molecular weight of approximately 31 kDa (Fig. 2). This was compatible with the band 

of the pancreas as a positive control. As the internal control protein β-actin revealed a 

constant expression regardless of the ischemic insult, the densitometric analysis of 

GPR40/β-actin ratio revealed an increase of the GPR40 protein in the second week 

after ischemia, being maximal on day 15 after ischemia (Fig. 2).  

                       

2.2. GPR40 localization in the monkey hippocampus  
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GPR40 immunoreactivity was found in the hippocampus of non-ischemic controls, 

including granule cells of the dentate gyrus and pyramidal cells of the cornu Ammonis 

(CA) 1-4 sectors (Ma et al., 2007a). Polysialylated neural cell adhesion molecule 

(PSA-NCAM)-positive(+) newborn neurons in the SGZ showed immunoreactivity for 

GPR40. On day 15 after ischemia, PSA-NCAM and GPR40 double-positive newborn 

neurons increased significantly, compared with the control (Fig. 3). High magnification 

showed GPR40 immunoreactivity within the perikarya of newborn neurons. The GPR40 

immunoreactivity of newborn neurons was much more intense (Fig. 3 arrows), 

compared with mature granule cells. In addition, GPR40 was also positive for CD31+ 

endothelial cells of the proliferating capillaries and S100β+ young astrocytes in the 

SGZ (Ma et al., 2007b). 

 

2.3. Ca2+ mobilization in GPR40-transfected rat PC12 cells 

 

Notably, docosahexaenoic acid has a pEC50 (-log molar concentration producing 

half-maximal response) of 5.37 for GPR40 while arachidonic acid has a pEC50 of 4.92 

(Briscoe, 2003). Here the dynamic change of intercellular Ca2+ concentration in 

response to arachidonic acid is introduced as a representative (Fig. 4), using rat 

pheochromocytoma PC12 cells with GPR40 gene transfection and the resultant protein 

expression. 

No significant change of intracellular Ca2+ was observed in naïve PC12 cells in 

response to 10 µM arachidonic acid (1.09±0.63, mean±SD), although KCl induced Ca2+ 

mobilization up to 1.3 fold. On the contrary, in PC12 cells transfected with GPR40 gene, 
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the intracellular Ca2+ was significantly increased (1.94±0.11), compared with the wild 

type. Even after Ca2+ was removed from the solution with ethylenediamine tetraacetic 

acid (EDTA), arachidonic acid-induced intracellular Ca2+ mobilization was observed 

(1.88±0.15), but this showed no significant differences, compared with the control. In 

contrast, the inositol 1, 4, 5-triphosphate (IP3) receptor-specific antagonist, xestospongin 

C (Sigma, St. Louis, MO) blocked arachidonic acid-induced Ca2+ increase under the 

Ca2+-free condition (1.07±0.05). These suggested that GPR40-mediated Ca2+ release 

from the intracellular stores are partially related to the arachidonic acid-induced Ca2+ 

mobilization. 

 

2.4. Cognitive improvement of human subjects with PUFA  

 

For the neuropsychological test, the repeatable battery for the assessment of the 

neuropsychological status (RBANS: Randolph et al., 1998) was used. A total of 50 

subjects (26 females, 24 males, mean±SD: 62.8 ± 12.0 year old) with a complaint of 

amnesia and RBANS total estimation score less than 40 (average score of each decade 

being 50) underwent PUFA supplementation for three months (Fig. 5). Each subject was 

administered 240 mg/day of docosahexaenoic and arachidonic acids by commercially 

available ARAVITA capsules (SUNTORY Ltd., Osaka, Japan). The Japanese version of 

RBANS was done before and after the supplementation (Kotani et al., 2006). After the 

PUFA supplementation, the immediate memory score showed a remarkable 

improvement (Fig. 5) from 32.7 ± 1.60 to 38.6 ± 1.70. The delayed memory score also 

showed a remarkable improvement (Fig. 5) from 27.9 ± 2.00 to 36.7 ± 2.01. Then, the 
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total score of RBANS showed a dramatic improvement from 26.65 ± 1.41 to 33.0 ± 

1.66. In contrast, after the supplementation of placebo (olive oil of 240 mg/day), there 

was no significant improvement of RBANS scores in the age- and RBANS score- 

matched control group (Kotani et al., 2006). 

 

3. Adult-born hippocampal neurons and memory 

 

Neurogenesis is a critical process in the development of embryonic brain, and is also 

implicated in the maintenance of adult brain. Because of the resemblance of regulatory 

mechanisms between embryonic and adult neurogenesis, it is in one sense true that adult 

neurogenesis is merely a remnant of embryonic neurogenesis rather than an adaptation 

to adult life. There are, however, essential differences between embryonic and adult 

neurogenesis, and consequently regulatory mechanisms may have been partly co-opted 

for a specifically adapted adult function (Lindsey and Tropepe, 2006). The 

characterization of adult neural stem cells in mammals has been the focus of intense 

research with two goals of elucidating the memory mechanism and of developing new 

stem cell-based regenerative treatments for stroke, spinal cord injury, neurodegenerative 

diseases, etc. Nonetheless, there is a paucity of not only experimental but also 

theoretical insights into the potential role of neuronal replacement as a mechanism of 

neural circuit plasticity. 

 

An important concern that has surfaced in the field of adult neurogenesis is the question 

of how representative are the rodent data when contrasted with the primate data. 

Rodents generally displayed a remarkable difference in their rate of adult neurogenesis, 
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compared with macaque monkeys. After transient global brain ischemia, Tonchev et al. 

(2003, 2007) could identify only 1~3% of neuronal differentiation among the total 

proliferating cells in the hippocampal SGZ of monkeys. This showed a remarkable 

contrast to over 60% of neuronal differentiation in rats (Kee et al., 2001). Furthermore, 

Ngwenya et al. (2006) reported that maturational progression of newborn granule 

neurons in the monkey takes five times longer to complete, compared to a similar 

progression in rats. Therefore, one should approach the results of rodents with caution 

and not take for granted that the same findings will be paralleled in the primates. In this 

respect, the primate experimental paradigms such as monkey brain ischemia and human 

PUFA supplementation, as introduced here, may contribute to clarifying the role of 

newborn neurons in the adult hippocampus. 

 

Environmental influences, daily behavior, and social interactions constitute a number of 

combined forces affecting on brain plasticity, and are intimately related to the addition 

of new neurons throughout adulthood (Lindsey and Tropepe, 2006). Seki and Arai 

(1995) first demonstrated a significant age-related decline in the newborn and 

developing granule cells in the dentate gyrus of young to old rats. Kempermann et al. 

(1998) showed in mice that an enriched environment can in part rescue an age-related 

decline in the production of adult-born neurons. Senescence is generally thought to 

contribute to the overall decline of memory, and in the context of adult neurogenesis 

appears to exert an age-related decline in neurogenic capacity (Lindsey and Tropepe, 

2006). Although it is possible that hippocampal adult-born neurons may contribute to 

other brain functions except for memory, such as emotions and stress regulation (Leuner 

et al., 2006), the most likely and what remains to be established are a definitive link 
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between adult hippocampal neurogenesis and memory function. This link was 

strengthened in a mouse Alzheimer model by Dong et al. (2004) who demonstrated that 

induced amyloid depositions provoke impairment of adult hippocampal neurogenesis 

being associated with memory deficits.  

 

Microstructural changes of synaptic morphology such as number and size of dendritic 

spines and post-synaptic densities occur in response to sensory stimuli, and are central 

for learning and memory formation in the adult brain (Feldman and Brecht, 2005). Thus, 

the formation, modification and elimination of synapses, being the direct result of 

removal, generation and replacement of entire neurons, can play a fundamental role in 

learning and memory. Hippocampal neurogenesis can be altered by various hormones 

(Gould et al., 1998, Shingo et al., 2003), exercise (Kempermann et al., 1997b, van Praag 

et al., 1999a,b) and enriched environments in both vertebrates and invertebrates (van 

Praag et al., 1999b, Scotto-Lomassese et al., 2000). Then, adult neurogenesis may, in 

fact, have a predominant role rather for modifying circuitry related to the processing of 

sensory information (Lindsey and Tropepe, 2006). Kempermann (2002) has claimed 

that the function of newborn neurons in the mammalian hippocampus should be to 

modify their circuitry in order to enhance capacity for processing information that will 

eventually be stored as permanent memories. Regardless of the functional significance 

of adult hippocampal newborn neurons, neural plasticity including cell loss, addition or 

replacement, is currently receiving more attention given the interest in the field of adult 

neurogenesis.  

 

In the normal adults, new granule cells in the dentate gyrus are born locally in the 
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underlying SGZ and migrate a very short distance to integrate into the dentate gyrus 

(Fig. 1) (Gage, 2000). Dendrites of them receive inputs from the entorhinal cortex via 

perforant path while their axons send outputs to the CA3 sector via mossy fibers. The 

addition of new neurons within the SGZ is modified by many factors as mentioned 

above. Such dynamic regulation of neurogenesis may be important for mediating 

behavioral tasks that are based on learning or memory (Doetsch and Hen, 2005). Further, 

the SGZ of monkey hippocampus upregulated neural progenitor cells to generate new 

neurons especially in the second week after 20 min global ischemia. Pyramidal neurons 

of the CA1 sector of the monkey hippocampus degenerate after this insult, and lead to 

the memory impairment of postischemic monkeys (Yukie et al., 2006). Ischemia 

enhanced neurogenesis in the SGZ, but no neurogenesis occurred in the CA1 sector 

after ischemia without external therapeutical interference (Yamashima et al., 2000, 

2007a,b). One implication of this finding is that homeostatic neurogenesis for the 

cellular turnover has negligible functional role in the CA1 physiology. In one sense, 

cellular homeostasis in the postischemic hippocampus can be defined as the insertion of 

newly recruited neurons in a local circuit of the SGZ in order to compensate for the loss 

of CA1 neurons. 

 

Though the cellular populations in the postischemic SGZ are spatially isolated, common 

themes begin to define this neurogenic niche by focusing PUFA and GPR40 (Fig 6): (1) 

neural progenitor cells and niche cells derive from vascular adventitia, (2) newborn 

neurons and astrocytes, both expressing GPR40, are essential components of the niche, 

(3) PSA-NCAM+ young neurons express GPR40 while newborn astrocytes express 

S100 β , and (4) clusters of S100 β + astrocytes are in intimate contact with 
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PSA-NCAM+ young neurons (Yamashima et al., 2004). Presumably, astroglia-derived 

soluble and membrane-bound factors promote proliferation and neuronal fate for 

hippocampal progenitor cells (Song et al., 2002). Although the postischemic second 

week SGZ revealed a cluster of S-100β+ young astrocytes within the neurogenic niche 

(Yamashima et al., 2006), it is not clear to what extent these astrocytes contribute to 

neural circuit function or maintenance, or whether they play a purely supportive role in 

ensheathing the progenitor cells and maintaining the blood-brain barrier. Recent 

evidence has shown that for the maturation of neuronal phenotypes, specific fibroblast 

growth factors being secreted by astrocytes within their surrounding niche or target 

migratory site may be required, and that such signaling could be involved in 

maintaining neurogenesis at later stages of adulthood (Chadashvili and Peterson, 2006). 

As capillary endothelial cells, astrocytes and adult-born neurons all expressed GPR40 

(Ma et al, 2007b), it is probable as well that adult-born neurons respond to PUFA that 

was incorporated into astrocytes from the blood stream and released into the neuropil of 

the SGZ. 

 

4. PUFA and brain 

 

PUFA have an important physiological role in the brain. For example, previous studies 

demonstrated that docosahexaenoic acid is associated with memory and vision (Carlson 

and Werkman, 1996, Birch et al., 2000), and is useful for the prevention of ischemic 

brain damages (Tsukada et al., 2000). Further, spatial memory and hippocampal 

long-term potentiation can be improved with dietary supplementation of arachidonic 

acid in aged rats (McGahon et al., 1999, Kotani et al., 2003, Okaichi et al., 2005). 
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Dietary supplementation of such fatty acids presumably affects the intracellular and 

intercellular signaling, and also the membrane fluidity of neurons (Horrocks and 

Farooqui, 2004). However, the molecular mechanism of PUFA effects upon brain 

functions still remains unknown. 

 

Docosahexaenoic and arachidonic acids make up about 30% and 20% of fatty acids in 

phospholipids of the brain, respectively (Contreras et al., 2000, Lapillonne et al., 2002). 

In the rat brain, the rate of turnover due to loss followed by replacement is equal to 

2~8% per day for docosahexaenoic acid while 3~5% per day for arachidonic acid, with 

corresponding half-lives (0.693/turnover) being 7~34 and 12~23 days, respectively 

(Rapoport , 2003). The proportion of docosahexaenoic acid to arachidonic acid in neural 

membrane phospholipids varies among the subclasses of phospholipids. 

Docosahexaenoic acid is abundant in synaptic membranes, while arachidonic acid is 

distributed rather evenly in the gray and white matter and among the different cell types 

in the brain. As these two PUFA cannot be synthesized de novo from 2-carbon 

fragments by the mammalian tissue, they must be obtained from dietary sources:α

-linolenic acid and linoleic acid in the diet can serve as precursors of docosahexaenoic 

acid and arachidonic acid, respectively. It is widely accepted that normal brain function 

and structure depend on a correct balance between omega–3 and omega–6 PUFA, so 

cognitive and behavioral changes may result if this balance is disturbed (Lands, 1989). 

Brain events such as apoptosis, gene transcription, neurite outgrowth, membrane 

excitability, prostaglandin formation, desaturation-elongation, membrane fluidity and 

elasticity are all thought to depend on the presence of adequate concentrations of 

docosahexaenoic and arachidonic acids as well as on balanced interactions between 
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omega–3 and omega–6 PUFA (Contreras and Rapoport, 2002, Rapoport, 2003).  

 

Although abundant in the brain, docosahexaenoic acid cannot be synthesized by 

neurons and has to be supplied by the cerebrovascular endothelium and astrocytes 

(Moore, 2001). Then, one of the supporting roles of astrocytes to neurons is to supply 

docosahexaenoic acid for its enrichment (Kim et al., 2000). Final steps of its 

biosynthesis in the brain occur in astrocytes (Moore et al., 1991, Garcia and Kim, 1997). 

They release docosahexaenoic acid that may reach a local concentration sufficient to act 

as an extracellular signaling molecule (Moore, 1993, Kim et al., 1999), or may support 

neuronal survival by enhancing membrane phosphatidylserine (Kim et al., 2000). 

Docosahexaenoic acid thus provided appears to accumulate in neuronal membranes, 

since this fatty acid has been shown to be resistant to the phospholipase A2 action in 

neurons (Kim, et al., 1999a,b). 

 

Arachidonic acid is also abundant and necessary in the brain and has various 

physiological functions. Arachidonic acid plays an important role for the infant brain 

development (Crawford et al., 2003, Bazan, 2005). It is one of the major components of 

cell membranes and is of special importance also to the adult brain in both physiological 

and pathological states. Release of arachidonic acid from membrane phospholipids can 

serve as an intercellular messenger to activate protein kinase C and modulate ion 

channels, transporters and receptors as well as synaptogenesis (Kawasaki et al., 2002, 

Hama et al., 2004). There is a considerable amount of evidence describing the beneficial 

effects of PUFA on the prevention of ischemic stroke and modulation of epileptic 

seizure susceptibility. However, the effects of arachidonic acid on the viability of 
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neurons are still somewhat controversial. Recently, Wang et al. (2006) reported that 

arachidonic acid can effectively protect rat hippocampal neurons against oxidative stress 

induced by glutamate or H2O2 by enhancing antioxidative enzyme activities. 

 

In the brain, arachidonic acid is esterified mainly into the sn-2 position of 

phosphatidylinositol or phosphatidylcholine (Rapoport, 2003). After arachidonic acid is 

released from phospholipids by phospholipase A2, it enters an unesterified brain pool 

being largely located at the synapse (Rapoport, 2003). This endogenous arachidonic 

acid is the precursor pool for conversion to eicosanoids including prostaglandins, 

leukotrienes, thromboxanes, or hydroxyeicosatetraenoic acids, and does not directly 

exchange with arachidonic acid in plasma. In contrast, the exogenous unesterified 

arachidonic acid from plasma is not converted to eicosanoids, and diffuses, by binding 

to fatty acid-binding proteins (FABP), to the pool at the endoplasmic reticulum 

(Rapoport, 2003), and from there, it can exchange with arachidonic acid in plasma.  

 

FABP belong to the conserved multigene family of the intracellular lipid-binding 

proteins having molecular masses around 15 kDa, and are ubiquitously expressed in 

various vertebrate tissues with peculiar expression patterns. Various functions have been 

proposed for FABP, including promotion of cellular uptake and transport of PUFA, 

targeting of them to specific metabolic pathways, and regulation of gene expression and 

cell growth. It is generally accepted that many FABP participate in cell growth rather 

than differentiation. Brain-type FABP, also called FABP7, is present in the brain and 

retina, and is characterized by its strong affinity for n-3 PUFA, in particular 

docosahexaenoic acid (Haunerland and Spener, 2004). FABP7 is important for the 
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embryonal neurogenesis, and is strongly expressed in ‘radial glia cells’ of the 

developing brain, which also behave like stem cells in the nervous system (Feng et al., 

1994, Kurtz et al., 1994, Gotz et al., 1998, Anthony et al., 2004). Arai et al. (2005) 

reported that Fabp7 is a downstream gene of transcription factor Pax6 (Kukekov et al., 

1999) and essential for proliferation of neuroepithelial cells in the developing rat cortex. 

In our experimental paradigm, no signs of neuronal production were observed in the 

postischemic hippocampus proper and in particular in the CA1 sector, where the 

newborn cells were consistently of glial phenotype. As proliferating progenitors in the 

SGZ but not in the subventricular zone adjacent to CA1 expressed the pro-neural 

transcription factor Pax6 (Tonchev et al., 2006), Pax6 conceivably controls the fate of 

progenitor cells of the adult primate hippocampus. Intriguingly, the author’s group has 

recently identified co-expression of Pax6 and FABP7 in the newborn neurons of the 

postischemic SGZ. Furthermore, epidermal-type FABP, also called FABP5 was found to 

be co-expressed with GPR40 in the CA1-4 pyramidal neurons, granule cells and SGZ 

newborn neurons (unpublished data). Accordingly, it is possible that FABP5 may play a 

crucial role in the hippocampus in association with GPR40. The exact role of FABP in 

the adult neurogenesis would be clarified in the near future. 

 

5. Diet and PUFA  

 

Conversion from α-linolenic acid [18:3(n-3)] to docosahexaenoic acid is low in 

humans with less than 1% of dietaryα-linolenic acid converting to docosahexaenoic 

acid (Burdge et al., 2003). Dietary docosahexaenoic acid, however, is well absorbed and 
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incorporated into plasma and blood cell lipids, and is readily incorporated into lipids of 

the developing brain (Innis, 2007). Docosahexaenoic acid is absent from all vegetable 

fats and oils including nuts, grains and seeds, and poultry and eggs also provide a lower 

amount while the richest dietary sources are fish and sea foods (Innis, 2003). 

Neurochemically, enrichment of docosahexaenoic acid in the diet competitively inhibits 

oxygenation of arachidonic acid by cyclooxygenase thus suppressing the production of 

pro-inflammatory eicosanoids and pro-inflammatory cytokines (Calder, 2005). 

Although the ancient diets of human beings had a ratio of arachidonic acid to 

docosahexaenoic acid of 1 : 1, the present western diets have a ratio of about 15:1. 

Changes in eating habits and agriculture development within the past two centuries, 

especially after the World War Ⅱ, caused remarkable changes in this ratio. Both the 

decreased consumption of docosahexaenoic acid-enriched foods such as fish oil and 

increased consumption of omega-6 enriched vegetable oil are responsible for the 15 : 1 

arachidonic acid to docosahexaenoic acid ratio (Weylandt and Kang, 2005). The 

consumption of docosahexaenoic acid has numerous beneficial effects on the health of 

the human brain (Horrocks and Yeo, 1999, Horrocks and Farooqui, 2004). In contrast, 

not only the decrease of docosahexaenoic acid intake but also the increase of 

arachidonic acid intake might have adverse effects on the physicochemical properties of 

neural membranes, because arachidonic acid generates high levels of prostaglandins, 

leukotrienes, and thromboxanes resulting in neuroinflammation.  

 

Kan et al. (2007) recently demonstrated that docosahexaenoic and arachidonic acids are 

fundamental supplements for the induction of neuronal differentiation from bone 

marrow-derived mesenchymal stem cells. The molecular mechanisms underlying the 
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contribution of docosahexaenoic and arachidonic acids to neurite growth of 

mesenchymal stem cells are not completely understood. Nevertheless, two major 

possibilities have been raised, including (1) stimulation of the phospholipid synthesis 

required for the neurite elongation and membrane expansion, and (2) modulation of the 

signal transduction pathways involved in the neurite outgrowth (Kan et al., 2007). In 

adults, decreased intake of omega–3 compared with omega–6 PUFA has been 

implicated as contributing to the clinical signs of Alzheimer’s disease and age-related 

cognitive disturbances (Simopoulos et al., 1999, Conquer et al., 2000). It is probable 

that such adverse effects of dietary PUFA unbalance might become prominent especially 

within the newborn neurons of the hippocampus. It is one of world-wide worries of 

current days that such nutritional unbalance might cause disorders of memory, cognition 

and/or emotion (e.g. depression) in the aged as well as in the young generations. Diets 

enriched in omega-3 PUFA increase membrane fluidity, affect signal transduction, and 

modulate gene expression for brain function (Horrocks and Farooqui, 2004). In addition, 

the author would like to propose a third possibility that (3) certain PUFA are capable of 

sending signals to newborn neurons through GPR40. 

 

6. GPR40 and memory 

 

In the last decade, an increasing number of unliganded orphan receptors with unknown 

function have been identified. GPR respond to a large variety of molecules from 

inorganic ions to peptides. GPR40 was cloned along with GPR41-43 downstream of 

CD22 on human chromosomal locus 19q13.1 (Sawzdargo et al., 1997). GPR40-43 
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belong to a subset of orphan receptors, with GPR40 being 30% identical to GPR41 and 

GPR43. As GPR responding to fatty acid derivatives such as prostaglandins and 

leukotrienes have been identified (Coleman et al., 1994, Sarau et al., 1999), it is 

reasonable to consider that the fatty acid itself may act at a cell-surface receptor. Using a 

ligand fishing strategy, Briscoe et al. (2003) first demonstrated that medium and long 

chain saturated and unsaturated fatty acids can activate GPR40 in a dose-dependent 

manner. The expression pattern clearly differentiates GPR40 from GPR41 and GPR43 

(Brown et al., 2003), suggesting that the function of GPR40 has clearly diverged from 

that of GPR41 and GPR43. It is probable that PUFA may act, as extracellular signaling              

molecules, at a membrane GPR40 receptor to regulate functions not only of the 

pancreas but also of the brain. Signaling at the pancreatic islet should be related to the 

insulin secretion at β-cells, but the role of GPR40 in the brain still remains unknown. 

As shown in Fig. 4, PC12 cells transfected with GPR40 gene showed arachidonic 

acid-induced intracellular Ca2+ mobilization. Recent in-vitro studies have shown that 

PUFA stimulate cell proliferation through GPR40 in a cultured human breast cancer cell 

line (Hardy et al., 2000, 2005). As Ma et al. (2007b) recently found expression of 

GPR40 in the neurogenesis niche of the monkey hippocampus, it is suggested that 

GPR40 signalling is related to the progenitor cell proliferation. Further, because 

adult-born neurons in the hippocampal SGZ showed expression of GPR40, it is 

reasonable to speculate that docosahexaenoic and arachidonic acids not only influenced 

integration and synaptic formation of newborn neurons by supplying constitutive 

phospholipids but also directly stimulated their function through Ca2+ mobilization by 

interacting with GPR40. 
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7. Conclusion 

 

Like in birds and rodents, a close relationship appears to exist between vasculogenesis 

and neurogenesis in the primate brain as well. In the SGZ, adventitial cells around the 

proliferating capillaries are spatially and temporally related to hippocampal 

neurogenesis (Yamashima et al., 2004, 2006). It is likely that GPR40 in endothelial cells 

and newborn astrocytes of SGZ (Ma et al., 2007b) may be helpful to increase the local 

concentration of PUFA (Moore, 1993), in order to be sufficient to act as an extracellular 

signaling molecule. Meanwhile, GPR40 in the neural progenitors, newborn neurons and 

young granular cells augments PUFA-induced intercellular signaling. An increased 

PUFA signaling via GPR40 in SGZ is likely to modulate network formation of the adult 

hippocampus that is indispensable for learning and memory (Fig. 6). 

 

Fat, an important component of diets, provides energy as well as adequate amounts of 

essential fatty acids to the mammalian body. As the amount of fat in diets is well known 

to balance growth and development of the infant brain, the author speculates that it 

might also affect the adult hippocampal neurogenesis through GPR40. Currently, the 

role of adult hippocampal neurogenesis in learning and memory is highly probable, 

although not firmly established (Shors et al., 2001, Kempermann, 2002, Prickaerts, 

2004). As all data directly linking memory and adult neurogenesis are derived from 

non-primate experimental models, at present it is not fixed whether the effects of fatty 

acids on memory in humans could be also mediated via modulation of hippocampal 

neurogenesis. In fact, strictly speaking, the exact role of adult neurogenesis still remains 

unclarified in the primate brain. Nevertheless, in concluding this review the author 
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would like to hypothesize that ‘PUFA can modify memory performance via an 

interaction with GPR40 in the hippocampal newborn neurons’ (Fig. 7). The putative 

link of PUFA, GPR40 and adult neurogenesis should be studied further using various 

experimental paradigms to clarify the mechanism of memory. 
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Legends 

 

Fig. 1. Growth and maturation of newborn granule cells encoding time as new 

memories in the adult rodents. Newborn granule cells in the SGZ have few projections 
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at 3 days, but by 2 months develop maturity with both extension of axons to CA3 and 

arborizations of many oriented dendrites to perforant path axons. Violet lines indicate 

perforant path with entorhinal input starting by 2.5 weeks, while green lines indicate 

mossy fibers from the dentate gyrus (DG) to CA3. γ-aminobutyric acid (GABA, red) 

is excitatory in immature neurons but becomes inhibitory around the time the excitatory 

glutamatergic synapses (between violet and green) are established. Involvement of 

PUFA and GPR40 in such synaptic formations appears to be most likely. 

 (cited from Aimone et al., Nature Neuroscience, 9 (2006), pp. 723 - 727)  

 

Fig. 2. Western blotting of GPR40 using a nonischemic control (C), postischemic day 4, 

7, 9 and 15 DG tissues and positive control of pancreas. As the internal control protein 

β-actin shows a constant expression, densitometoric analysis of GPR40/β-actin ratio 

of band intensities shows upregulation of GPR40 expression in the second week after 

ischemia, being maximal on day 15. Pan; Pancreas as a positive control of GPR40  

 

Fig. 3. Immunoreactivity of PSA-NCAM (red) and GPR40 (green) in the nonischemic 

control (C) and postischemic day 15 (d15) hippocampus. PSA-NCAM+ newborn 

neurons are seen in the control SGZ, and remarkably increase on day 15 after ischemia. 

They co-express intense GPR40 immunoreactivity, and can be appreciated as merged 

color of yellow (arrows). SGZ; subgranular zone, GCL; granule cell layer, Scale bar= 

50 µm.  

 

Fig. 4. Arachidonic acid (ARA)-induced Ca2+ mobilization depends on GPR40.  

Rat PC12 cells were transfected with the GPR40 gene, and subsequently ARA was 
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applied to the medium. This resulted in an increment of the intracellular Ca2+ 

concentration in PC12 cells, and this effect was inhibited by an IP3 blocker 

(Xestospongin C). ARA application after mock-infection of GPR40 did not elicit an 

increase of the intracellular Ca2+ concentration. 

 

Fig. 5. Dietary supplementation with arachidonic acid (ARA) and docosahexaenoic acid 

(DHA) elicits memory improvements. Schematic summary of the data regarding 

subjects included in the study, dosage and duration of the PUFA supplementation, and 

improvement of RBANS scores. Both the immediate and delayed memory scores and 

the total score showed a significant (p<0.001) improvement after the PUFA 

supplementation. Open bars; before supplementation, Black bars; after supplementation, 

***; p<0.001 

 

Fig. 6. Schematic drawing of the role of PUFA ligand / GPR40 receptor (Y) in each cell 

and phase of adult neurogenesis niche of primates. Round cells indicate progenitor cells 

while star-like cells indicate newborn astrocytes. Astrocytes supply PUFA signaling to 

neural progenitor cells, newborn neurons and mature neurons in the vascular niche. EC; 

endothelial cells, PUFA; polyunsaturated fatty acids, VEGF; vascular endothelial 

growth factor, BDNF; brain-derived neurotrophic factor   

 

Fig. 7. A hypothesizing scheme of memory formation via PUFA and GPR40 binding in 

the hippocampal newborn neurons. 
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	Abstract   
	Long chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic and arachidonic acids, which are enriched in the brain, are important for multiple aspects of neuronal development and function including neurite outgrowth, signal transduction and membrane fluidity. Recent studies show that PUFA are capable of improving hippocampal long-term potentiation, learning ability of aged rats, and cognitive function of humans with memory deficits, although the underlying mechanisms are unknown. There have been several reports studying physiological roles of G-protein coupled receptor 40 (GPR40) in the pancreas, but no studies have focused on the function of GPR40 in the brain. As GPR40 was recently identified in neurons throughout the brain, it is probable that certain PUFA may act, as endogenous ligands, on GPR40 at their cell surface. However, the effects of PUFA upon neuronal functions are still not clearly understood. Here, although circumferential, a combination of in-vitro and in-vivo data is introduced to consider the effects of docosahexaenoic and arachidonic acids on brain functions. GPR40 was found in the newborn neurons of the normal and postischemic hippocampi of adult macaque monkeys, while the positive effects of PUFA upon Ca2+ mobilization and cognitive functions were demonstrated in both GPR40 gene-transfected PC12 cells and human subjects with memory deficits. The purpose of this review is to propose a putative link among PUFA, GPR40, and hippocampal newborn neurons by discussing whether PUFA can improve memory functions through GPR40 activation of adult-born neurons. At present, little is known about PUFA requirements that make possible neurogenesis in the adult hippocampus. However, the idea that ‘PUFA-GPR40 interaction might be crucial for adult neurogenesis and/or memory’ should be examined in detail using various experimental paradigms.
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