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Abstract 

Deep infection remains a serious complication in orthopedic implant surgery. In 

order to reduce the incidence of implant-associated infections, several biomaterial 

surface treatments have been proposed. This study focused on evaluating the 

antibacterial activity of iodine-supported titanium (Ti-I2) and impact on post-implant 

infection, as well as determining the potential suitability of Ti-I2 as a biomaterial. 

External fixation pins were used in this experiment as trial implants because it was easy 

to make the septic models. 

The antibacterial activity of the metal was measured using a modification of the 

Japanese Industrial Standards method. Activity was evaluated by exposing the implants 

to Staphylococcus aureus or Escherichia coli and comparing reaction of pathogens to 

the Ti-I2 versus the stainless steel and titanium controls. The Ti-I2 clearly inhibited 

bacterial colonization more than the control metals. In addition, cytocompatibility was 

assessed by counting the number of colonies that formed on the metals. The three 

metals showed the same amount of fibroblast colony formation.  

Japanese white rabbits were used as an in vivo model. Three pins were inserted into 

both femora of six rabbits for histological analysis. Pin sites were inspected and 

graded for infection and inflammation. Fewer signs of infection and inflammatory 



changes were observed in conjunction with the Ti-I2 pins. Furthermore, 

osteoconductivity of the implant was evaluated with osteoid formation surface 

of the pin. Consecutive bone formation was observed around the Ti-I2 and 

titanium pins, while little osteoid formation was found around the stainless steel 

pins. These findings suggest that Ti-I2 has antimicrobial activity and cytocompatibility. 

Therefore, Ti-I2 substantially reduces the incidence of implant infection and shows 

particular promise as a biomaterial. 
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Infection; Cytotoxicity 

 



1. Introduction 

Bacterial infection has become a significant complication following implant 

placement. The infection rate ranges between 0.5% and 3.0% after primary total hip 

arthroplasty despite strict antiseptic operative procedures, including systemic 

prophylaxis [1-6]. Infection rates between 5% and 35% have been described for 

endoprosthetic replacement of large bone defects after tumor resection [7-12], while 

external fixation produced infection in 2-30% of cases found during a literature review 

[13-17]. Several biomaterial surface treatments have been proposed as a means of 

reducing the incidence of implant-associated infections. There has been investigation 

into the covalent attachment of polycationic groups [18,19]; ion implantation, such as 

F+ [20]; impregnating or loading chitosan nanoparticles with antimicrobial agents [21, 

22]; coating implant surfaces with polymers drug-loaded [23, 24]; and coating implant 

surfaces with either quaternary ammonium compounds, human serum albumin, or silver 

ions [25-30]. However, there are several shortcomings of these proposed techniques 

including limited chemical stability, local inflammatory reactions due to material 

composition, and a lack of controlled release kinetics from the coatings. 

In this work, titanium (Ti) surfaces were modified using anodization. Ti is the 

implant material of choice for use in orthopedic and dental applications. Its excellent 



biocompatibility is reportedly attributable to the stable oxide that readily forms on Ti 

surfaces [31]. The biocompatibility of metal-oxides is well established as evidenced by 

their current clinical applications in orthopedic and dental implants [32]. Highly 

adhesive anodic oxides can be formed through anodization, and the composition of 

these anodic films is dependent on electrolyte composition [33]. Electrolytes containing 

calcium and phosphorus have been explored as a means of forming anodic films [33-35]. 

Here we describe the novel use of povidone-iodine as the electrolyte. The use of a 

povidone-iodine electrolyte resulted in the formation of an adhesive porous anodic 

oxide with the antiseptic properties of iodine. In addition, iodine is the heaviest essential 

element known to be needed by all living organisms and a component of thyroid 

hormones.  

This present study aimed to evaluate the antibacterial activity of iodine-supported 

titanium (Ti-I2) and its impact on implant infection, and to determine the potential use of 

Ti-I2 as a biomaterial.  

 

2. Materials and methods 

2.1. Implants 

External fixation pins were used in this experiment as trial implants because of the 



ease of making the septic models. All iodine-supported titanium was produced by the 

Chiba Institute of Technology. Circular implant Ti-I2, pure titanium or stainless steel 

disks (diameter: 20 mm; thickness: 2 mm) were used for in vitro antimicrobial tests. 

Semidisks, 50 mm in diameter and 2 mm thick, of these metals were used for in vitro 

cytocompatibility tests. External fixation pins of Ti-I2, pure titanium or stainless steel 

(diameter: 2 mm; length: 45 mm) were used in vivo. The stainless steel material used in 

this study was SUS316. The titanium was commercially pure titanium. Ti-I2 was 

produced by the Chiba Institute of Technology, (Narashino, Japan) using a technique 

described by Hashimoto [36]. The thickness of the anodic oxide film was between 5 and 

7 μm, with more than 1400 pores/mm2 capacity to support 10-12 μg/cm2 iodine. All the 

metals were processed by Koshiya Medical Instruments Company (Kanazawa, Japan). 

2.2. In Vitro antimicrobial properties 

The antibacterial activity of the Ti-I2 was measured using the method approved by 

Japanese Industrial Standards. The implants were exposed to Gram positive 

Staphylococcus aureus (S. aureus) strain 25923 (ATCC, Manassas, VA) or Gram 

negative Escherichia coli (E. coli) strain MG1455. Approximately one million colony 

forming units were inoculated on the autoclaved circular implants before they were 

covered by glass in a sterile dish and incubated at 37°C for 2, 6, or 24 h. Each implant 



was washed using 5 mL phosphate-buffered saline (PBS). The wash eluate was diluted 

1:50 with PBS and 100 μL was spread on the following media: S. aureus was grown in 

Brain Heart Infusion broth and E. coli was grown in LB broth (1% w/v tryptone, 0.5% 

w/v yeast extract, 0.5% w/v NaCl) at 37°C. The colonies were counted after 24 h. If all 

the pathogens were viable, 2000 colonies were counted (Figure 1). This method was 

repeated 15 times for both S. aureus and E. coli. The reaction of pathogens to the Ti-I2 

was compared with their reaction to pure titanium and stainless steel (controls). The 

differences in the number of bacteria on each metal were statistically analyzed. 

2.3. In Vitro Cytocompatibility Properties 

The V79 cell line (Chinese hamster fibroblasts), provided by the RIKEN 

BioResource Center Cell Bank (Tsukuba, Japan), was used for the cytotoxicity tests. 

Culture medium consisted of alpha-minimum essential medium (α-MEM) supplemented 

with 10% fetal calf serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin 

sulfate. Experiments were conducted in an incubator at 37°C with a humidified 

atmosphere of 95% air and 5% CO2 for 24 h. Semidisks made of stainless steel, titanium 

or Ti-I2, sterilized by heating at 180°C for 1 h, were placed in plastic 60 mm-petri dishes. 

A cell suspension of trypsinized subcultured V79 cells was diluted from 106 cells/mL to 

102 cells/mL. Next, 6 mL of medium and 2 mL of the cell suspension were seeded on 



the semidisks in dishes so as to provide 300 cells per dish. Control dishes without 

metals were also made. After seeding, the dishes were gently shaken and cultured in the 

incubator. After 1 week, the medium was extracted, and the cells were fixed with 5 mL 

10% formalin for 30 min, stained with 8 mL of 0.15% methylene blue for an additional 

30 min, washed thoroughly, and dried. Differences in colony formation between areas 

covered by the metal disks and plastic areas of the dishes were first qualitatively 

examined. Subsequently, colony formation in the dishes was compared with control 

dishes by counting the number of colonies [37]. 

2.4. In Vivo Effects 

Pins were inserted into the femora of six mature female Japanese white rabbits 

weighing from 2.5 to 3.0 kg. The rabbits were anesthetized with an intramuscular 

injection of ketamine hydrochloride (50 mg/kg body weight; Warner-Lambert, Morris 

Plains, NJ) and an intravenous injection of pentobarbital sodium (40–50 mg/kg 

body-weight; Abbott Laboratories, North Chicago, IL). A longitudinal skin incision was 

made on the lateral side of the right thigh, and the muscle and fascia were carefully split. 

Half pins made of each of the three metals, 2 mm in diameter (Howmedica, Geneva, 

Switzerland), were inserted randomly into the lateral aspect of both femora in six rabbits. 

The 12 of each type of half-pins were inserted. 



On postoperative day 14, the animals were euthanized and the histology of the pin 

tract was studied. Heparinized physiologic saline was perfused through the aorta, 

followed by perfusion with 4% paraformaldehyde in phosphate buffer (pH 7.4). The 

femurs were fixed for 48 h in the same solution. Next, all pins were removed and the 

femurs were decalcified with 10% EDTA and embedded in paraffin. A representative 

section was chosen for each pin tract site. The specimens were sectioned at 5 

mm-thickness parallel to the bone axis and stained with hematoxylin-eosin stain. The 

tracts were inspected and graded for the presence of inflammation, abscesses, 

osteomyelitis, and inflammation around the tip. Inflammation of the pin tract and 

around the tip were scored from 0 to 2, where 0 = none, 1 = mild, 2 = severe. Pin tract 

abscesses were scored from 0 to 2, where 0 = none, 1 = surface, 2 = deep. Pyogenic 

osteomyelitis was scored from 0 to 2, where 0 = none, 1 = mild infection, 2 = abscess 

formation (Table 1). For the Ti-I2, stainless steel, and pure titanium, the average score of 

each category and total scores were calculated. Severe inflammation and infection 

resulted in a higher score. Each metal was evaluated for a total of 12 pins. 

2.5. In Vivo Biocompatibility 

The biocompatibility of the titanium-supported iodine was evaluated by comparing 

osteoid formation on the surface of the external fixation pin with a pin made of pure 



titanium. Pure titanium is highly osteoconductive [38]. Therefore, bone conduction was 

classified as normal if the osteoid formation was similar to that observed for pure 

titanium. 

2.6. Statistical analysis 

Statistical analyses were performed using StatView 5.0. The difference in the number 

of bacilli between each metal was analyzed by repeated measured ANOVA. 

Inflammation and infection scores were compared using Fisher exact tests. 

 

3. Results 

The iodine-supported titanium inhibited colony formation of both S. aureus and E. 

coli compared with stainless steel and titanium. Figures 2 and 3 show the colonization 

of each bacterium at 6 and 24 h. Fewer colonies formed on Ti-I2 at all time points 

(P<0.05) (Fig. 4 and 5).  

Cytotoxicity tests showed that about 300 cells were equally and uniformly 

distributed on the surface of each dish. Stainless steel, titanium and Ti-I2 showed no 

differences in the number of colonies formed in each dish, nor were there differences in 

colony formation between the metal and plastic areas (Fig. 6). 

The reactive tissues around the pin were evaluated macroscopically and 12 metal 



pins were scored. The average total score showed that Ti-I2 accumulated the least 

number of points, which was indicative of minimal inflammation and infection around 

the Ti-I2. Statistical analysis showed that Ti-I2 significantly inhibited inflammation and 

infection (P < 0.01) (Table 2). 

All inserted pins were evaluated histologically for osteoid formation. There were 

excellent osteoid formations on the surface of the Ti-I2 pins as well as the titanium pins, 

suggesting that Ti-I2 is a good osteoconductive material. The bone grew into the pitch of 

the screw and the osteoid formations continued to the opposite cortical layer from the 

front cortical layer, all signs of osteoconduction. Conversely, osteoid formation was 

diminished on stainless steel, with only partial osteoid formation (Fig. 7). Bone 

conduction was not possible on stainless steel. 

 

4. Discussion 

A procedure was developed for the anodization of iodine-containing surfaces that 

can be directly supported to existing titanium implants. The results indicate that 

iodine-supported titanium has antibacterial activity, biocompatibility, and no 

cytotoxicity. There was no conflict of interest of any authors with the Ti-I2 coated 

implants. The limitation in this study is to be able to coat with iodine only the implant 



made of titanium at present.  

Implant methods are frequently used in almost all fields of modern medicine and 

are associated with a definitive risk of bacterial infection. Staphylococci account for the 

majority of infections of both temporarily and permanently implanted orthopedic 

devices [39]. Because systemic antibiotics often do not provide effective treatment for 

implant infections due to the phenomenon of drug resistance, it is important that the 

coating of the implant exhibit local antibacterial activity. In order to reduce the 

incidence of implant-associated infections, several biomaterial surface treatments have 

been proposed [18-30]. In particular, silver has raised the interest of many investigators 

because of its good antimicrobial action and low toxicity [30, 40-43]. On the other hand, 

silver has been found to have toxic effects towards human cells [44,45]. Other studies 

have shown that the hydroxyapatite can decrease infection by improving the 

compatibility of the bone [46]. However, hydroxyapatite does not have antimicrobial 

activity. Some antiseptically-coated implants, such as chlorhexidine, have been reported 

[47-49]. As shown in Table 3, the antibacterial spectrum of iodine is very wide. The 

antimicrobial effect acts on not only general bacteria but also viruses, tubercle bacilli 

and fungi. In addition, unlike antibiotics, resistant bacteria are not generated in iodine. 

Moreover, iodine is a trace metal and an essential component of the thyroid hormone. If 



iodine is released from the implant, it is biologically safe for the human body because 

iodine can be excreted by the kidneys. 

Mechanical strength is necessary for the implant. There is no problem for 

mechanical strength of Ti-I2 because Ti-I2 has just only anodized titanium. Titanium has 

already been used clinically for implant. However, when Ti-I2 is actually used for 

biomaterial, the mechanical strength test will be needed. 

Significant differences in bacterial adhesion on stainless steel, titanium and Ti-I2 

surfaces were observed. The Ti-I2 surfaces have significantly less adhesion of S. aureus 

and E. coli, suggesting that Ti-I2 would be very effective against postoperative 

infections. In this study, the implants were exposed to Gram positive S. aureus or Gram 

negative E. coli based on Japanese Industrial Standards. The antibacterial activity to 

Pseudomonas aeruginosa and Staphylococcus epidermidis will be evaluated in the 

future. 

The present toxicological evaluation method for biomaterials, colony formation of 

V79 cells, is suitable as a screening test for biomaterials. It has the advantages of: (1) 

yielding accurate and reproducible survival rates; (2) allowing direct contact between 

materials and cells, even with solid opaque materials; (3) allowing a general assessment 

of whether cytotoxicity is caused by chemical or physical factors; and (4) being easy to 



perform and to evaluate [37]. Stainless steel and titanium have clinical applications in 

the field of orthopedic surgery. In this study, these materials were no different than the 

controls in colony formation and cytotoxicity. The Ti-I2 also had good biocompatibility 

because colony formation of normal fibroblasts was observed in the semi-disk metal 

area and the plastic area of the dishes. An absence of colonies from areas would have 

signified the release of a cytotoxic chemical substance. If physical properties such as 

roughness or surface energy of the materials affect colony formation, there would be no 

colonies on the material itself, only on the plastic part of the dishes. Ti-I2 can be an 

excellent biomaterial as it exhibits low biological toxicity and shows excellent 

antibacterial activity. 

In the present animal experiment, the Ti-I2 resulted in a significantly reduced 

infection and inflammation rate. The pin sites were histologically inspected and graded 

for inflammation and infection (Table 1). If inflammation and infection were most 

severe, the score would be 8 points. The average score for the Ti-I2 was 2.92, lower than 

that of stainless steel or pure titanium (Table 2). In most evaluation categories, Ti-I2 

indicated a low score. Inflammation score of titanium is also low point. That means 

titanium has biocompatibility. Therefore, we think it was reflected in few of the aseptic 

inflammation that iodine supported-titanium was made of titanium. 



In biomaterials science, osteoconduction means growth of bone on the surface of a 

foreign material. Osteoconduction depends not only on biological factors, but also on 

the response to a foreign material, and the osteoconductive response is necessary for 

successful osteointegration [38]. The biocompatibility of the implant was evaluated by 

osteoconduction because bone conduction is often observed with biocompatible 

materials such as titanium. We found that while titanium had good osteoid formation 

(i.e., good osteoconduction), Ti-I2 produced excellent consecutive osteoid formation 

around the pins. 

 

5. Conclusion 

The findings of this study suggest that iodine-supported titanium has antimicrobial 

activity and substantially reduces the incidence of pin tract infection. Therefore, 

iodine-supported titanium shows particular promise as an antibacterial biomaterial. 
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Figure Captions 

 

Figure 1. Antibacterial assessment using a modified version of the Japanese Industrial Standards method. 

 

Figure 2. Representative plates of S. aureus colonization at 6 and 24 h. 

 

Figure 3. Representative plates of E. coli colonization at 6 and 24 h. 

 

Figure 4. Changes in the number of S. aureus colonies. 

 

Figure 5. Changes in the number of E. coli colonies. 

 

Figure 6. Colony formation on metal semidisks. Stainless steel, titanium and Ti-I2 showed no difference 

in the amount of colony formation. 

 

Figure 7. Osteoid formation on the surface of Ti-I2. There were excellent osteoid formations on the Ti-I2 pin 

and poor formations on the stainless steel pin. 
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Table 1

Pin tract 

inflammation

Abscess of 

pin tract

Osteo-

myelitis

Inflammation

around the tip

+
Severe;  2 Deep;     2 Abscess; 2 Severe;  2

Slight  ; 1 Surface; 1 Slight  ;  1 Slight  ;  1

－ 0 0 0 0

Score of Inflammation and  Infection by Histological Analysis

The values 0,1,and 2 are the score points.



Pin tract 

inflammation

Abscess of 

pin tract

Osteo

myelitis

Inflammation

around the tip

Total

Score

St

Ti

Ti-I2

1.50

1.33

0.75

1.16

1.83

1.00

1.42

1.17

1.00

0.83

0.08

0.17

4.92±1.73

4.42±0.90

2.92±1.16

n=12

**

Average score of inflammation and infection (n=12)

Table 2

Asterisk (*) indicates significant difference at P<0.01



Microorganism

G
eneral bacillus

Syphilis 
treponem

a

Pseudom
onas

aeruginosa

M
 R

 S A

Tubercle

Spore

Fungus

G
eneral virus

H
 B

 V   ,   H
 C

 V 

H
 I V

Iodine ○ ○ ○ ○ ○ × ○ ○ ○ ○

Antibacterial spectrum of iodine

Table 3
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