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Abstract 

The noradrenergic (NA) projections arising from the locus coeruleus (LC) to the amygdala 

and bed nucleus of the stria terminalis have been implicated in the formation of emotional 

memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 

(OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized 

that an OX1R-mediated pathway is involved in the physiological fear learning process via 

regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of 

Ox1r-/- mice in the classic cued and contextual fear-conditioning test. We found that Ox1r-/- 

mice showed impaired freezing responses in both cued and contextual fear conditioning 

paradigms. In contrast, Ox2r-/- mice showed normal freezing behavior in the cued fear 

conditioning test, while they exhibited shorter freezing time in the contextual fear 

conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase (TH) showed that 

double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were 

significantly fewer in Ox1r-/- mice. AAV-mediated expression of OX1R in LC-NA neurons in 

Ox1r-/- mice restored the freezing behavior to the auditory cue to a comparable level to that in 

wild type mice in the test session. Decreased freezing time during the contextual fear test was 

not affected by restoring OX1R expression in LC-NA neurons. These observations support 

the hypothesis that the orexin system modulates the formation and expression of fear memory 

via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role 

in cue-dependent fear memory formation and/or retrieval. 
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Introduction 

Orexins (Sakurai et al., 1998) are implicated in regulation of sleep/wakefulness, energy homeostasis, 

and the reward system (Sakurai, 2007; Sakurai and Mieda, 2011). Orexin-immunoreactive fibers are 

observed in almost the entire neuroaxis (Peyron et al., 1998; Date et al., 1999; Nambu et al., 1999), 

with especially dense fibers in monoaminergic nuclei in the brain stem (Date et al., 1999; Nambu et 

al., 1999; Peyron et al., 2000). The distribution of the two orexin receptors is consistent with these 

projection sites (Marcus et al., 2001). 

 It has been thought that orexin-2 receptor (OX2R) plays a pivotal role in sleep-wake regulation 

(Hondo et al., 2010; Sakurai and Mieda, 2011). Metabolic and feeding regulation by orexins is also 

suggested to be regulated through an OX2R-mediated pathway (Funato et al., 2009). However, very 

limited information is available regarding the physiological role of the orexin-1 receptor (OX1R). 

 OX1R is abundantly expressed in the locus coeruleus (LC), which plays important roles in 

many functions via its widespread projections (Bailey et al., 2000; McGaugh and Roozendaal, 

2002). The LC contains tyrosine hydroxylase (TH)-positive noradrenergic neurons. Because orexin 

neurons send rich projections to the LC, and OX1R is expressed in Vmat2-positive neurons in the 

LC (Mieda et al., 2011), the physiological function of OX1R might be closely related to the 

function of noradrenergic neurons in the LC (LC-NA neurons). Consistently, orexin potently 

excited LC-NA neurons (van den Pol et al., 2002). 

 There is much evidence suggesting the importance of the NA system in emotional memory 

formation. Conditioned fear stress caused a robust increase in the firing rate of NA neurons (Chen 

and Sara, 2007) and induced Fos expression in the LC (Ishida et al., 2002). LC-NA neurons project 

to the lateral amygdala (LA), an important structure for emotional memory (Bush et al., 2010). 

These observations suggest that noradrenergic input from the LC to the LA is one of the key factors 

in fear memory formation. 

 Orexin neurons receive input from the limbic system (Winsky-Sommerer et al., 2004; Sakurai et 

al., 2005; Yoshida et al., 2006). These observations raise the possibility that orexin neurons may be 

activated by emotional information transmitted from the amygdala, and in turn send excitatory 

output to the LC, and this connection plays an important role in modulating emotional memory. 

 We found here that Ox1r-/- mice showed decreased freezing behavior to both cued and contextual 

stimuli during both the conditioning and test periods, suggesting that OX1R is involved in evoking 

fear-related behavior. In contrast, Ox2r-/- mice responded normally with freezing behavior in the 

cued fear conditioning test. We also found that Fos expression in LC-NA neurons after exposure to 



 

4 
 

the fearful context was significantly lower in Ox1r-/- mice than in wild type. Importantly, we found 

that freezing behavior recovered to a level comparable to that in wild type mice in the test period of 

cued fear conditioning when OX1R expression in LC-NA neurons was restored, suggesting that 

OX1R-mediated regulation of LC-NA neurons plays a significant role in the acquisition and 

consolidation of cue-dependent fear memory. 

 

 

Materials and Methods 

 

Animals All experimental procedures were approved by the Animal Experiment and Use 

Committee of Kanazawa University (AP-111947), and were thus in accordance with NIH 

guidelines. We used Ox1r-/- mice in which the Ox1r-coding region in exon 1 of the Ox1r gene is 

disrupted by inserting a tau-LacZ cassette (Hondo et al., 2010). Ox1r-/- mice used in the experiments 

were obtained from the mating of heterozygous Ox1r+/- mice. Ox2r-/- mice were previously reported 

(Willie et al., 2003). Exon 1 of the Ox2r gene was replaced in-frame with the nlacZ cassette. Ox2r-/- 

mice used in the experiments were obtained from the mating of heterozygous Ox2r+/- mice. 

Genotyping these mice were done by PCR reactions with tail DNA according to the method 

described previously (Willie et al., 2003). These mice were backcrossed to wild type C57BL/6J 

mice for more than 10 generations. Their littermates of each genotype were used as wild type 

control. Mice were maintained under a strict 12 h light-dark cycle in a temperature- and 

humidity-controlled room and fed ad libitum. 

Behavioral Experiments All experiments were performed during the light phase (13:00-16:00) 

using male 12 to 14-week-old mice. Prior to the experiments, these mice were isolated for two 

weeks. The experimenters were blinded to the genotypes until all data had been gathered and 

analyzed. Behavioral experiments in this study were basically performed according to modifications 

of previously described protocols (Miyakawa et al., 2003). The behavior of mice was recorded 

using a charge coupled device (CCD) video camera and analyzed with a video-tracking system 

CompACT VAS ver 3.0x (Muromachi Kikai, Tokyo). For the cued fear conditioning test, mice 

were placed in a conditioning chamber (15 x 12 x 13 cm, acrylic walls with a gridded floor and 

bright lighting) for 90 s before giving a conditioned stimulus (CS), a 2900 Hz, 80dB tone which 

lasted 30 s immediately, followed by the presentation of an unconditioned stimulus (US), a mild 

foot shock of 0.3 mA for 2 s, on the training day. Five consecutive trials of training were performed 
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(Fig. 1A). After an additional stay for 90 s in the chamber, the mouse was returned to its home cage. 

Mice were tested 24 h after the training. Cued fear test was conducted in a chamber with a different 

context (13 x 20 x 11 cm, a plastic cage surrounded with a white screen and bright lighting). 

Freezing behavior was scored during the testing session. Freezing behavior is defined as the 

complete absence of any movement except for respiration and heartbeat. Freezing behavior is 

measured by an automated scoring system (Muromachi Kikai, Tokyo, Japan), which recognizes 

complete absence of movement lasting for longer than 2 s as freezing. Testing was performed with 

the same procedure as in the conditioning period, but without application of US (Fig. 1A). 

For the contextual fear conditioning test, mice were placed in the conditioning chamber 

for 90 s before giving an unconditioned stimulus, a mild foot shock of 0.3 mA for 2 s, on the 

training day. Five sequential foot shocks at 90 s intervals were applied. The mice were tested 24 h 

after the conditioning. They were put in the same conditioning chamber for 5 min without 

presentation of CS (Fig. 2A). We used different mice for the cued test and contextual test. Data are 

presented as mean ± SEM. The apparatus was cleaned with 30% ethanol solution, and then with 

water and dried after each trial to eliminate possible odor cues left by previous subjects. 

To measure the ultrasonic vocalizations of mice, we used a USV analyzer (Muromachi 

Kikai, Japan), following the manufacturer’s instructions. 

Construction of recombinant AAV vectors The common structure of the AAV-2 ITR-containing 

plasmids used in this study is ITR-promoter-cDNA encoding a protein-WPRE-poly (A)+ signal-ITR. 

cDNA encoding rat Ox1r fused with EYFP at the C terminal was inserted downstream of the PRSx8 

promoter (AAV-PRSx8-OX1R-EYFP, Fig. 4A) (Hwang et al., 2001). We used AAV with PRSx8 

promoter carrying ChR2 (NA-ChR2) for the control group (AAV-PRSx8-ChR2-EYFP, Fig. 4A), 

because ChR2 has a similar seven transmembrane structure to that of OX1R. AAV-2 vectors with a 

mutant form of the cap gene (Zhong et al., 2008) were produced using a triple-transfection, 

helper-free method, and purified as described previously (Sasaki et al., 2011). In brief, 293A cells 

(Invitrogen), cultured in ten 100×20 mm cell culture dishes per viral vector, were transfected with 

pHelper (Stratagene), pACG-2-Y730F [24] (containing a mutant form of the cap gene of AAV2, 

provided by Dr. Arun Srivastava of the University of Florida), and pAAV-PRSx8-OX1R-EYFP or 

pAAV-PRSx8-ChR2-EYFP, using a standard calcium phosphate method. Three days later, the cells 

were collected, pelleted and resuspended in freezing buffer (10 ml 0.15 M NaCl, 50 mM Tris, pH 

8.0). After two freeze-thaw cycles and subsequent centrifugation, each lysate was treated with 

DNase I (40 µg/ml) and RNase A (40 µg/ml) and then with deoxycholic acid (Sigma) (0.5%), 
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followed by filtration, as described previously [23]. Each cleared lysate was mixed with 1.5 ml 

heparin-agarose suspension (Sigma) equilibrated with freezing buffer, incubated with gentle 

rotation for 60 min at 4°C, and loaded onto a Bio-Spin Column 100 (Bio-Rad Laboratories). Each 

column was washed three times with 2 ml freezing buffer, and viruses were eluted with 3 ml elution 

buffer (0.5 M NaCl, 50 mM Tris, pH 8.0). Each virus preparation was dialyzed against 1x PBS 

using Slide-A-Lyzer Dialysis Cassettes (Pierce) and concentrated using Concentration Solution 

(Pierce). The final purified viruses were stored at −80°C. A detailed description and 

characterization of these viruses will also be published elsewhere (E.H., T.S and M.M., submitted). 

The titers of recombinant AAV vectors were: AAV-PRSx8-ChR2-EYFP; 5.0 x 1012, 

AAV-PRSx8-OX1R-EYFP; 8.4 x 1011 genome copies/ml. 

Virus injection Ox1r-/- mice (12 weeks old) were anesthetized with sodium pentobarbital (Nembutal, 

50-60 mg/kg, i.p.) and positioned in a stereotaxic frame (David Kopf Instruments). After drilling 

into the skull of each mouse at sites (AP, -5.4 mm; ML, ±0.9 mm; DV, 3.7 mm), a Hamilton needle 

syringe (33-gauge) was placed in each site, and 1 µl purified virus was delivered over a 20-min 

period. At 14 d after injection, mice were subjected to behavioral experiments, and then sacrificed 

and brain samples were examined by immunohistochemical staining. Behavioral data were only 

included if OX1R was precisely targeted to the LC-NA neurons. 

Fos Immunohistochemistry Mice were deeply anesthetized with sodium pentobarbital and then 

fixed by intracardiac perfusion with 4% paraformaldehyde 90 min after cued or contextual fear tests. 

Then, the brain was post-fixed for 24 h in the same fixative and cryoprotected by immersion in 30% 

sucrose for 2-d. Brain sections of 30-µm thickness were cut with a cryostat. Sections were washed 

and blocked with 0.1 M phosphate buffered saline (PBS) containing 0.25% Tritone X-100 plus 3% 

bovine serum albumin (BSA). Then, slices were incubated with the designated primary antibodies 

in PBS overnight at 4 °C. Antibodies used in this study were rabbit polyclonal antibody against 

c-Fos (1:5000, Ab-5, Millipore), mouse polyclonal antibody against tyrosine hydroxylase (1:2500, 

F-11, Santa Cruz), and goat antibody against green fluorescent protein (GFP) (1:1000, Molecular 

Probe). Then, slices were washed with PBS 3 times, followed by incubation with the designated 

secondary antibodies in PBS for 2.5 h. Secondary antibodies used in this study were Alexa 

594-conjugated donkey anti-rabbit IgG, Alexa 594-conjugated donkey anti-mouse IgG, Alexa 

488-conjugated donkey anti-mouse IgG, and Alexa 488-conjugated donkey anti-rabbit IgG (1:1000; 

Molecular Probes, Eugene, OR). Slices were washed 3 times in PBS, mounted on subbed slides, air 

dried, and coverslipped using FluorSave Reagent (Calbiochem). The numbers of Fos-positive and 
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-negative NA neurons were counted in every coronal section throughout the LC by a single 

examiner who was blinded to the genotype of mice, using images taken with a confocal laser 

scanning microscope FV10i (Olympus). Cells were counted on both sides of the brain in four 

consecutive 30-µm sections. Activity of NA neurons was scored as the percentage of 

double-labeled cells per animal. 

 To assess amygdala activity, we detected For Zif268 immunoreactivity in the lateral region of 

the amygdala. Coronal sections of brains were incubated for 35 min in 0.6% hydrogen peroxide to 

eliminate endogenous peroxide activity. Sections were rinsed in PBS and incubated for 30 min in 

Tris-buffered saline (TBS) containing 3% goat serum and 0.25% Triton X-100. Thereafter, sections 

were incubated overnight with rabbit anti-Egr-1 (Zif268) antibody (C-19, Santa Cruz Biotech) in 

TBS containing 3% BSA and 0.25% Triton X-100. The primary antibody was localized with the 

avidin-biotin system (Vector). Zif268-positive neurons were counted in coronal sections throughout 

the basolateral amygdala region by a single examiner who was blinded to the treatment conditions, 

using a Keyence BZ-9000 microscope (Keyence, Japan). The region of interest was designated as 

previously described (Diaz-Mataix et al., 2013). Cells were counted on both sides of the brain in 

consecutive 40-µm sections throughout the lateral amygdala (LA) using ImageJ 1.46r software 

(http://rsbweb.nih.gov/ij/). 
Statistical analysis Data were expressed as mean ± SEM. Two-way analysis of variance (ANOVA) 

followed by Bonfferoni correction as a post-hoc test or Student’s t-test using GraphPad Prism 5.0b 

was used for comparison among the various treatment groups. Differences were considered 

significant at p < 0.05. 

 

Results 

 

Differential roles of OX1R and OX2R in cued and contextual fear conditioning 

To evaluate the possibility that OX1R-mediated pathways are involved in presentation of 

fear-related behavior and/or fear memory formation/acquisition, we tested Ox1r-/- mice and Ox2r-/- 

mice in cued and contextual fear conditioning tests. Schematic representations of the training and 

testing protocols of these fear conditioning paradigms are shown in Figs. 1A and 2A. 

Ox1r-/- mice displayed a significant decrease of evoked freezing behavior during both 

cued and contextual fear tests as compared to wild type littermates, while Ox2r-/- mice showed a 

decreased freezing response only in the contextual test (Fig. 1D, 2D). In the cued fear conditioning, 
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these mice already showed significant impairment of freezing behavior in the conditioning period 

(F1, 29 = 9.50; p=0.0045), while Ox2r-/- mice also showed a tendency for a shorter freezing time, 

although it did not reach significance (F1, 28 = 4.00; p=0.0552) (Fig. 1B). In the conditioning session, 

although all groups showed a gradual increase in freezing time in response to CS paired with US, 

Ox1r-/- mice showed a significantly shorter freezing time in each epoch. In the cued test period, 

Ox1r-/- mice also showed a significantly shorter freezing time in the periods of both presence and 

absence of CS as compared with wild type mice (F1, 29 =7.88, p=0.0088) (Fig. 1C, D). 

The intensity of the freezing response shown after shock delivery is also related to the 

level of sensory perception of mice. We examined the sensory perception function of Ox1r-/- and 

control mice by measuring ultrasonic vocalizations (USVs) of these mice against various intensity 

of foot shock (US) and found that the threshold intensity of US to evoke USVs was not different 

between genotypes (WT 0.07 ± 0.0065 mA, Ox1r-/- 0.06 ± 0.0067 mA, n=8 each, p= 0.6004). The 

frequency and amplitude of USVs evoked by the foot shock were also not different between 

genotypes (WT 58.6 ± 3.34 dB, 24433.6 ± 3040 Hz; Ox1r-/- 59.0 ± 2.66 dB, 25570.3 ± 2460 Hz, p= 
0.9151 and 0.7756, respectively). This result excludes the possibility that Ox1r-/- mice exhibit a 

decreased response to foot shock due to decreased sensitivity to US. 

In the contextual fear conditioning test, there was a significant difference between Ox1r-/- 

(n = 17) and wild type (n = 19) mice during the conditioning period (F1, 34 = 9.09; p=0.0048). Also, 

there was a significant difference between Ox2r-/- mice (n = 15) and wild type mice (F1, 30 = 4.30; 

p=0.0467) (Fig. 2B). During the test session, there was significant impairment of freezing duration 

in both Ox1r-/- (F1, 34 = 7.92; p =0.0081) and Ox2r-/- mice (F1, 30 = 11.25; p=0.0022) as compared 

with wild type mice (Fig. 2C). The degree of impairment in Ox1r-/- mice as compared with wild 

type mice was larger in the test session than in the conditioning period. These results suggest that 

the decrease of freezing behavior in Ox1r-/- mice is due to abnormalities both in the mechanisms 

that evoke fear-related behavior itself and in the formation of fear memory. While Ox1r-/- mice 

showed decreased freezing behavior in both the cued and contextual fear conditioning tests, Ox2r-/- 

mice showed impairment only in the contextual fear conditioning test (Figs. 1, 2). This suggests that 

Ox1r is involved in both cued fear conditioning and contextual fear conditioning, while Ox2r plays 

a role only in contextual fear conditioning. 

Impaired response of LC-NA neurons of Ox1r-/- mice after exposure to fearful situations 

Since OX1R is most abundantly expressed in the LC, we examined the activity of NA neurons in 

the LC, in which the largest source of NA neurons in the brain is located. In this experiment, we 
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examined Fos expression in LC-NA neurons after each session of cued and contextual fear 

paradigms (Fig. 3). Mice were sacrificed 90 min after the conditioning or test and their brains were 

subjected to analysis. Double-labeling immunofluorescence analysis with TH and Fos antibodies 

revealed that the number of Fos-positive LC-NA neurons was very low and comparable in both 

genotypes in the naive condition (Fig. 3B). After the cued or contextual conditioning, the number 

was increased in both genotypes. However, Ox1r-/- mice showed a significantly lower number of 

double-labeled cells in the LC as compared with wild type after both cued and contextual 

conditioning (Fig. 3C, E). The number of double-positive cells was also increased after the test 

sessions as compared with basal conditions, but Ox1r-/- mice again showed a lower response as 

compared with wild type (Fig. 3D, F). These observations suggest that an OX1R-mediated pathway 

activates LC-NA neurons in emotionally-relevant situations. 

 

Restoration of OX1R expression in LC-NA neurons normalized cued fear behavior in Ox1r-/- 

mice 

We found that Ox1r-/- mice showed lower activity of LC-NA neurons after cued or contextual fear 

conditioning and tests (Fig. 3). This suggests that OX1R-mediated activation of LC might play a 

role in fear memory or fear response. We next examined whether LC-NA neuron-specific 

restoration of OX1R expression in the LC could affect freezing behavior. 

To express OX1R specifically in NA neurons in the LC, we used an adeno-associated 

virus (AAV) vector with the PRSx8 promoter, which directs expression of designated genes 

specifically in NA neurons. To examine the specific expression in NA neurons, we confirmed the 

injection sites and expression of OX1R with double-labeling immunofluorescence analysis with 

anti-TH and anti-GFP antibodies. GFP was specifically observed in TH-positive cells (70.43 ± 

15.62% of GFP-positive neurons were TH-positive, N = 29) in the LC (Fig. 4B). We only included 

the behavioral data if the injection was achieved precisely in the LC bilaterally and more than 10% 

of TH-positive cells expressed GFP. 

For the cued fear conditioning test, we found that Ox1r-/- mice with LC-NA 

neuron-specific expression of OX1R (KO-OX1R group) did not show any difference in freezing 

time in the conditioning session in the presence or absence of CS, as compared with the control 

group (Ox1r-/- mice with expression of ChR2 in LC-NA neurons, KO-ChR2 group) (F1, 13 = 0.09, p 

=0.7636) (Fig. 4C). However, the KO-OX1R group showed freezing behavior with a level 

comparable to that in wild type controls in the test session (F1, 13 =1.52; p=0.2394) (Fig. 4D). 
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Although both groups showed a significant increase of freezing times in response to CS 

presentation, the KO-OX1R group showed an increase of freezing time in the test period to a level 

comparable to that in wild type mice, especially in the presence of CS, with a longer freezing time 

as compared with that in the KO-ChR2 group (t = 2.243, p = 0.0430) (Fig. 4E). These observations 

suggest that OX1R in LC-NA neurons does not play a major role in the emergence of fear-related 

behavior in unconditioned situations, but is likely to play an important role in consolidation, 

retrieval and presentation of cue-dependent fear memory (Fig. 4E). 

AAV-mediated expression of OX1R in LC-NA neurons in wild type mice (WT-OX1R) 

showed no difference in freezing response in both cued and contextual fear conditioning and testing 

as compared with wild type mice (data not shown, Fig. 4E). 

Conversely, in the contextual fear conditioning test, we did not find any difference 

between the KO-OX1R and KO-ChR2 groups during both the conditioning and test periods (F1, 12 = 

0.02; p=0.8964; F1, 12 =0.03; p=0.8711, respectively) (Fig. 4 F-H). The KO-OX1R group showed 

significantly less freezing behavior during both the conditioning and test periods as compared to 

wild type (F1, 22 = 3.97; p = 0.0325; F1, 22 = 4.73; p = 0.0407, respectively). These results suggest 

that restoration of OX1R expression in the LC is not sufficient to rescue the formation of fear 

memory of contextual information. Restoration of OX1R expression in LC-NA neurons also did not 

affect freezing behavior during the contextual conditioning session, suggesting that the mechanisms 

of emergence of a behavioral response to unconditioned threats do not depend on OX1R in LC-NA 

neurons, but rather involve OX1R in other brain region(s). 

 

OX1R in LC-NA neurons plays an important role in activation of the amygdala during fearful 

situations 

To investigate whether OX1R in LC-NA neurons is involved in activation of the 

amygdala in fearful situations, we tracked the level of zif268 (Egr-1) protein expression in the 

lateral and basolateral amygdala region (LA). We analyzed zif268 expression in mice after cued or 

contextual fear tests. No difference was found in the level of zif268 in the LA between genotypes in 

a naïve condition (WT; n = 5, Ox1r-/-; n = 5, p = 0.1980) (Fig. 5B). After cued- or contextual tests, 

Ox1r-/- mice showed fewer zif268-positive cells in the LA after cued test (Fig. 5C) (WT; n = 4, 

Ox1r-/-; n = 5, p = 0.0068). We also observed a similar tendency in the contextual test, but the 

difference did not reach significance (WT; n = 5, Ox1r-/-; n = 5, p = 0.0684). 

Furthermore, rescue of OX1R in LC-NA neurons in Ox1r-/- mice increased Fos 
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expression in the LC (KO-ChR2; n = 5, KO-OX1R; n = 5, t = 2.744, p = 0.0253) and zif268 protein 

in the LA after cued testing, to levels comparable to those in wild type mice (KO-ChR2; n = 5, 

KO-OX1R; n = 6, t = 2.861, p = 0.0187) (Fig. 6B, C). In contrast, ChR2 expression did not show an 

effect. OX1R rescue in LC-NA neurons did not normalize zif268 protein expression after the 

contextual test (n = 5 each, t = 0.5429, p = 0.6020), although it increased the number of Fos-positive 

TH neurons in the LC (KO-ChR2; n = 5, KO-OX1R; n = 4, t = 3.512, p = 0.0098) (Fig. 6D, E). 

These observations suggest that OX1R in LC-NA neurons plays an important role in activation of 

the amygdala in response to an explicit cue, presumably through noradrenergic projections to the 

amygdala. However, this system is not sufficient to lead to amygdala activation in response to 

emotionally relevant contextual information. 

 

Discussion 

OX1R is abundantly expressed in LC-NA neurons. Although there is one report suggesting that 

OX1R signaling is involved in depression-like behavior (Scott et al., 2011), physiological roles of 

OX1R in the LC are hardly known.  

 Several studies have implicated LC-NA neurons in establishing fear memory. For instance, 

activity of LC-NA neurons increased after a fear conditioning test (Ishida et al., 2002). NA release 

in the lateral amygdala increased with presentation of stressful stimuli (Galvez et al., 1996). 

Involvement of the NA system in fear and anxiety has also been shown clinically, because 

beta-adrenergic blockade has been shown to be effective for treating patients with post-traumatic 

stress disorder (Vaiva et al., 2003). 

Clinical investigation suggests that human narcolepsy-cataplexy, a sleep-wake disorder 

caused by a specific loss of hypothalamic orexin, is associated with reduced amygdala activity 

during aversive conditioning (Ponz et al., 2010), suggesting that the orexin system is involved in the 

regulation of amygdala function. Recent observations also showed that activation of orexin neurons 

is necessary for developing a panic-prone state in an animal model, and either silencing the 

hypothalamic orexin gene with RNA interference or a systemic OX1R antagonist blocks the panic 

responses. Human subjects with panic anxiety have elevated level of orexin in the cerebrospinal 

fluid compared to subjects without panic anxiety (Johnson et al., 2010). These findings suggest that 

OX1R in the LC is involved in anxiety and fear. Supporting this hypothesis, a recent paper 

suggested that orexin receptors contribute to fear-conditioned startle reactions in the rat, using a 

dual orexin receptor antagonist, almorexant (Steiner et al., 2012). 
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Considering these observations, we hypothesized that orexin neurons regulate LC-NA 

neurons in fearful condition, and this pathway might play a role in establishing fear memory. To 

evaluate this hypothesis, we examined Ox1r-/- mice in cued- and contextual-fear conditioning tests. 

Ox1r-/- mice displayed significant impairment of evoked freezing behavior, that is, behavioral 

expression of fear, in response to cued- and contextual fear stimuli, whereas Ox2r-/- mice showed 

reduced freezing response to a contextual stimulus only (Figs. 1, 2). 

Contrary to our initial hypothesis that OX1R in the LC might play an important role in 

acquisition and consolidation of fear-related memories, freezing time was already substantially 

decreased in Ox1r-/- mice in the conditioning period of the both cued- and contextual-fear 

conditioning paradigms (Figs. 1B, 2B). This suggests that OX1R signaling is involved in 

presentation of freezing behavior itself. However, while type mice showed increased expression of 

fear in the test compared to training, the Ox1r-/- mice showed a smaller increase across both phases 

(Fig. 2B, C). This suggests that Ox1r-/- mice have deficits in the fear memory consolidation process. 

Also, Fos expression after the test sessions was lower in Ox1r-/- mice (Fig. 3C, E). These findings 

imply two possibilities; (i) OX1R may play an important role in expression of fear itself, or (ii) 

OX1R may play roles in both expression of fear and formation of fear-related memory. 

To test the latter possibility, we next examined the contribution of OX1R in LC-NA 

neurons by expressing OX1R specifically in LC-NA neurons in Ox1r-/- mice. We specifically 

expressed OX1R in both sides of the LC in Ox1r-/- mice by AAV-mediated gene transfer. We found 

no difference in freezing behavior in the OX1R-restored and control (ChR2-expressed) groups in 

the conditioning sessions in both cued and contextual fear conditioning (Fig. 4C, F). This suggests 

that the mechanisms of behavioral responses to unconditioned threats evoked by sensory cues do 

not depend on OX1R in LC-NA neurons, but rather involve OX1R in other brain regions. LeDoux 

suggested that the fear response to electric shock involves sensory transmission to the LA through 

circuitry involving the accessory basal amygdala, ventromedial hypothalamus, premammilary 

nucleus of the hypothalamus  and dorsal periaqueductal gray (LeDoux, 2012). The LC is not 

involved in this circuit, which is consistent with our observation that restoration of OX1R in the LC 

did not affect freezing in the conditioning period. 

In stark contrast, we found that restoration of OX1R in LC-NA neurons significantly 

increased freezing time in the test session of the cued fear conditioning paradigm as compared with 

that in the ChR2-expressing group (Fig. 4D, E). Furthermore, we found a group of mice in which 

virus injection was not successful (in which expression of OX1R-GFP in LC-NA neurons was 
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below 10%), which did not show any significant difference as compared with the ChR2-injected 

group in the cued test (16.77±5.24% and 28.77±9.61% for failed injection group and ChR2 

injection group, n=9 and 7, respectively, t=165, p=0.2636). 

These findings suggest that OX1R in LC-NA neurons plays a prominent role in the 

consolidation of cued fear memory. Furthermore, we found obvious differences in the number of 

Fos-positive TH neurons in the LC after the cued or contextual training sessions (Fig. 3). This 

further supports our hypothesis that activation of LC-NA neurons through Ox1R might play an 

important role in the consolidation of fear memory after training. These results are consistent with a 

former study showing that the reconsolidation process of auditory cue-conditioned fear requires 

noradrenergic signaling via the ß-adrenergic receptor (Debiec et al., 2011) and imply that this 

mechanism requires orexinergic modulation through OX1R. 

We also found that the sole expression of OX1R in LC-NA neurons did not restore 

freezing behavior in the contextual fear test (Fig. 4F, G), suggesting that OX1R-mediated activation 

of LC-NA neurons is not sufficient to restore the establishment of contextual fear memory. This 

hypothesis is further supported by our observation that rescue of OX1R in LC-NA neurons in 

Ox1r-/- mice normalized activation of the LA after the cued test, but not after the contextual test (Fig. 

6). Although rescue of OX1R in LC-NA neurons increased the activation of LC-NA neurons after 

the context test, it was not sufficient to rescue amygdala activation. This suggests that other 

OX1R-mediated pathways might play significant roles in the activation of the amygdala in a fearful 

context. 

Our present study suggests an important role of OX1R in cued-fear memory. Previously, 

LeDoux excluded a role of the lateral hypothalamus in cued fear learning, based on lesion 

experiments in rats (LeDoux et al., 1988). In contrast, a study showed that an orexin-specific 

neurotoxin-induced lesion of the perifornical hypothalamus (PeF) led to impairment of the 

behavioral response in contextual fear conditioning, suggesting that orexin neurons play an 

important role in this function (Furlong and Carrive, 2007). These differences might stem from 

differences in animal species, experimental paradigm and procedure to disrupt the lateral 

hypothalamus. Our present data clearly suggest that the orexin system may modulate the formation 

of fear memory through activation of LC-NA neurons. 

Recently, the effects of almorexant, a dual orexin receptor antagonist, on contextual fear 

memory were reported. Almorexant did not reduce freezing, and nor did it significantly reduce the 

associated ultrasonic vocalizations in rats (Furlong et al., 2009). This suggests that acute blockade 
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of orexin receptors does not affect contextual fear memory. The difference between this report and 

our present findings that both Ox1r-/- and Ox2r-/- mice showed reduced freezing in the contextual 

fear test might stem from the species difference and/or methodological difference, i.e., acute 

pharmacological blockade versus genetic modification and/or monitoring USVs versus freezing 

responses. However, in another report, almorexant was reported to decrease the fear response to 

cued-fear to a light CS (Steiner et al., 2012). Consistently, our present study also suggests that 

OX1R in the LC plays an important role in cued fear conditioning. This result helps explain the 

dissociation between the effects of orexin receptor blockade on contextual and explicit cued fear. 

Both acute pharmacological blockade of OX1R and genetic disruption of the Ox1r gene impaired 

freezing in response to cued fear. Likewise, focal expression of OX1R in LC-NA neurons increased 

freezing behavior to a level comparable to that of wild type in cued fear testing, but did not affect 

freezing in response to contextual fear. These results are consistent with the reports that showed 

lack of an effect of almorexant on contextual fear conditioning versus potent effects on fear 

conditioning to CS (Furlong et al., 2009; Steiner et al., 2012). Additional studies on fear memory of 

animals using selective OX1R and OX2R antagonists are required for further understanding the 

physiological roles of each receptor in emotional memory.  

We found a prominent role of OX1R in cued fear conditioning, while most other 

peptides have been shown to be implicated in contextual fear conditioning and thus may play a role 

in contextual cue processing rather than in processing of fear conditioning per se. Our results also 

suggest that OX1R expressed in several regions of the brain plays different roles in fear-related 

behavior and memory through independent mechanisms. Especially, the orexin system is involved 

in the consolidation of cue-dependent fear memory via OX1R expressed in NA neurons in the LC. 

Besides, OX2R may also be involved in establishing contextual fear memory, suggesting a further 

complex mechanism involving the hippocampus or other OX2R-expressing regions. This issue 

should be addressed in future studies. These findings might contribute to understanding of the 

complex neural mechanism in establishing fear memory. 
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Figure Legends 

 

Figure 1 

Ox1r-/- mice showed decreased freezing behavior in cued fear conditioning tests. Wild type 

(littermates of Ox1r-/- mice) (n = 15), Ox1r-/- mice (n = 16) and Ox2r-/- mice (n = 15) were subjected 

to a cued fear conditioning test. A, Schematic drawing of protocol for cued fear conditioning test. 

Timing of CS and US (shown by triangles) presentation is shown. For the cued test period, mice 

were tested in a new cage different from those used for conditioning, and the same auditory cue 

(CS) was applied without electric shocks (US). B, Freezing time was counted in every 30-s time 

window and plotted over time. There was a significant difference between Ox1r-/- and wild type 

mice during the conditioning session. No statistically significant difference was found between 

wild-type and Ox2r-/- mice. Freezing time during 30-s epochs in the test session was counted before 

(CS-) and during presentation of the cue (CS+). C, Freezing time counted in every 30-s window, 

plotted over time. D, Graphic representation of total time during test session itemized for CS- and 

CS+ periods. Data are shown as mean ± SEM. There was a significant difference during both the 

presentation of CS and the period of CS-. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Figure 2 

Impaired freezing behavior in Ox1r-/- mice and Ox2r-/- mice in contextual fear conditioning test. 

Contextual fear conditioning was performed to examine the ability of Ox1r-/- and Ox2r-/- mice to 

learn and remember the context in which an electric shock was presented. A, Protocol for 

contextual fear conditioning test. For the context test, mice were tested in the conditioning cage and 

stayed there for 300 s. B, C Freezing time counted in every 30-s epoch, plotted over time. Ox1r-/- (n 

= 17) and Ox2r-/- (n =15) mice showed significant impairment of freezing time compared to wild 

type (n = 19) mice during both the conditioning and test periods. Data are shown as mean ± SEM. 

*p < 0.05, **p < 0.01, ***p < 0.001 (Ox1r-/- mice vs. WT), #p < 0.05, ##p < 0.01 (Ox2r-/- mice 

vs. WT). 

 

Figure 3 

Fos expression in NA neurons in LC after fear conditioning was decreased in Ox1r-/- mice. 

Representative images of dual labeling immunofluorescent study of Fos and tyrosine hydroxylase 

(TH) are shown in the two left panels (B-F). Immunoreactivity for Fos is shown in red and for TH is 
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shown in green. Quantification of number of double positive neurons is shown in right panels (B-F). 

Data are shown as mean ± SEM. 

A, Schematic representation of experimental design. B, Number of Fos/TH-double-positive cells in 

Ox1r-/- mice in their home cages is similar to that in wild type mice. C, After cued fear conditioning, 

the number of double-positive cells was significantly lower in Ox1r-/- mice than in wild type mice 

(WT; n = 5, Ox1r-/-; n = 6). D, Number of double-positive neurons was significantly lower in Ox1r-/- 

mice after cued test (WT; n = 6, Ox1r-/-; n = 7). E, Number of double-positive neurons was 

significantly lower in Ox1r-/- mice after contextual conditioning (WT; n = 4, Ox1r-/-; n = 4). F, 

Number of double-positive neurons was significantly lower in Ox1r-/- mice after contextual test 

(WT; n = 9, Ox1r-/-; n = 9). Scale bars, 30 µm. *p < 0.05, **p < 0.01. 

 

Figure 4 

OX1R in LC is involved in consolidation of cued fear memory. An AAV with LC-NA 

neuron-specific promoter carrying ChR2 or OX1R each fused to EYFP was injected bilaterally into 

the LC in Ox1r-/- mice to examine the effects of their expression on freezing behavior. We used 

ChR2 injection for the control group. Then, we performed the cued and contextual fear conditioning 

test as shown in Figs. 1 and 2, and examined whether LC-NA neuron-specific restoration of OX1R 

expression in the LC could rescue the fear response. A, Constructs of recombinant AAV vectors 

carrying OX1R for rescued group or ChR2 for control group. B, A representative image of brain 

sections of Ox1r-/- mice prepared from AAV-OX1R-eYFP injection group after behavioral analysis 

labeled with TH and GFP. Immunoreactivity for tyrosine hydroxylase (TH) is shown in red, while 

that of GFP (OX1R-eYFP) is shown in green. Arrows show examples of co-localization (yellow in 

merged images). Scale bars, 50 µm (top panels), 10 µm (bottom panels). C, Freezing time of Ox1r-/- 

mice with ChR2 expression in LC-NA neurons (KO-ChR2, n = 7) and with OX1R expression in 

LC-NA neurons (KO-OX1R, n = 8) during the cued fear conditioning period. *p < 0.05, **p < 0.01, 

***p < 0.001, WT vs. KO-OX1R, #p < 0.05, ##p < 0.01, ###p < 0.001, WT vs. KO-ChR2. D, 

Effects of OX1R injection on freezing time during test period of cued fear conditioning. E, Graphic 

representation of results in panel D. OX1R injection significantly increased freezing behavior of 

Ox1r-/- mice (KO-OX1R) specifically in the presence of auditory CS, but did not change it in the 

absence of CS. We also expressed OX1R in NA-LC neurons in wild-type mice (WT-OX1R, n=7). 

This group did not show any difference as compared with wild type. F, Freezing time of each group 

during conditioning session of the contextual fear conditioning test. There was no significant 
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difference between KO-ChR2 (n = 7) and KO-OX1R (n = 7) groups during the conditioning period. 

G, Effect of restored expression of OX1R in LC on freezing behavior during the test period of 

contextual fear conditioning compared to the control group. H, Graphic representation of the results 

in panel G. We also expressed OX1R in NA-LC neurons in wild-type mice (WT-OX1R, n=7). Data 

are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Figure 5 

Zif 268 expression in the lateral amygdala after cued fear test was lower in Ox1r-/- mice. 

Immunostaining of zif268 in the LA. A, Schematic representation of experimental design. B, A 

representative images of zif268-positive cells in the LA of wild type (left) and Ox1r-/- mice (right). 

There was no significant difference between genotypes. C, Number of zif268-positive cells after 

cued fear test was significantly lower in Ox1r-/- mice as compared with wild type. **p < 0.01. D, 

Number of zif268-positive cells in the LA of Ox1r-/- mice and wild type. Scale bars, 30 µm. Data are 

shown as mean ± SEM 

 

Figure 6 

Noradrenergic input from LC through OX1R plays an important role in activation of LA. A, 

Schematic representation of experimental design. B-F, Immunostaining of zif268 in the LA (C, D) 

and Fos/TH-double-positive cells in the LC (B, E) was examined after cued and contextual fear test 

in Ox1r-/- mice with AAV-mediated expression of OX1R (NA-1R) or ChR2 (NA-ChR2) in LC-NA 

cells. Left panels (B-E), representative images showing the LC (B, D) or LA (C, E) of 

ChR2-injected (left panels) and OX1R-injected (center panels) Ox1r-/- mice. Right panels (B-E) 

show quantification of positive cells. *p < 0.05. Scale bars, 50 µm (B, D) and 30 µm (C, E). Data 

are shown as mean ± SEM. 
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