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Optimization of iterative reconstruction parameters in MPI 

 

[Original article] 

Optimization of iterative reconstruction parameters with attenuation correction, 

scatter correction and resolution recovery in myocardial perfusion SPECT/CT 

 

Abstract 

Objective: The aim of this study was to characterize the optimal reconstruction parameters for 

ordered-subset expectation maximization (OSEM) with attenuation correction, scatter correction 

and depth-dependent resolution recovery (OSEMACSCRR). We assessed the optimal parameters for 

OSEMACSCRR in an anthropomorphic torso phantom study, and evaluated the validity of the 

reconstruction parameters in the groups of normal volunteers and patients with abnormal perfusion. 

 

Methods: Images of the anthropomorphic torso phantom, 9 normal volunteers and 7 patients 

undergoing myocardial perfusion SPECT were acquired with a SPECT/CT scanner. SPECT data 

comprised a 64 × 64 matrix with an acquisition pixel size of 6.6 mm. A normalized mean square 

error (NMSE) of the phantom image was calculated to determine both optimal OSEM update and a 

full width at half maximum (FWHM) of Gaussian filter. We validated the myocardial count, 

contrast and noise characteristic for clinical subjects derived from OSEMACSCRR processing. OSEM 

with depth-dependent resolution recovery (OSEMRR) and filtered back projection (FBP) were 

simultaneously performed to compare OSEMACSCRR. 

 

Results: The combination of OSEMACSCRR with 90-120 OSEM update and Gaussian filter with 

13.2-14.85 mm FWHM yielded low NMSE value in the phantom study. When we used 

OSEMACSCRR with 120 updates and Gaussian filter with 13.2 mm FWHM in the normal volunteers, 

myocardial contrast showed significantly higher value than that derived from 120 updates and 14.85 

mm FWHM. OSEMACSCRR with the combination of 90-120 OSEM update and 14.85 mm FWHM 

produced lowest % root mean square (RMS) noise. Regarding the defect contrast of patients with 

abnormal perfusion, OSEMACSCRR with the combination of 90-120 OSEM update and 13.2 mm 

FWHM produced significantly higher value than that derived from 90-120 OSEM update and 14.85 

mm FWHM. OSEMACSCRR was superior to FBP for the % RMS noise (8.52 ± 1.08 vs. 9.55 ± 1.71, 

p = 0.02) and defect contrast (0.368 ± 0.061 vs. 0.327 ± 0.052, p = 0.01) , respectively. 

 

Conclusions: Clinically optimized the number of OSEM updates and FWHM of Gaussian filter 

were (1) 120 updates and 13.2 mm, and (2) 90-120 update and 14.85 mm on the OSEMACSCRR 

processing, respectively. Further assessment may be required to determine the optimal iterative 

reconstruction parameters in a larger patient population. 

 

Key Words: myocardial perfusion SPECT, ordered-subset expectation maximization, attenuation 

correction, scatter correction, depth-dependent resolution recovery.  
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Introduction 

 

 Iterative reconstruction (1), such as ordered-subset expectation maximization (OSEM) (2), 

is an indispensable technology for the corrections of depth dependent blurring, photon attenuation 

and scatter in the field of nuclear medicine. As for myocardial perfusion single-photon emission 

computed tomography (SPECT) imaging (MPI), iterative reconstruction improves the 

signal-to-noise ratio of myocardial perfusion counts and the myocardial uptake overlapped with the 

hepatic uptake. Attenuation correction (AC)，scatter correction (SC) and resolution recovery (RR) 

algorithm can be incorporated into the iterative reconstruction processing, which is suggested for 

the cardiac SPECT in the European Association of Nuclear Medicine / European Society of 

Cardiology guidelines (3, 4). 

 The latest iterative reconstruction technologies (5, 6) are commercially available as Flash 

3D (Siemens Medical Solutions, Erlangen, Germany) (7-9), Astonish (Philips Medical Systems, 

Milpitas, CA, USA) (10-12), Evolution for Cardiac (GE Healthcare, Waukesha, WI, USA) (13) and 

wide beam reconstruction (UltraSPECT, Haifa, Israel) (13, 14). Since noise reduction algorithm is 

incorporated into the latest iterative reconstruction processing as well as AC, SC and RR, half time 

cardiac SPECT imaging became feasible (11, 13-16). Consequently, the image quality for the 

half-time SPECT imaging is equivalent to that for the conventional full-time SPECT imaging in 

clinical studies (11, 13, 16). 

 However, optimal reconstruction parameters have not been clearly described in the latest 

cardiac OSEM processing with AC, SC and RR algorithm (OSEMACSCRR). In addition, an optimal 

cutoff value for filter processing also has not been characterized. The goal of this study was to 

determine the optimal OSEM reconstruction parameters on Flash 3D processing. We initially 

determined the optimal parameters in an anthropomorphic torso phantom study. Consequently, we 

applied the optimized OSEM parameters to a clinical MPI study, and evaluated myocardial count, 

contrast and noise characteristic in the groups of normal volunteers and patients with abnormal 

perfusion.  

 

 

Material and Methods 

 

Anthropomorphic torso phantom 

 

We utilized an anthropomorphic torso phantom configured with the cardiac, pulmonary and 

hepatic components (Kyoto Kagaku, Kyoto, Japan). The left ventricular (LV) myocardium and liver 

were filled with 199 and 24 MBq of Tc-99m pertechnetate, respectively. The left and right 

ventricular cavities were filled with water. Four plastic circular defects with 20 mm diameter were 

placed in the mid anterior, lateral, inferior and septal walls.  
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Study population 

 

The population included 9 normal volunteers (6 males, mean age: 31 ± 10) and 7 patients 

with abnormal perfusion (4 males, mean age: 80 ± 6). There was no statistically difference between 

the body heights of the two groups as well as body weights (158 ± 11 cm vs. 165 ± 7 cm, 54 ± 11 kg 

vs. 60 ± 10 kg, respectively). The averages of ejection fraction (EF), end-systolic volume (ESV) and 

end-diastolic volume (EDV) were 65 ± 6 %, 29 ± 15 ml and 78 ± 25 ml for the normal volunteers, 

and 55 ± 13 %, 53 ± 50 ml and 108 ± 77 ml for the patients with abnormal perfusion, respectively. 

Averaged summed rest score (SRS) was 16.7 ± 7.1 for the patients with abnormal perfusion. The 

institutional ethical committee approved the normal volunteer study, and all volunteers gave 

informed consent. We retrospectively enrolled the patients with abnormal perfusion, who underwent 

rest gated MPI. All phantom and clinical researches were performed at Kanazawa University 

Hospital. 

 

Image acquisition and data processing 

 

SPECT acquisition was performed with a dual-head gamma camera (Symbia T6 hybrid 

SPECT/CT scanner, Siemens Japan, Tokyo, Japan) equipped with a low-energy high-resolution 

collimator. A photopeak window of 
99m

Tc was set as a 15 % energy window centered at 140 keV, 

and a low sub window for SC was set as a 7 % of photopeak window (120 – 129 KeV). The 

acquisition pixel size was a 6.6 mm for a 64 × 64 matrix. In the phantom study, we acquired two 

axial images, which were reconstructed by 60 projection data, to calculate the normalized mean 

square error (NMSE) (17, 18). In the clinical study, we performed rest gated-
99m

Tc-sestamibi 

(MIBI) MPI with 16 frames per cardiac cycle on the hybrid SPECT/CT scanner. MPI was 

performed with the 360-degree circular acquisition with 60 projections at 40 minutes after injection 

of 
99m

Tc MIBI of 300-370 MBq. An acquisition time was set as 35 seconds per projection. We 

acquired a low-dose computed tomography (CT) image for AC using a 6-detector row CT on the 

SPECT/CT scanner. Tube voltage and effective mAs for AC CT were 130 kV and 20 mAs, 

respectively. The axial image was reconstructed with a thickness of 5.0 mm. 

 

Data analysis 

 

 We used three reconstruction processings: OSEMACSCRR, OSEM with RR (OSEMRR) and 

filtered back projection (FBP) in the phantom and clinical studies. AC SC and RR algorithm was 

not incorporated into the conventional FBP processing. When the number of subsets was constantly 

set as 15, the number of iterations was set from 1 to 30 (the range of OSEM update: 15 to 450). We 

utilized Gaussian post-filter for both OSEMACSCRR and OSEMRR, and Butterworth filter for FBP. 

The full width at half maximum (FWHM) of Gaussian filter was set from 6.6 mm to 14.85 mm. The 
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cutoff frequency for Butterworth filter was set as 0.68 Nyquist. All the OSEMACSCRR, OSEMRR and 

FBP were processed using the e.soft version 8.1 (Siemens Japan, Tokyo, Japan). 

When we calculated NMSE value for the phantom image, the equation of NMSE 

calculation was as follows: 

𝑁𝑀𝑆𝐸 =∑∑∑((𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑗, 𝑘) − 𝑇𝑒𝑠𝑡(𝑖, 𝑗, 𝑘))
2

𝑧

𝑘=1

𝑦
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where the Reference (i, j, k) represented a predicted pixel value on a reference standard image. The 

Test (i, j, k) represented an actual pixel value on a test image. An acquisition time for the reference 

standard imaging was set at ten times as much as that for the test imaging. Summed acquisition 

counts for the reference and test images were 18.1 and 1.8 million, respectively. The projection data 

for the reference and test imaging were reconstructed using OSEMACSCRR with the combinations of 

OSEM update (15 to 450) and FWHM of Gaussian filter (6.6 to 14.85 mm). 

Averaged LV count was calculated using the circumferential profile analysis in the apical, 

mid and basal short-axis slices. % root mean square (RMS) noise for the LV counts was defined as 

the equation of (standard deviation / mean) × 100. Myocardial contrast was also defined as the 

equation of (maximum LV count – background) / (maximum LV count + background). An averaged 

background count was calculated using square region of interest (3 × 3 pixels) at the center of the 

ventricular cavity on the mid and basal short-axis slices. In the clinical assessment of patients with 

abnormal perfusion, we defined the region of perfusion defect as a background count, and 

calculated the defect contrast. 

SRS, EF, ESV and EDV were automatically calculated with quantitative perfusion SPECT 

(QPS) and quantitative gated SPECT (QGS) version 2008.1 (Cedars-Sinai Medical Center, Los 

Angeles, CA, USA). FBP processing was used to reconstruct the image for the calculation of EF 

and left ventricular volume. SRS was calculated using 17 segment model for LV segmentation. 

When we calculated SRS in the patients with abnormal perfusion, sex-specific attenuation corrected 

normal databases were utilized.  

 

Statistical analysis 

 

 All continuous values were expressed as mean ± standard deviation. A paired t test was 

used to analyze the differences in paired continuous data. A one-way repeated measure analysis of 

variance was used to analyze the parametric data, and the pairwise comparison was performed using 

the Bonferroni correction for p values. The Friedman test was also used to analyze the 

non-parametric data. All statistical tests were two-tailed, and a p value of less than 0.05 was 

considered significant. These analyses were performed by using MedCalc software version 11.2.1.0 

(Mariakerte, Belgium).  
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Results 

 

 Figure 1 shows the vertical long-axis and horizontal long-axis and short-axis displays of 

the reconstructed phantom image derived from OSEMACSCRR, OSEMRR and FBP. OSEMACSCRR 

showed better uniformity of phantom activity concentration and myocardial delineation in 

comparison with OSEMRR and FBP. Figure 2 shows NMSE value for the anthropomorphic phantom 

image derived from OSEMACSCRR. When we used Gaussian filter with 13.20 mm FWHM, NMSE 

value reached a plateau at 90 OSEM updates, and lower NMSE value was observed at 120 OSEM 

updates. In addition, there was no significant difference between NMSE values derived from 

Gaussian filters with 13.2 and 14.85 mm FWHMs. Consequently we focused on myocardial 

contrast, % RMS noise and defect contrast derived from OSEMACSCRR with 90 and 120 updates in 

the following clinical study, and also focused on those from Gaussian filter with 13.2 and 14.85 

FWHMs. 

 

 

 

Figure 1. Vertical long-axis, horizontal long-axis and (apical, mid and basal) short-axis displays of 

anthropomorphic phantom derived from OSEMACSCRR (A), OSEMRR (B) and FBP (C). 120 OSEM 

updates and Gaussian filter with 13.2 mm FWHM were used for OSEMACSCRR and OSEMRR. 
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Figure 2. NMSE value derived from OSEMACSCRR on the anthropomorphic torso phantom study. 

The FWHM of Gaussian filter was set from 6.60 mm to 14.85 mm.  

 

Figure 3a shows the relationship between OSEM update and the average of normalized 

myocardial count in the normal volunteer group. When we used Gaussian filters with 13.2 and 

14.85 mm FWHMs, myocardial counts reached plateaus at 120 OSEM updates. Figure 3b shows 

the relationship between OSEM update and contrast between normal myocardial uptake and 

background. There was significant difference between the contrasts derived from Gaussian filters 

with 13.2 and 14.85 mm FWHMs. There was also significant difference between the contrasts 

derived from 90 and 120 OSEM updates. OSEMACSCRR with 120 OSEM updates and Gaussian filter 

with 13.2 mm FWHM showed the highest contrast in the combination of 90-120 OSEM update and 

Gaussian filter with 13.2-14.85 mm FWHM. Figure 3c shows the relationship between OSEM 

update and % RMS noise. Although significant difference was observed in the % RMS noises 

derived from Gaussian filters with 13.2 and 14.85 mm FWHMs, no significant difference was 

observed between 90 and 120 OSEM updates. Figure 4 shows the relationship between OSEM 

update and defect contrast. When we used Gaussian filters with 13.2 and 14.85 mm FWHMs, defect 

contrasts reached plateaus at 90 OSEM updates. There was significant difference between the defect 

contrasts derived from the Gaussian filters with 13.2 and 14.85 mm FWHMs. 
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Figure 3. Relationships between 

OSEM update and normalized 

count (a), contrast (b) and noise 

characteristic (%RMS noise) (c) 

of the left ventricular uptake 

derived from OSEMACSCRR in the 

normal volunteer group. 

Horizontal dotted line shows the 

contrast and ％  RMS noise 

derived from FBP in Figures 3b 

and 3c. 
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Figure 4. Relationship between OSEM update and defect contrast for patients with abnormal 

perfusion. Horizontal dotted line shows the defect contrast derived from FBP. 

 

Figure 5 shows a flow chart for the optimization process of iterative reconstruction 

parameters. We experimentally characterized the optimized OSEM update and FWHM of Gaussian 

filter as 90-120 and 13.2-14.85 mm in the anthropomorphic torso phantom study, respectively. 

Consequently, after we evaluated the contrast for normal uptake, % RMS noise and defect contrast 

in the clinical MPI study, the optimized OSEM update and FWHM of Gaussian filter were 

characterized as both (1) 90-120 OSEM update and Gaussian filter with 14.85 mm FWHM and (2) 

120 OSEM updates and Gaussian filter with 13.2 mm FWHM. 

 

Figure 5. Flow chart for the optimization process of iterative reconstruction parameters. 
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Table 1 shows the comparison between OSEMACSCRR and FBP in the results of contrast for 

normal myocardial uptake, % RMS noise and defect contrast. Contrast for normal myocardial 

uptake derived from OSEMACSCRR was equivalent to that from FBP. % RMS noises derived from 

OSEMACSCRR with 90-120 update and Gaussian filter with 14.85 mm FWHM were better than that 

from FBP (8.52 ± 1.08 and 8.45 ± 0.91 vs. 9.55 ± 1.71, p = 0.02, respectively). Defect contrasts 

derived from OSEMACSCRR with 90-120 update and Gaussian filter with 13.2 mm FWHM showed 

significantly higher values than that from FBP (0.368 ± 0.061 and 0.371 ± 0.061 vs. 0.327 ± 0.052, 

p < 0.01). 

 

Table 1. Results of contrast between normal myocardial uptake and background, % RMS noise and defect contrast 

derived from OSEMACSCRC and FBP. 

 FWHM of Gaussian filter 

FBP 
OSEM 

update 
13.2 mm 

p value 

(vs. FBP) 
14.85 mm 

p value 

(vs. FBP) 

Contrast between normal myocardial uptake and background 

90 0.63 ± 0.07 n.s. 0.58 ± 0.07 n.s. 
0.60 ± 0.10 

120 0.66 ± 0.07 n.s. 0.61 ± 0.08 n.s. 

      

% RMS noise 

90 8.88 ± 1.24 n.s. 8.52 ± 1.08 0.02 
9.55 ± 1.71 

120 8.79 ± 0.98 n.s. 8.45 ± 0.91 0.02 

      

Defect contrast 

90 0.368 ± 0.061 0.01 0.352 ± 0.061 n.s. 
0.327 ± 0.052 

120 0.371 ± 0.061 <0.01 0.354 ± 0.050 n.s. 

 

Figure 6 shows the vertical long-axis, horizontal long-axis and (apical, mid and basal) 

short-axis displays of the normal volunteer and patient with abnormal perfusion derived from 

OSEMACSCRR, OSEMRR and FBP. When we used OSEMACSCRR with the optimized reconstruction 

parameters, myocardial infarction was clearly delineated. 
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Figure 6. Example of vertical long-axis, horizontal long-axis and (apical, mid and basal) short-axis 

displays of the normal volunteer (a) and patient with abnormal perfusion (b). 120 OSEM updates 

and Gaussian filter with 13.2 mm FWHM were used in the OSEMACSCRR and OSEMRR. 
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Discussion 

 

 We characterized the optimal iterative reconstruction parameters for OSEMACSCRR 

processing in the phantom and clinical studies. In the phantom study, OSEMACSCRR with 90-120 

update and Gaussian filter with 13.2-14.85 mm FWHM produced low NMSE value. We determined 

that the clinically optimized iterative reconstruction parameters were both (1) 90 OSEM updates 

with 14.85 mm FWHM and (2) 90-120 OSEM update with 13.2–14.85mm FWHM in the groups of 

normal volunteers and patients with abnormal perfusion. 

 The optimizations for OSEM reconstruction parameters have been described in many 

studies. The number of updates for OSEM with no compensation was ranged from 8 to 50 in the 

bone, gallium and MPI studies (19-22). As for OSEMACSCRR processing in clinical MPI studies, 75 

OSEM updates were used (23, 24). Comparing the optimal number of OSEM updates between 

OSEMACSCRR and OSEM with no compensation, OSEMACSCRR required more OSEM update than 

OSEM with no compensation to reconstruct the projection data. However, Astonish technology 

required only 24 OSEM updates in clinical MPI study (12). Moreover, when we used the wide 

beam reconstruction technology, suitable number of OSEM updates was automatically determined. 

We will need further investigation of the latest OSEMACSCRR processing (18). 

 The combination of OSEM update and Gaussian filter significantly affected the perfusion 

count, contrast and noise characteristic in the phantom and clinical studies. Moreover, there was a 

trade-off between the number of OSEM updates and the FWHM of Gaussian filter. For example, 

the delineation of normal myocardium derived from OSEMACSCRR with 90 updates and Gaussian 

filtering occasionally shows equivalent to that from OSEMACSCRR with 50 updates and no filtering. 

However, OSEMACSCRR with 50 updates is not enough to correct a depth-dependent blurring. 

Therefore, when the number of OSEM updates has been increased until the measured reconstruction 

data matches with the estimated reconstruction data, Gaussian filter should be applied to the 

reconstructed image to decrease the statistical noise.  

Clinical implication of this study was that we experimentally determined that the optimized 

iterative reconstruction parameters were both 90 OSEM updates with 13.2 mm-FWHM Gaussian 

filter and 90-120 OSEM update with 13.2-14.85 mm-FWHM Gaussian filter in the clinical MPI 

studies. In comparison with FBP processing, % RMS noise and defect delineation were significantly 

improved with OSEMACSCRR processing. Whereas, normal myocardial contrast derived from 

OSEMACSCRR was equivalent to that from FBP. In the diagnostic performances of clinical MPI using 

OSEMACSCRR, OSEMACSCRR was superior to FBP regarding the sensitivity (82.2 ± 2.7 vs. 65.9 ± 4.9, 

p < 0.001) and specificity (82.6 ± 3.0 vs. 66.7 ± 4.5, p = 0.001) for the detection of coronary artery 

disease (CAD) (24). Pretorius also reported that OSEMACSCRR yielded significantly better detection 

of CAD than FBP (23).  

 Our study has several limitations. We did not describe the optimal number of subsets. In 

our preliminary study for the evaluation of subset, when we acquired 60 projection datasets using 
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the NEMA IEC PET phantom, equivalent image quality was visually observed among the OSEM 

updates of 15 subsets × 6 iterations, 10 subsets × 9 iterations, 6 subsets × 15 iterations, 5 subsets × 

18 iterations, and 3 subsets × 30 iterations. In the low-count SPECT imaging, optimal number of 

OSEM updates may be modified. This is because reconstructed image quality is determined by the 

count statistics within the subset. We will need the further investigation for optimal OSEM 

reconstruction parameters in the low-count acquisition. Finally, we did not have enough normal 

volunteers and patients with abnormal perfusion to evaluate the myocardial count, contrast and 

noise characteristic. Further assessment may be needed to confirm this observation in a larger 

patient population. 

 

 

Conclusion 

 

 We determined that the optimized OSEM update and FWHM of Gaussian filter were both 

(1) 90 updates and 13.2 mm and (2) 90-120 update and 13.2-14.85 mm in the clinical MPI study, 

respectively. OSEMACSCRR processing was superior to FBP processing for the noise characteristic 

and defect delineation, and equivalent to FBP processing for the myocardial contrast. Further 

assessment may be needed to confirm the optimized reconstruction parameters in a larger patient 

population. 
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